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Abstract:

In this paper, we assess the evolution of the convergence process between 145 European
regions over 1980-1999. In that purpose, we use the formal tools of spatial econometrics to

identify and include the relevant spatial effects in the estimation of the appropriate £ -

convergence model for two sub-periods (1980-1989 and 1989-1999). While a spatial error
model is the best specification for both periods, we detect spatial heterogeneity in the form of
structural instability and groupwise heteroskedasticity only in the second period. These
results highlight the formation of a convergence club between the peripheral regions of the
European Union and a differentiation between the convergence process of the core regions
and the one of the peripheral regions. Therefore, all the regions do not converge to the same

steady-state anymore and this process is dependent upon each region’s geographic location.
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INTRODUCTION

In Europe, following the successive enlargements during the 80’s to the
Southern and less developed countries (Greece in 1981, Spain and Portugal in 1986),
the regional inequalities became so obvious and unacceptable, both on equity and
policy grounds, that the European Commission decided to devote as much as one-
third of its budget to foster cohesion. The process of accelerating deeper integration
also required greater cohesion efforts among members. Indeed, the 1986 Single Act
was the basis of the Single Market with the aim of ensuring free circulation of goods
and people among member countries. A necessary condition for this policy stood in
the creation of transportation infrastructures, able to link to the core even the most
remote regions. Convergence efforts were also necessary before the implementation
of the single currency. Indeed, according to the theory of optimal currency areas,
initiated by Mundell (1961), cohesion ensures that the member countries will be
equally affected by external shocks and will not be destabilized by the imposition of
a common monetary policy.

However, if the process of integration and the massive amount of regional
funds allocated by the European Commission since 1989 have succeeded in
decreasing income differences among member States over the past two decades,
regional inequalities have increased within numerous countries and peripheral
regions stay less developed than those located in the core (Neven and Gouyette,
1995; Quah, 1996; Martin, 1999). Therefore, it seems that deeper integration and
regional development funds devoted to transportation infrastructures have both
contributed to dismantling trade barriers and reducing transportation costs between

regions. In the presence of increasing returns and spatially limited externalities, it



has led to an agglomeration of productive activities in the richest and centrally
located areas (Krugman, 1991a, 1991b; Vickerman, 1991; Martin, 1999).

Economic integration and cohesion efforts devoted to the less developed
regions have had an effect on the convergence process between the European regions
since the eighties, but the question as to whether they have fostered the convergence
process remains open. In the absence of data allowing for a direct estimation of their
impact, this paper focuses on the convergence process between 145 European
regions over 1980-1999. More precisely, we evaluate whether some form of
temporal heterogeneity is present by decomposing this total period into two
subperiods: 1980-1989 and 1989-1999. The choice of this temporal decomposition
is firstly due to data availability. Indeed, given the size of our sample, the REGIO
database is not able to provide more ancient data and we prefer avoiding lack of
homogeneity due to the combination of different databases. Moreover, the year 1989
has the advantage of separating our total period in two equivalent sub-periods and it
also corresponds to the considerable development of regional policies and the reform
of structural funds.

From a methodological point of view, this paper is not based on the same
methods and assumptions than those used for cross-countries convergence analysis,
following the well-known studies performed by Barro and Sala-I-Martin (1991,
1995). On the contrary, we follow the regional science literature (see, for instance,
Fingleton, 1999; Rey and Montouri, 1999) and avoid considering the regions as
“isolated islands” (Quah, 1996). In that purpose, we use the tools of spatial
econometrics to formally take account of the spatial environment of each region and
their potential interregional links. Specifically, we aim at avoiding bias in statistical

inference due to omitted spatial effects in order to obtain more reliable estimates of



the convergence rate. These spatial effects are spatial autocorrelation and spatial
heterogeneity. Using spatial econometrics methods also allows estimating the
magnitude of geographical spillover effects in regional growth processes and
detecting spatial convergence clubs. We therefore suggest in this paper an empirical
evaluation of the convergence process between European regions focusing both on
its spatial dimension and on its temporal evolution.

The paper proceeds as follows: section 1 provides some insights into the -
convergence model and spatial effects upon which the empirical estimations
described in the following sections rely. Section 2 presents the data and weights
matrix. In Section 3, exploratory spatial data analysis (ESDA) is used to detect
spatial autocorrelation and spatial heterogeneity among European regional GDP.
These two spatial effects are then included in the estimation of the appropriate S
convergence model, first over the 1980-1989 period, second over the 1989-1999

period. The last section provides some concluding remarks.

I. #CONVERGENCE MODELS AND SPATIAL EFFECTS
1. p-convergence models

Since the publication of the seminal articles of Barro and Sala-i-Martin (1991,
1992, 1995), a very large number of studies have examined f—convergence between
different countries and regions for different time periods '. This concept is linked to
the neoclassical growth model, which predicts that the growth rate of a region is
positively related to the distance that separates it from its own steady-state.
Empirical evidence for f-convergence is investigated by regressing growth rates of

GDP on its initial levels. Two cases are usually considered in the literature.



If all economies are structurally identical and have access to the same
technology, they are characterized by the same steady state and differ only by their
initial conditions. This is the hypothesis of absolute f—convergence, which is
usually tested on the following cross-sectional model, in matrix form:

g, =ae, + By, +& & ~ N(0,071) (1)
where gr is the (Nx1) vector of average growth rates of per capita GDP between date
0 and T; ey is the (Nx1) vector composed of unit elements; Yy is the vector of log per
capita GDP levels at date 0; « and f are the unknown parameters to be estimated.
There is absolute f—convergence when the estimate of £ is significantly negative.
This hypothesis is typically supported when applied to data from relatively
homogenous groups of economic units, such as US states, OECD countries or
European regions.

The concept of conditional S—convergence is used when the assumption of
similar steady-states is relaxed. Note that if economies have very different steady
states, this concept is compatible with a persistent high degree of inequality among
economies. In this case, a matrix of variables maintaining constant the steady-state is
added in equation (1) 2. It is usually tested on the following cross-sectional model:

O =aey + LY, + Xd+¢ g ~ N(0,521) (2)
with the same notations as above and X is a matrix of variables, maintaining constant
the steady state of each economy. There is conditional f—convergence if the

estimate of fis significantly negative once X is held constant.

Both f-convergence concepts have been heavily criticized on theoretical and

methodological grounds. From a theoretical point of view, Friedman (1992) and



Quah (1993) show that the interpretation of the f-convergence tests may be plagued
by Galton's fallacy of regression toward the mean. However, the study by Le Gallo
(2004), based on a Markov chains approach, indicates that the mobility of European
regions in the distribution of per capita GDP over the 1980-1995 period is very
limited, so that this problem is not relevant for our case study. Furthermore, these
tests face several methodological problems such as robustness with respect to choice
of control variables, multicolinearity, heterogeneity, endogeneity, and measurement
problems (Durlauf and Quah 1999; Temple 1999; Durlauf et al., 2005). Therefore,
other estimation methods and convergence concepts have been suggested: panel data
techniques (Islam, 1995; Lee et al., 1998; McCoskey, 2002), time-series techniques
(Bernard and Durlauf, 1995; Linden, 2002; Nahar and Inder, 2002; Maeso-Fernandez

F., 2003) or distribution analysis (Quah, 1996; Fingleton, 1999; Le Gallo, 2004).

In this paper, we point out that the spatial dimension of the data used in these
studies raises particular identification, estimation and interpretation issues. The first
study highlighting these potential problems is the one of De Long and Summers
(1991) who explain that the assumption of independence across residuals is
untenable. Mankiw (1995) and Temple (1999) also draw attention on error
correlation and geographic spillovers between economic units. As pointed out by
Abreu et al. (2005), the spatial dimension of data is usually modelled in two different
ways: models of absolute location and models of relative location. Absolute location
refers to the impact of being located at a particular point in space (continent, climate
zone) and is usually captured through dummy variables (Barro, 1991; Ades and
Chua, 1997). Relative location refers to the effect of being located closer or further

away from other specific countries or regions and its effects should be analyzed



through the methods of spatial econometrics (Anselin, 1988, 2001). Abreu et al.
(2005) add that the distinction between models of absolute and relative location
can be related to a similar classification used in spatial econometrics, i.e. the
distinction between spatial heterogeneity and spatial dependence. We now present

these two effects in detail in the convergence context.

2. Spatial autocorrelation

Spatial autocorrelation refers to the coincidence of attribute similarity and
locational similarity (Anselin, 1988, 2001). Therefore, there is positive spatial
autocorrelation when high or low values of a random variable tend to cluster in space
and there is negative spatial autocorrelation when geographical areas tend to be
surrounded by neighbors with very dissimilar values. In the context of European
regions, positive spatial autocorrelation means that rich regions tend to be
geographically clustered as well as poor regions. It may come from the fact that the
data are affected by processes touching different locations. Indeed, at the regional
scale, several factors, such as trade between regions, labor and capital mobility,
technology and knowledge diffusion, etc. may lead to spatially interdependent
regions. Note that the inclusion of spatial autocorrelation in convergence models can
even be motivated theoretically. Indeed, Koch (2004), Lopez-Bazo et al. (2004) and
Vaya et al. (2004) have recently derived neoclassical models with spatial
externalities yielding to convergence models including spatial autocorrelation.
Spatial autocorrelation can also arise from model misspecifications (omitted
variables, measurement errors) or from a variety of measurement problems, such as
boundary mismatching between the administrative boundaries used to organize the
data and the actual boundaries of the economic processes believed to generate

regional convergence (Cheshire and Carbonaro, 1995).



Spatial concentration of economic activities in European regions has already
been documented in Lopez-Bazo et al. (1999), Le Gallo and Ertur (2003), Dall’erba
(2005) with the formal tools of spatial statistics. It is therefore important to
incorporate explicitly spatial autocorrelation into f-convergence models (Armstrong,
1995; Moreno and Trehan, 1997; Fingleton, 1999, 2001; Rey and Montouri, 1999).
Formally, several econometric models can be used to deal with spatially dependent
observations (Anselin, 1988, 2001; Anselin and Bera, 1998). Here, we present the
spatial lag and the spatial error models. In the spatial lag model, an endogenous

variable of the form Wg; is introduced in model (1) as follows:
9y = PWG; +aey + Y, +¢ ENN(O’O-SZI) 3)

where W is an (NxN) spatial weights matrix where each element (i,j) exogenously
defines the way regions i and j are spatially connected to each other. When W is

row-standardized, the spatial lag variable WQ, contains the spatially weighted

average of the growth rates of the neighboring regions. The parameter p indicates
the level of spatial interaction between regions. This specification allows measuring
how the growth rate in a region may relate to the one in its surrounding regions after
conditioning on the starting levels of per capita GDP. Since the spatial lag is a
stochastic regressor, which is always correlated with ¢, estimation of this model by
OLS produces inconsistent estimators; it must therefore be estimated by Maximum
Likelihood (ML) or Instrumental Variables (IV).

Alternatively, spatial autocorrelation can be introduced by means of the error

term:

g=ae, +p0Yy,+¢ e=AWe+u u~N(0,0:1) 4)



where A indicates the level of spatial autocorrelation between error terms of
neighboring regions. Spatial autocorrelation in the error terms may arise because of
omitted variables or measurement problems. Since the errors are non-spherical,
estimation of this model by OLS yields inefficient estimators; it must therefore be
estimated by ML or Generalized Method of Moments (GMM). This model can be
rewritten in another form, which can be interpreted as a minimal model of
conditional f—convergence integrating two spatial environment variables (Le Gallo

et al., 2003). Indeed, pre-multiplying equation (4) by (I —AW) yields:
(I =AW)g; =a(l —AW)e, + S(1 =AW)y, +(I —AW)e (5)
Since (1 —AW )& =u, then model (5) can be rewritten as :

g, = a(l —AW)e, + By, + Wg, + Wy, +u (©6)

with the restriction y=—A18. The model (6) is called the spatial Durbin model. It can
be estimated by ML and highlights two forms of geographic spillover effects: the
average growth rate of a region i is influenced by the average growth rates (through

Wg; ) and the initial per capita GDP (through Wy, ) of its neighboring regions. The

restriction y + A = 0 can be tested by means of the common factor test (Burridge,

1981). If it cannot be rejected then model (6) reduces to model (4).

As can be seen from this technical presentation, integrating spatial
autocorrelation into f-convergence models is useful for several reasons. First, it
provides more reliable estimation and inference of the rate of convergence through

the [ parameter when the assumption of independence of error terms in OLS
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estimation is not met. Second, it allows capturing geographic spillover effects

between European regions through the spatial lag variables.

3. Spatial heterogeneity

Spatial heterogeneity means that economic behaviors are not stable over
space. In a regression model, spatial heterogeneity can be reflected by varying
coefficients (structural instability) and/or by varying error variances across
observations (groupwise heteroskedasticity) or both. These variations follow for
example specific geographical patterns such as East and West, or North and South.

Spatial heterogeneity can be linked to the concept of convergence clubs,
characterized by the possibility of multiple, locally stable, steady state equilibria
(Durlauf and Johnson 1995). A convergence club is a group of economies whose
initial conditions are near enough to converge toward the same long-term
equilibrium. From a theoretical point of view, convergence clubs may be based on
endogenous growth models characterized by multiple steady state equilibria
(Azariadis and Drazen, 1990) or standard neoclassical growth models where
heterogeneity across individuals is permitted (Galor, 1996).

When convergence clubs exist, standard convergence tests can have some
difficulties to discriminate between these multiple steady state models and the
standard Solow model (Durlauf and Johnson, 1995). In this case, one convergence
equation should be estimated per club. To determine those clubs, some authors
select a priori criteria, as the belonging to a geographic zone (Baumol, 1986) or
some GDP per capita cut-offs (Durlauf and Johnson, 1995). Others prefer to use
endogenous methods, as for example, polynomial functions (Chatterji 1992), cluster
analysis (Pugno, 1996; Hobijn and Franses, 2001) or regression trees (Durlauf and

Johnson, 1995; Berthélemy and Varoudakis, 1996). In the context of regional
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economies characterized by strong geographic patterns, like the core-periphery
pattern, we will detect convergence clubs using exploratory spatial data analysis
which relies on geographic criteria.

Formally, spatial heterogeneity can be modelled in two ways. First, let us
consider the possibility of structural instability. For matter of representation,
suppose that we have two clubs only, the core (indicated by C) and the periphery
(indicated by P). Then, a different set of coefficients must be estimated for each
club. A model of unconditional S-convergence for the two convergence clubs can
then be specified as follows:

0; =a.D. +a, Dy + 5.D.Y, + 5-DpY, + & & ~N(0,571) (7)
where D¢ and Dp are dummy variables qualifying the two regimes core and
periphery. This specification allows the convergence process to be different across

regimes. This model can also be formulated in matrix form as follows:

ac

Orc _ Sc Yoe O 0 || A N {‘90} @®)
Orp 0 0  Sp VYopll o €p
P

with g'=[gé gp] and £ ~N(0,0.1).

This latter assumption of normally and independently distributed error terms
may be overly restrictive. Assuming an error variance that is different in each club
results in the second form of spatial heterogeneity, represented here as groupwise

heteroskedasticity. Formally:

20
g~N o,{agvc c } )
0 o.plp
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where o2 and o} denote the club-specific constant error variances; . and I, are

identity matrices of dimensions equal respectively to the number of observations in
the core and in the periphery regime. Estimation can be carried out using FGLS or
ML and the equality of variances can be tested for with likelihood ratio (LR) tests.
The last two effects can be present at the same time. Finally, note that spatial

autocorrelation may occur in conjunction with spatial heterogeneity.

At the cross-country level, studies explicitly incorporating spatial effects are
relatively rare (Moreno and Trehan, 1997). They are more numerous for regional
studies since spatial effects are more relevant and sample sizes are greater at a
smaller scale, thus yielding more degrees of freedom. For example, Rey and
Montouri (1999) and Lall and Shalizi (2003) integrate spatial autocorrelation in the
estimation of f-convergence models between respectively US states and Brazilian
municipios. Similarly, some articles dealing with European regions highlight the
importance of spatial spillovers effects (Fingleton, 2000, 2003; Maurseth, 2001;
Arbia and Paelinck, 2003a, b; Le Gallo et al., 2003; Carrington, 2003; Vaya et al.,
2004) and/or the presence of strong spatial heterogeneity (Ertur et al., 2005) in the
convergence process’. This article analyzes simultaneously spatial autocorrelation
and spatial heterogeneity. In addition, we follow the approach of Barro and Sala-I-
Martin (1995) and Neven and Gouyette (1995) and take into account the presence of

temporal heterogeneity by subdividing our study period into two sub-periods.

Il. DATA AND SPATIAL WEIGHTS MATRIX

The regional per capita GDP series are drawn out the most recent version of

the NewCronos Regio database by Eurostat. This is the official database used by the
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European Commission for its evaluation of regional convergence. We use the
logarithms of the per capita GDP of each region over the 1980-1999 period. Our
sample i1s composed of 145 regions at NUTS II level (Nomenclature of Territorial
Units for Statistics) over 12 EU countries: Belgium (11 regions), Denmark (1
region), Germany (30 regions, Berlin and the nine former East German regions are
excluded due to historical reasons), Greece (13 regions), Spain (16 regions, as we
exclude the remote islands: Las Palmas, Santa Cruz de Tenerife Canary Islands and
Ceuta y Mellila), France (22 regions), Ireland (2 regions), Italy (20 regions),
Netherlands (12 regions), Portugal (5 regions, the Azores and Madeira are excluded
because of their geographical distance), Luxembourg (1 region), United Kingdom
(12 regions, we use regions at the NUTS I level, because NUTS II regions are not
used as governmental units, they are merely statistical inventions of the EU
Commission and the UK government) *. We are aware that our empirical results
could be affected by missing regions and/or by the choice of our level of spatial
aggregation. Indeed, the NUTS II level implies that regions have heterogeneous area
and population sizes and this choice influences the magnitude of various measures of
association. In fact, our decision is driven by the European Commission reports
where the NUTS 1I level is used for the estimations of the convergence process. In

addition, regional development objectives are mainly defined at this spatial level.

We now present the spatial weights matrix, on which all the following
analyses rely. In the European context, the existence of islands doesn’t allow
considering simple contiguity matrices (two regions are considered to be connected if
they share common borders); otherwise the weights matrix would include rows and

columns with only zeros for the islands. Since unconnected observations are
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eliminated from the results of spatial autocorrelation statistics, this would change the
sample size and the interpretation of the statistical inference. Following the
recommendations of Anselin and Bera (1998), we choose to base them on pure
geographical distance, as exogeneity of geographical distance is unambiguous. More
precisely, we use the great circle distance between regional centroids. Formally,
distance-based weights matrices are defined as:

W;(k) =0if i = j,vk

w; (k) =1/d ifd; <D(k) and wy=w;/> w; fork=1..3  (10)
w; (k) = 0if d; > D(k)

where WIJ is an element of the unstandardized weights matrix; W is an element of

the standardized weights matrix; d; is the great circle distance between centroids of
region I and J; D(1)=Ql, D2)=Me and D3)=Q3, Ql, Me and Q3 are
respectively the lower quartile, the median and the upper quartile of the great circle
distance distribution. D(k) is the cutoff parameter for k =1,...3 above which
interactions are assumed negligible. We use the inverse of the squared distance, in

order to reflect a gravity function. Each matrix is row standardized so that it is

relative and not absolute distance which matters °.

I11. EVOLUTION OF THE CONVERGENCE PROCESS BETWEEN

EUROPEAN REGIONS OVER 1980-1999

1. Detection of spatial regimes and methodology
Using the spatial weights matrices previously described, the first step of our
analysis is to detect the existence of spatial heterogeneity in the distribution of

regional per capita GDPs. In that purpose, we use the G-1* statistics developed by
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Ord and Getis (1995) ¢ on the regional per capita GDP values in 1980 7. These

statistics are defined as following:
D wx, WX
G'(d)= ]

— (1)
s{[(nS;)-W,*1/(n—1)}

where wjj is an element of the weights matrix W; W, = Z\Nij +W, ; n is the size of

J#i

the sample ; S, = ij , X and s” are respectively the mean and variance of the
i

sample. These statistics are computed for each region and they allow detecting the
presence of local spatial autocorrelation: a positive value of this statistic for region i
indicates a spatial cluster of regions with a high per capita GDP, whereas a negative
value indicates a spatial clustering of regions with a low per capita GDP around
region i. Based on these statistics, we determine our spatial regimes, which can be
interpreted as spatial convergence clubs, using the following rule: if the statistic for
region i is positive, then this region belongs to the group of “rich” regions and if the
statistic for region i is negative, then this region belongs to the group of “poor”
regions.

For all weights matrices described above, two spatial regimes, representative
of the well-known core-periphery framework (Krugman 1991a, 1991b; Fujita et al.,
1999), are persistent over the period. They are represented in figure 1 and highlight
some form of spatial heterogeneity:

- 96 regions belong to the spatial regime “rich” which is located in the core and thus
will be called “Core” from now on:

Belgium, Germany, Denmark, France, Italy (but Umbria, Marche, Lazio, Abruzzo,
Molise, Campania, Puglia, Basilicata, Calabria, Sicilia, Sardegna), Luxembourg, the

Netherlands, the United-Kingdom (but Northern-Ireland and Scotland).
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- 49 regions belong to the spatial regime “poor” located in “Periphery”:
Spain, Greece, Ireland, Southern Italy (Umbria, Marche, Lazio, Abruzzo, Molise,
Campania, Puglia, Basilicata, Calabria, Sicilia, Sardegna), Portugal, the North of the

United-Kingdom (Northern-Ireland and Scotland).
[Figure 1 around here]

Next, based on these two spatial regimes, we assess the evolution of the
convergence process during 1980-1999 by estimating two f-convergence equations
for both sub-periods 1980-1989 and 1989-1999. In order to detect the appropriate
form of spatial autocorrelation and spatial heterogeneity, we use and adapt the
classical “specific to general” specification search approach outlined in Anselin and
Rey (1991) or Anselin and Florax (1995) using tests described in Anselin et al.
(1996). Indeed, in the absence of a formal theory, this strategy provides ways to
discriminate between a spatial lag and a spatial error model.

More specifically, they suggest Lagrange Multiplier (LM) tests (resp.
LMERR and LMLAG) and their robust versions (resp. R-LMERR and R-LMLAG).
The decision rule suggested by Anselin and Florax (1995) is then used to decide the
most appropriate specification as follows: if LMLAG (resp. LMERR) is more
significant than LMERR (resp. LMLAG) and R-LMLAG (resp. R-LMERR) is
significant whereas R-LMERR (resp. R-LMLAG) is not, then the most appropriate
model is the spatial autoregressive model (resp. the spatial error model). This choice
can then be confirmed by performing additional LM tests: the common factor test
and the test for an additional spatial lag in the presence of spatial error
autocorrelation. Florax et al. (2003) show by means of Monte Carlo simulation that

this classical approach outperforms Hendry’s “general to specific” approach.
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There is no such formal strategy that has been suggested to detect the form of
spatial heterogeneity. Therefore, we will complement the preceding strategy by
computing the following tests: the Breusch-Pagan test and its spatially adjusted
version (Anselin, 1988) to test for heteroskedasticity, an LR test for groupwise
heteroskedasticity in addition to the Wald tests and their spatially adjusted versions
(Anselin, 1990) to test for individual and global structural instability of the

coefficients.

2. Convergence Process over 1980-1989

The OLS estimation results of the absolute f~convergence model (1) over
1980-1989 are displayed in table 1, using the squared inverse distance weights matrix
D(1) with cut-off equal to the first quartile of the distance distribution between the
regions’ centroids. This matrix has been chosen since it maximizes the value of
Moran’s | statistics adapted to regression residuals (Cliff and Ord, 1981). However,

we will present some robustness analysis at the end of the section.
The results show that ,B has the expected sign ( ,B =-0.015) and is

significant (p-value = 0.000), highlighting the presence of significant absolute /-
convergence among the European regions. It implies a convergence speed of 1.61%
and a half-life of 45 years®. Looking at the diagnostic tests, it appears that the
Jarque-Bera test does not reject the assumption of normality of the residuals (p-
value = 0.518). We also note that the White test clearly rejects homoskedasticity (p-
value = 0.004) as does the Breusch-Pagan test (p-value =0.025) versus Dc, the
dummy variable for the core regime. As a consequence, inference based on OLS
may be biased. Moreover, as noted by Anselin (1988), the links between
heteroskedasticity and spatial autocorrelation are strong and complex. In particular,

the presence of the former can be due to the omission of the latter.
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Figure 2 is the standard map of the residuals of model (1) estimated by OLS.
As can clearly be seen from the map, they are not randomly distributed over the EU
but spatial concentrations of similar values can be observed. Specifically, clusters of
high residuals are to be found in Italy, South of Germany and Spain while clusters of
low residuals are located in Greece, France, North Germany and Benelux. Spatial
autocorrelation in the residuals is therefore highly probable. In order to detect the
form taken by spatial autocorrelation, we apply the decision rule presented above. It
appears that the spatial error model is the best specification: LMERR (227.009) is
greater than LMLAG (208.042) and R-LMERR is significant whereas R-LMLAG is
not.

[Table 1 and figure 2 around here]
Our next step is therefore the estimation of a spatial error model (model 4).

The ML estimation results are also displayed in table 1. The level of convergence
( ,320.010) has decreased compared to the OLS-estimation, but is still significant.

Compared to the OLS specification, the convergence speed has decreased (1.05%)
and the half-life increased (67 years). The information criteria (AIC and SC)

indicate that this model specification is better than the OLS-specification. We also

note a positive and significant spatial autocorrelation of the errors (/i =0.836). Other
specification diagnostics to test the assumptions on which the maximum likelihood
estimation in the spatial error model is based are also provided. The two tests for
heteroskedasticity versus the regime variable (the unadjusted and spatially adjusted
Breusch-Pagan statistics) are not significant anymore (p-value = 0.991) indicating
absence of residual heteroskedasticity. Further consideration of spatial heterogeneity
is therefore not necessary in the first sub-period since it has adequately been dealt

with by taking spatial autocorrelation into account. Furthermore, the LR-test on
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common factor hypothesis and the LM-test on residual spatial lag dependence are not
significant, indicating that the spatial error model is the appropriate specification. In
other words, following the discussion in section 2, since the spatial error model can
be rewritten under the form of a constrained spatial Durbin model interpreted as a
minimal conditional convergence model, it is not an absolute but a conditional
convergence process that is relevant for that period.

All these results indicate that the spatial error model is the most appropriate
model for the 1980-1989 sub-period. This specification implies a rather low
convergence between the European regions below the 2% usually found in the
literature (see, for instance, Barro and Sala-I-Martin, 1995). The presence of spatial
autocorrelation is synonymous of positive geographic spillovers between regions. As

a conclusion, they cannot be considered independent from each other.

3. Convergence Process over 1989-1999

Column 1 of table 2 presents the estimation results of model (1) over 1989-
1999. The results of the Lagrange Multiplier tests and their robust versions show
that the spatial error model is more appropriate than the spatial lag model (93.4 for
LMERR is greater than 92.5 for LMLAG and R-LMERR is significant, whereas R-
LMLAG is less significant). The Koenker-Basset test for heteroskedasticity also
rejects the null hypothesis of homoskedasticity. The results of the estimation by ML
of the spatial error model (4) are presented in column 2 of table 2. As pointed out by
the Breusch-Pagan heteroskedasticity tests against D¢, there is still some groupwise
heteroskedasticity. Contrary to 1980-1989, further consideration of spatial

heterogeneity is therefore needed in this subperiod.

[Table 2 around here]
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First, we test the presence of spatial heterogeneity by assessing whether there
is significant presence of structural instability across the two regimes previously
defined. We therefore estimated model (7) with dummy variables combined with
spatial error autocorrelation. = We therefore assume that the same spatial
autoregressive process affects all the errors. In other words, spatial autocorrelation is
supposed to be identical in core and in peripheral regions and all the regions are still

interacting spatially through the spatial weights matrix. The estimation results by

ML estimation are displayed in column 3 of table 2 and show that only ﬁp has the

expected sign and is significant ( ﬁp =-0.027). This is confirmed by the Chow-Wald

test for overall structural instability that rejects the null hypothesis of equality of
coefficients. Similarly, the individual coefficient stability tests cannot reject the
corresponding null hypotheses. In other words, if there is a convergence process for
the 1989-1999 period, it only concerns the regions located in the periphery of the
European Union. Finally, note that a positive and significant spatial autocorrelation
of the errors is found and that the Breusch-Pagan test versus the core-periphery
dummy variable rejects homoskedasticity. Groupwise heteroskedasticity is therefore

still present in the model and should be taken into account.

The last column of table 2 shows the estimation results for the model with

structural instability, groupwise heteroskedasticity and spatial error autocorrelation:

O =D + Doy, +pDp + Doy, + €

. s clos 0
with e=AWeg+U and U~ N| 0, ’O 2 | (12)
o

¢,P 49
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The estimation results by ML estimation display significant convergence in
periphery only ( BP =-0.027) since BC is positive and non-significant. In the

peripheral regime, the convergence speed is 3.15% corresponding to a half-life of 25
years. The convergence process for peripheral regions seems therefore to be stronger

than the one in the initial model without spatial heterogeneity. A positive and

significant spatial autocorrelation of the errors is found (ﬂ: =0.748). The Chow-Wald
test for overall structural instability rejects the null hypothesis on the equality of
coefficients and is significant (p-value = 0.001). This is confirmed by the individual
coefficient stability tests, which reject the corresponding null hypotheses as well.
Moreover, the LR-test on groupwise heteroskedasticity is significant (p-
value = 0.000). The convergence process is therefore quite different across regime.
In the core regime, the absence of convergence may be due to some form of residual
intra-regime heterogeneity that deserves to be taken into account. Indeed, the
standard deviation of initial per capita GDP is much greater in this regime than in the
peripheral one (1689.4 versus 1122.5). This is left for future research. In the
peripheral regime, significant convergence means that the poorest regions tend to
catch-up the most developed regions of this club. This is not a trivial result since the
per capita GDP of Scotland (UK) represents as much as 3.7 times the one of Norte
(Portugal) in 1980.

Compared to the results found for the 1980-1989 period, these results indicate
a differentiation of the convergence process between the European regions and the
formation of a convergence club between the peripheral regions during the nineties.
In other words, the poorest regions of the periphery have experienced a certain
process of catching-up towards the richest regions in the periphery. However, our

results do not allow us to compare the evolution of the differences between the two
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regimes. We also show that the nature of the spatial effects evolves: the steady-state
to which the regions converge depends on the absolute (convergence clubs) and
relative (spatial autocorrelation) geographic location of each region in the second

period, whereas only the relative location matters in the first period.

Tables 3 and 4 provide some robustness analysis when 1988 and 1990 are
used as cut-offs and when a 10-nearest neighbor and a binary weights matrix are
used. In each case, spatial error autocorrelation is found in both sub-periods and
spatial heterogeneity in the form of structural instability and groupwise
heteroskedasticity are found only in the second subperiod. Moreover, all the results

are qualitatively similar to those previously obtained.
[Tables 3 and 4 around here]

IV. CONCLUSION

The aim of this paper has been to highlight the evolution of the convergence
process of 145 European regions over the 1980-1999 period. Over these two
decades, the European Commission has made significant efforts to foster the
integration process. In this context, we assess how the regional convergence process
has evolved over that period that we decompose into two subperiods, 1980-1989 and
1989-1999. In addition, we pay special attention to the presence of spatial effects in
the determination of the appropriate S -convergence model. In that purpose, we start
by using the Getis-Ord statistics to detect the presence of significant local spatial
autocorrelation in the form of two regimes representative of the well-known core-
periphery pattern (Krugman 1991a, 1991b; Fujita et al. 1999). Then, various tests
aiming at including the presence of significant spatial effects in our model lead to a

spatial error model for both periods. Spatial heterogeneity in the form of spatial
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regimes and groupwise heteroskedasticity is detected as well, but only in the second
period. Estimation results display significant convergence among all the regions
over 1980-1989 and significant convergence only among the peripheral regions over
1989-1999.

These results highlight the formation of a convergence club between the
peripheral regions of the European Union and a differentiation between the
convergence process of the regions located in the core and the one of the regions
located in periphery after 1989. This indicates that the steady-state to which the
regions converge is dependent on relative location over both periods but has become
dependent on the absolute location only over the second period. This does not
necessarily mean that the periphery will always be poorer than the core since no
significant convergence is detected between the core regions. In addition, if the
objective of European integration and cohesion policy is to reduce “disparities
between the levels of development of the various regions” (Article 158 of the Treaty
establishing the European Community) then it may have been a relative success for
the poorest peripheral regions, since they significantly converge to the richest
peripheral ones. However, if these efforts were meant to reduce regional differences
in steady-state growth rates, then our results do not allow us to raise conclusions
concerning the reduction of inequalities for the whole sample. Of course, it can
always be claimed that the situation of the peripheral regions could have been
worsened without cohesion efforts at all. This dilemma as well as the question of the
robustness of our outcomes to other convergence models, samples and methods of

club convergence detection is left for future research.
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Notes

" See Durlauf and Quah (1999), Islam (2003) Magrini (2005) and Durlauf et al. (2005) for recent
reviews of this extensive literature.

% These variables can be state variables — as the stock of physical or human capital — or control
variables — as the fertility rate, the degree of political instability, urbanization rate, etc. More than
90 of these variables have been used in the literature (Durlauf et Quah, 1999).

* Rey and Janikas (2005) and Abreu et al. (2005) provide extensive literature reviews of the way space
is integrated into convergence models.

* The European Commission uses as administrative regional units the spatial classification established
by Eurostat on the basis of national administrative units. Europe can then be divided into 77 NUTS I
regions, or 211 NUTS II regions, 1031 NUTS III regions, 1074 NUTS IV regions and 98433 NUTS V
regions. .

> The robustness of the results is also tested by using other weight matrices based on the k-nearest
neighbors, with k=10, 15, 20, 25 neighbors. In the European context, the minimum number of
nearest neighbors that guarantees international connections between regions is k=7, otherwise the
Greek regions would not be linked to Italy. With k=10, Ireland is also connected to the UK, which in
turn is connected to the whole continent; and the islands of Sicilia, Sardegna, Corsica are connected to
the continental French regions. Finally, three distance contiguity matrices are built according to the
critical cut-off previously defined.

6 All computations in this section are carried out using the SpaceStat 1.91 software (Anselin, 1999).

7 The use of initial values of per capita GDP is necessary to avoid the selection bias problem raised by
De Long (1988).

¥ Estimations by GMM lead to similar results. Complete results are available from the authors upon
request. The convergence speed is defined as: b =—In(1+T £)/T . The half-life is the time necessary

for the economies to fill half of the variation, which separates them from their steady state. It is
defined by: 7 =—In(2)/In(1+ ).
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TABLE 1. ESTIMATION RESULTS OF THE #~CONVERGENCE MODEL OVER

1980-1989 WITH WEIGHTS MATRIX D(1)

ESTIMATION RESULTS TESTS
Model (1) Model (4) Model Model (4)
1
OLS-White ML-ERR OLS- ML-ERR
White
a 0.206 0.167 Moran’s | 16.238 -
) (0.000) (0.000) (0.000)
B -0.015 -0.010 227.009 -
(0.000) (0.011) LMERR (0.000)
) ) 0.836 ) 19.106 -
(0.000) R-LMERR (0.000)
& 0.0149 0.0094 LMLAG 2(88683)2 -
Convergence N N ) 0.139 -
Speed 1.61% 1.05% R-LMLAG (0.709)
Half-life 45 67 Jarque-Bera (égig) i
Sq. Corr. - 0.165 White test (100690446) i
BP-test for 4.981 0.0001
LIK 405.122 460.859 heteroskedasticity (0.025) (0.991)
AIC -806.243 917717 Spatial BP-test ; (060909011)
LR-test common 1.480
SC -800.290 011764 factor hypothesis ) (0.224)
LM-test on spatial ) 0.723
lag dependence (0.395)

Notes: p-values are in brackets. OLS-White indicates the use of heteroskedasticity consistent covariance matrix
estimator. ML-ERR indicates maximum likelihood estimation of the spatial error model. Sq. Corr. is the squared
correlation between predicted values and actual values. LIK is the value of the maximum likelihood function.
AIC is the Akaike information criterion. SC is the Schwarz information criterion. MORAN is Moran’s | test for
spatial autocorrelation adapted to regression residuals (CLIFF AND ORD, 1981). LMERR stands for the
Lagrange Multiplier test for residual spatial autocorrelation and R-LMERR for its robust version. LMLAG stands
for the Lagrange Multiplier test for spatially lagged endogenous variable and R-LMLAG for its robust version
(ANSELIN et al., 1996). BP is the Breusch-Pagan test for groupwise heteroskedasticity and spatial BP-test is its

spatially adjusted version.

30



TABLE 2. ESTIMATION RESULTS OF THE f-CONVERGENCE MODEL OVER
1989-1999 WITH WEIGHTS MATRIX D(1)

ESTIMATION RESULTS

Model (1) Model (4) Model (5) Model (6)
OLS- ML-ERR ML - ERR ML — HET/ERR
White
Core Periph. Core Periph.
& 0.210 0.116 0.024 0.295 0.025 0.293
' (0.000) (0.000) (0.565) (0.000) (0.475) (0.000)
A -0.018 -0.008 0.001 -0.027 0.001 -0.027
r (0.000) (0.026) (0.696) (0.000) (0.666) (0.044)
3 i 0.801 0.757 0.748
(0.000) (0.000) (0.000)
2 9.942.10°  4.552.10°
G’ 0.0109 0.0083 0.0079 (0.000) (0.000)
Convergence 1.98% 0.83% - 3.14% . 3.15%
Speed
Half-life 39 86 - 26 - 25
Sq. Corr. - 0.294 0.357 0.352
LIK 450.965 480.509 487.583 499.952
AIC -897.930 -957.018 -967.167 -991.904
SC -891.976 -951.065 -955.260 -979.997
TESTS
; 10.531
Moran’s | (0.000) - - -
93.414
LMERR (0.000) - - -
6.470
R-LMERR 0.011) - - -
92.587
LMLAG 0.000) - - -
5.642
R-LMLAG 0.017) - - -
. 2.431
White test (0.296) - - -
Koen kerT:_OBrasset test 9.899 ] _ _
heteroskedasticity (0.001)
BP-test for i 12.767 11.617 i
heteroskedasticity (0.000) (0.000)
Spatial BP-test - 12.875 - -
P (0.000)
LR-test common i 5.532 3.832 i
factor hypothesis (0.018) (0.147)
LM-test on spatial i 0.834 0.048 i
lag dependence (0.361) (0.826)
15.259 12.873
Chow-Wald - - (0.000) (0.001)
N 15.016 11.743
Ind. stab. test - -
nd. stab. teston « (0.000) (0.000)
~ 14.553 11.044
Ind. stab. on £, - - (0.000) (0.000)
24.687
LR - group. het. - - - (0.000)

Notes: see notes table 1. ML-HET/ERR indicates maximum likelihood estimation of the spatial error model with
groupwise heteroskedasticity. The individual coefficient stability tests are based on a spatially adjusted
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asymptotic Wald statistics, distributed as »* with 1 degree of freedom. The Chow — Wald test of overall stability
is also based on a spatially adjusted asymptotic Wald statistic, distributed as »* with 2 degrees of freedom
(Anselin, 1988). LR is the likelihood ratio test for groupwise heteroskedasticity.

TABLE 3. ESTIMATION RESULTS FOR DIFFERENT CUT-OFFS

Cut-off in 1988

Cut-off in 1990

1980-1988 1988-1999 1980-1990 1990-1999
Core Periph Core Periph.
5 0.207 0.044 0.245 0.205 0.028 0.249
f (0.000) (0.186)  (0.000) (0.000) (0.460) (0.000)
; -0.015 -0.000 -0.021 -0.015 0.001 -0.023
r (0.000) 0.976)  (0.002) (0.000) (0.824) (0.004)
. 0.764 0.699 0.819 0.818
A4 (0.000) 0.000) (0.000) (0.000) 5
. 8.116.10°  4.208.10° 9.658.10°  5.443.10
O 00118 (0.000)  (0.000) 00100 (0.000) (0.000)
Conyergence 1.61% - 2.35% 1.60% - 2.61%
peed
Half-life 45 . 32 47 - 30
Sq. Corr. 0.110 0.408 0.189 0.293
LIK 431.165 508.666 453.164 492.049
AIC -858.330 -1009.33 -901.328 -976.099
sC -852.377 -997.424 -896.375 -964.192

TABLE 4. ESTIMATION RESULTS FOR DIFFERENT WEIGHTS MATRICES

10 nearest neighbors

Binary D(1) matrix

1980-1989 1989-1999 1980-1989 19891999
Core Periph Core Periph.
4 0.203 0.006 0.378 0.196 0.066 0.374
' (0.000) (0.891)  (0.000) (0.000) (0.142) (0.000)
; -0.014 0.004 -0.036 -0.013 -0.003 -0.035
r (0.000) (0332)  (0.000) (0.000) (0.550) (0.004)
. 0.823 0.827 0.922 0.872
4 (0.000) 0000) (0.000) (0.000) 5
- 9.145.10°  4.688.10 9.358.10°  4.991.10
i 0010 (0.000)  (0.000) 00102 (0.000) (0.000)
Convergence 1.48% . 4.46% 1.38% - 4.30%
peed
Half-life 47 - 19 52 - 19
Sq. Corr. 0.165 0.310 0.165 0.325
LIK 466.355 491.957 458.440 484.499
AlC -928.711 -975.914 -912.879 -960.998
sC -922.757 -964.007 -906.926 -949.092
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Figure 1: Spatial regimes detected with the Getis-Ord statistics
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