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Abstract: 

In this paper, we assess the evolution of the convergence process between 145 European 

regions over 1980-1999.  In that purpose, we use the formal tools of spatial econometrics to 

identify and include the relevant spatial effects in the estimation of the appropriate β -

convergence model for two sub-periods (1980-1989 and 1989-1999).  While a spatial error 

model is the best specification for both periods, we detect spatial heterogeneity in the form of 

structural instability and groupwise heteroskedasticity only in the second period.  These 

results highlight the formation of a convergence club between the peripheral regions of the 

European Union and a differentiation between the convergence process of the core regions  

and the one of the peripheral regions. Therefore, all the regions do not converge to the same 

steady-state anymore and this process is dependent upon each region’s geographic location. 
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INTRODUCTION 

In Europe, following the successive enlargements during the 80’s to the 

Southern and less developed countries (Greece in 1981, Spain and Portugal in 1986), 

the regional inequalities became so obvious and unacceptable, both on equity and 

policy grounds, that the European Commission decided to devote as much as one-

third of its budget to foster cohesion.  The process of accelerating deeper integration 

also required greater cohesion efforts among members.  Indeed, the 1986 Single Act 

was the basis of the Single Market with the aim of ensuring free circulation of goods 

and people among member countries.  A necessary condition for this policy stood in 

the creation of transportation infrastructures, able to link to the core even the most 

remote regions.  Convergence efforts were also necessary before the implementation 

of the single currency.  Indeed, according to the theory of optimal currency areas, 

initiated by Mundell (1961), cohesion ensures that the member countries will be 

equally affected by external shocks and will not be destabilized by the imposition of 

a common monetary policy.   

However, if the process of integration and the massive amount of regional 

funds allocated by the European Commission since 1989 have succeeded in 

decreasing income differences among member States over the past two decades, 

regional inequalities have increased within numerous countries and peripheral 

regions stay less developed than those located in the core (Neven and Gouyette, 

1995; Quah, 1996; Martin, 1999).  Therefore, it seems that deeper integration and 

regional development funds devoted to transportation infrastructures have both 

contributed to dismantling trade barriers and reducing transportation costs between 

regions.  In the presence of increasing returns and spatially limited externalities, it 
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has led to an agglomeration of productive activities in the richest and centrally 

located areas (Krugman, 1991a, 1991b; Vickerman, 1991; Martin, 1999).   

Economic integration and cohesion efforts devoted to the less developed 

regions have had an effect on the convergence process between the European regions 

since the eighties, but the question as to whether they have fostered the convergence 

process remains open.  In the absence of data allowing for a direct estimation of their 

impact, this paper focuses on the convergence process between 145 European 

regions over 1980-1999.  More precisely, we evaluate whether some form of 

temporal heterogeneity is present by decomposing this total period into two 

subperiods: 1980-1989 and 1989-1999.  The choice of this temporal decomposition 

is firstly due to data availability.  Indeed, given the size of our sample, the REGIO 

database is not able to provide more ancient data and we prefer avoiding lack of 

homogeneity due to the combination of different databases.  Moreover, the year 1989 

has the advantage of separating our total period in two equivalent sub-periods and it 

also corresponds to the considerable development of regional policies and the reform 

of structural funds.   

From a methodological point of view, this paper is not based on the same 

methods and assumptions than those used for cross-countries convergence analysis, 

following the well-known studies performed by Barro and Sala-I-Martin (1991, 

1995).  On the contrary, we follow the regional science literature (see, for instance, 

Fingleton, 1999; Rey and Montouri, 1999) and avoid considering the regions as 

“isolated islands” (Quah, 1996).  In that purpose, we use the tools of spatial 

econometrics to formally take account of the spatial environment of each region and 

their potential interregional links.  Specifically, we aim at avoiding bias in statistical 

inference due to omitted spatial effects in order to obtain more reliable estimates of 
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the convergence rate.  These spatial effects are spatial autocorrelation and spatial 

heterogeneity.  Using spatial econometrics methods also allows estimating the 

magnitude of geographical spillover effects in regional growth processes and 

detecting spatial convergence clubs.  We therefore suggest in this paper an empirical 

evaluation of the convergence process between European regions focusing both on 

its spatial dimension and on its temporal evolution. 

The paper proceeds as follows: section 1 provides some insights into the β -

convergence model and spatial effects upon which the empirical estimations 

described in the following sections rely.  Section 2 presents the data and weights 

matrix.  In Section 3, exploratory spatial data analysis (ESDA) is used to detect 

spatial autocorrelation and spatial heterogeneity among European regional GDP.  

These two spatial effects are then included in the estimation of the appropriate β-

convergence model, first over the 1980-1989 period, second over the 1989-1999 

period.  The last section provides some concluding remarks. 

 

I. β-CONVERGENCE MODELS AND SPATIAL EFFECTS  

1. β-convergence models 

Since the publication of the seminal articles of Barro and Sala-i-Martin (1991, 

1992, 1995), a very large number of studies have examined β−convergence between 

different countries and regions for different time periods 1.  This concept is linked to 

the neoclassical growth model, which predicts that the growth rate of a region is 

positively related to the distance that separates it from its own steady-state.  

Empirical evidence for β-convergence is investigated by regressing growth rates of 

GDP on its initial levels.  Two cases are usually considered in the literature.  
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If all economies are structurally identical and have access to the same 

technology, they are characterized by the same steady state and differ only by their 

initial conditions.  This is the hypothesis of absolute β−convergence, which is 

usually tested on the following cross-sectional model, in matrix form: 

0T Ng e yα β ε= + +  ε  ~ 2(0, )N Iεσ  (1) 

where gT is the (N×1) vector of average growth rates of per capita GDP between date 

0 and T; eN is the (N×1) vector composed of unit elements; y0 is the vector of log per 

capita GDP levels at date 0; α and β are the unknown parameters to be estimated.  

There is absolute β−convergence when the estimate of β is significantly negative.  

This hypothesis is typically supported when applied to data from relatively 

homogenous groups of economic units, such as US states, OECD countries or 

European regions. 

 The concept of conditional β−convergence is used when the assumption of 

similar steady-states is relaxed.  Note that if economies have very different steady 

states, this concept is compatible with a persistent high degree of inequality among 

economies.  In this case, a matrix of variables maintaining constant the steady-state is 

added in equation (1) 2. It is usually tested on the following cross-sectional model: 

 0T Ng e y Xα β φ ε= + + +  ε  ~ 2(0, )N Iεσ  (2) 

with the same notations as above and X is a matrix of variables, maintaining constant 

the steady state of each economy.  There is conditional β−convergence if the 

estimate of β is significantly negative once X is held constant. 

 

Both β-convergence concepts have been heavily criticized on theoretical and 

methodological grounds.  From a theoretical point of view, Friedman (1992) and 
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Quah (1993) show that the interpretation of the β-convergence tests may be plagued 

by Galton's fallacy of regression toward the mean.  However, the study by Le Gallo 

(2004), based on a Markov chains approach, indicates that the mobility of European 

regions in the distribution of per capita GDP over the 1980-1995 period is very 

limited, so that this problem is not relevant for our case study.  Furthermore, these 

tests face several methodological problems such as robustness with respect to choice 

of control variables, multicolinearity, heterogeneity, endogeneity, and measurement 

problems (Durlauf and Quah 1999; Temple 1999; Durlauf et al., 2005).  Therefore, 

other estimation methods and convergence concepts have been suggested: panel data 

techniques (Islam, 1995; Lee et al., 1998; McCoskey, 2002), time-series techniques 

(Bernard and Durlauf, 1995; Linden, 2002; Nahar and Inder, 2002; Maeso-Fernandez 

F., 2003) or distribution analysis (Quah, 1996; Fingleton, 1999; Le Gallo, 2004). 

 

In this paper, we point out that the spatial dimension of the data used in these 

studies raises particular identification, estimation and interpretation issues.  The first 

study highlighting these potential problems is the one of De Long and Summers 

(1991) who explain that the assumption of independence across residuals is 

untenable.  Mankiw (1995) and Temple (1999) also draw attention on error 

correlation and geographic spillovers between economic units.  As pointed out by 

Abreu et al. (2005), the spatial dimension of data is usually modelled in two different 

ways: models of absolute location and models of relative location.  Absolute location 

refers to the impact of being located at a particular point in space (continent, climate 

zone) and is usually captured through dummy variables (Barro, 1991; Ades and 

Chua, 1997).  Relative location refers to the effect of being located closer or further 

away from other specific countries or regions and its effects should be analyzed 
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through the methods of spatial econometrics (Anselin, 1988, 2001).  Abreu et al. 

(2005) add that the distinction between models of absolute and relative location 

can be related to a similar classification used in spatial econometrics, i.e. the 

distinction between spatial heterogeneity and spatial dependence.  We now present 

these two effects in detail in the convergence context.  

2. Spatial autocorrelation 

Spatial autocorrelation refers to the coincidence of attribute similarity and 

locational similarity (Anselin, 1988, 2001).  Therefore, there is positive spatial 

autocorrelation when high or low values of a random variable tend to cluster in space 

and there is negative spatial autocorrelation when geographical areas tend to be 

surrounded by neighbors with very dissimilar values.  In the context of European 

regions, positive spatial autocorrelation means that rich regions tend to be 

geographically clustered as well as poor regions.  It may come from the fact that the 

data are affected by processes touching different locations.  Indeed, at the regional 

scale, several factors, such as trade between regions, labor and capital mobility, 

technology and knowledge diffusion, etc. may lead to spatially interdependent 

regions.  Note that the inclusion of spatial autocorrelation in convergence models can 

even be motivated theoretically.  Indeed, Koch (2004), Lopez-Bazo et al. (2004) and 

Vaya et al. (2004) have recently derived neoclassical models with spatial 

externalities yielding to convergence models including spatial autocorrelation.  

Spatial autocorrelation can also arise from model misspecifications (omitted 

variables, measurement errors) or from a variety of measurement problems, such as 

boundary mismatching between the administrative boundaries used to organize the 

data and the actual boundaries of the economic processes believed to generate 

regional convergence (Cheshire and Carbonaro, 1995).  
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Spatial concentration of economic activities in European regions has already 

been documented in Lopez-Bazo et al. (1999), Le Gallo and Ertur (2003), Dall’erba 

(2005) with the formal tools of spatial statistics.  It is therefore important to 

incorporate explicitly spatial autocorrelation into β-convergence models (Armstrong, 

1995; Moreno and Trehan, 1997; Fingleton, 1999, 2001; Rey and Montouri, 1999).  

Formally, several econometric models can be used to deal with spatially dependent 

observations (Anselin, 1988, 2001; Anselin and Bera, 1998).  Here, we present the 

spatial lag and the spatial error models.  In the spatial lag model, an endogenous 

variable of the form TWg  is introduced in model (1) as follows:  

2
0 ~ (0, )T T Ng Wg e y N Iερ α β ε ε σ= + + +  (3) 

where W is an (N×N) spatial weights matrix where each element (i,j) exogenously 

defines the way regions i and j are spatially connected to each other.  When W is 

row-standardized, the spatial lag variable TWg contains the spatially weighted 

average of the growth rates of the neighboring regions.  The parameter ρ  indicates 

the level of spatial interaction between regions.  This specification allows measuring 

how the growth rate in a region may relate to the one in its surrounding regions after 

conditioning on the starting levels of per capita GDP.  Since the spatial lag is a 

stochastic regressor, which is always correlated with ε, estimation of this model by 

OLS produces inconsistent estimators; it must therefore be estimated by Maximum 

Likelihood (ML) or Instrumental Variables (IV).   

Alternatively, spatial autocorrelation can be introduced by means of the error 

term: 

2
0 ~ (0, )N ug e y W u u N Iα β ε ε λ ε σ= + + = +  (4) 
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where λ indicates the level of spatial autocorrelation between error terms of 

neighboring regions.  Spatial autocorrelation in the error terms may arise because of 

omitted variables or measurement problems.  Since the errors are non-spherical, 

estimation of this model by OLS yields inefficient estimators; it must therefore be 

estimated by ML or Generalized Method of Moments (GMM).  This model can be 

rewritten in another form, which can be interpreted as a minimal model of 

conditional β−convergence integrating two spatial environment variables (Le Gallo 

et al., 2003). Indeed, pre-multiplying equation (4) by ( )I Wλ−  yields: 

0( ) ( ) ( ) ( )T NI W g I W e I W y I Wλ α λ β λ λ ε− = − + − + −  (5) 

Since ( )I W uλ ε− = , then model (5) can be rewritten as :  

0 0( )T N Tg I W e y Wg Wy uα λ β λ γ= − + + + +  (6) 

with the restriction γ = −λβ.  The model (6) is called the spatial Durbin model. It can 

be estimated by ML and highlights two forms of geographic spillover effects: the 

average growth rate of a region i is influenced by the average growth rates (through 

TWg ) and the initial per capita GDP (through 0Wy ) of its neighboring regions.  The 

restriction γ + λβ = 0 can be tested by means of the common factor test (Burridge, 

1981).  If it cannot be rejected then model (6) reduces to model (4). 

 

As can be seen from this technical presentation, integrating spatial 

autocorrelation into β-convergence models is useful for several reasons.  First, it 

provides more reliable estimation and inference of the rate of convergence through 

the β parameter when the assumption of independence of error terms in OLS 
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estimation is not met.  Second, it allows capturing geographic spillover effects 

between European regions through the spatial lag variables.   

3. Spatial heterogeneity 

Spatial heterogeneity means that economic behaviors are not stable over 

space.  In a regression model, spatial heterogeneity can be reflected by varying 

coefficients (structural instability) and/or by varying error variances across 

observations (groupwise heteroskedasticity) or both.  These variations follow for 

example specific geographical patterns such as East and West, or North and South.   

 Spatial heterogeneity can be linked to the concept of convergence clubs, 

characterized by the possibility of multiple, locally stable, steady state equilibria 

(Durlauf and Johnson 1995).  A convergence club is a group of economies whose 

initial conditions are near enough to converge toward the same long-term 

equilibrium.  From a theoretical point of view, convergence clubs may be based on 

endogenous growth models characterized by multiple steady state equilibria 

(Azariadis and Drazen, 1990) or standard neoclassical growth models where 

heterogeneity across individuals is permitted (Galor, 1996).   

When convergence clubs exist, standard convergence tests can have some 

difficulties to discriminate between these multiple steady state models and the 

standard Solow model (Durlauf and Johnson, 1995).  In this case, one convergence 

equation should be estimated per club.  To determine those clubs, some authors 

select a priori criteria, as the belonging to a geographic zone (Baumol, 1986) or 

some GDP per capita cut-offs (Durlauf and Johnson, 1995).  Others prefer to use 

endogenous methods, as for example, polynomial functions (Chatterji 1992), cluster 

analysis (Pugno, 1996; Hobijn and Franses, 2001) or regression trees (Durlauf and 

Johnson, 1995; Berthélemy and Varoudakis, 1996).  In the context of regional 
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economies characterized by strong geographic patterns, like the core-periphery 

pattern, we will detect convergence clubs using exploratory spatial data analysis 

which relies on geographic criteria.   

Formally, spatial heterogeneity can be modelled in two ways.  First, let us 

consider the possibility of structural instability.  For matter of representation, 

suppose that we have two clubs only, the core (indicated by C) and the periphery 

(indicated by P).  Then, a different set of coefficients must be estimated for each 

club.  A model of unconditional β-convergence for the two convergence clubs can 

then be specified as follows: 

0 0T C C P P C C P Pg D D D y D yα α β β ε= + + + +  2~ (0, )N Iεε σ  (7)  

where DC and DP are dummy variables qualifying the two regimes core and 

periphery.  This specification allows the convergence process to be different across 

regimes.  This model can also be formulated in matrix form as follows: 
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0 0
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with ' '' c Pε ε ε⎡ ⎤= ⎣ ⎦  and 2 ~ (0, )N Iεε σ .   

This latter assumption of normally and independently distributed error terms 

may be overly restrictive.  Assuming an error variance that is different in each club 

results in the second form of spatial heterogeneity, represented here as groupwise 

heteroskedasticity.  Formally:  
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where 2
Cσ  and 2

Pσ  denote the club-specific constant error variances; CI  and PI  are 

identity matrices of dimensions equal respectively to the number of observations in 

the core and in the periphery regime.  Estimation can be carried out using FGLS or 

ML and the equality of variances can be tested for with likelihood ratio (LR) tests. 

The last two effects can be present at the same time.  Finally, note that spatial 

autocorrelation may occur in conjunction with spatial heterogeneity. 

 

At the cross-country level, studies explicitly incorporating spatial effects are 

relatively rare (Moreno and Trehan, 1997).  They are more numerous for regional 

studies since spatial effects are more relevant and sample sizes are greater at a 

smaller scale, thus yielding more degrees of freedom.  For example, Rey and 

Montouri (1999) and Lall and Shalizi (2003) integrate spatial autocorrelation in the 

estimation of β-convergence models between respectively US states and Brazilian 

municipios.  Similarly, some articles dealing with European regions highlight the 

importance of spatial spillovers effects (Fingleton, 2000, 2003; Maurseth, 2001; 

Arbia and Paelinck, 2003a, b; Le Gallo et al., 2003; Carrington, 2003; Vaya et al., 

2004) and/or the presence of strong spatial heterogeneity (Ertur et al., 2005) in the 

convergence process3.  This article analyzes simultaneously spatial autocorrelation 

and spatial heterogeneity.  In addition, we follow the approach of Barro and Sala-I-

Martin (1995) and Neven and Gouyette (1995) and take into account the presence of 

temporal heterogeneity by subdividing our study period into two sub-periods. 

 

II. DATA AND SPATIAL WEIGHTS MATRIX 

The regional per capita GDP series are drawn out the most recent version of 

the NewCronos Regio database by Eurostat.  This is the official database used by the 
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European Commission for its evaluation of regional convergence.  We use the 

logarithms of the per capita GDP of each region over the 1980-1999 period.  Our 

sample is composed of 145 regions at NUTS II level (Nomenclature of Territorial 

Units for Statistics) over 12 EU countries: Belgium (11 regions), Denmark (1 

region), Germany (30 regions, Berlin and the nine former East German regions are 

excluded due to historical reasons), Greece (13 regions), Spain (16 regions, as we 

exclude the remote islands: Las Palmas, Santa Cruz de Tenerife Canary Islands and 

Ceuta y Mellila), France (22 regions), Ireland (2 regions), Italy (20 regions), 

Netherlands (12 regions), Portugal (5 regions, the Azores and Madeira are excluded 

because of their geographical distance), Luxembourg (1 region), United Kingdom 

(12 regions, we use regions at the NUTS I level, because NUTS II regions are not 

used as governmental units, they are merely statistical inventions of the EU 

Commission and the UK government) 4.  We are aware that our empirical results 

could be affected by missing regions and/or by the choice of our level of spatial 

aggregation.  Indeed, the NUTS II level implies that regions have heterogeneous area 

and population sizes and this choice influences the magnitude of various measures of 

association.  In fact, our decision is driven by the European Commission reports 

where the NUTS II level is used for the estimations of the convergence process.  In 

addition, regional development objectives are mainly defined at this spatial level.   

 

We now present the spatial weights matrix, on which all the following 

analyses rely.  In the European context, the existence of islands doesn’t allow 

considering simple contiguity matrices (two regions are considered to be connected if 

they share common borders); otherwise the weights matrix would include rows and 

columns with only zeros for the islands.  Since unconnected observations are 
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eliminated from the results of spatial autocorrelation statistics, this would change the 

sample size and the interpretation of the statistical inference.  Following the 

recommendations of Anselin and Bera (1998), we choose to base them on pure 

geographical distance, as exogeneity of geographical distance is unambiguous.  More 

precisely, we use the great circle distance between regional centroids.  Formally, 

distance-based weights matrices are defined as: 

⎪
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where *
ijw  is an element of the unstandardized weights matrix; ijw  is an element of 

the standardized weights matrix; ijd  is the great circle distance between centroids of 

region i and j; 1)1( QD = , MeD =)2(  and 3)3( QD = , 1Q , Me  and 3Q  are 

respectively the lower quartile, the median and the upper quartile of the great circle 

distance distribution.  )(kD  is the cutoff parameter for 1,...3k =  above which 

interactions are assumed negligible.  We use the inverse of the squared distance, in 

order to reflect a gravity function.  Each matrix is row standardized so that it is 

relative and not absolute distance which matters 5.   

 

III. EVOLUTION OF THE CONVERGENCE PROCESS BETWEEN 

EUROPEAN REGIONS OVER 1980-1999  

1. Detection of spatial regimes and methodology 

Using the spatial weights matrices previously described, the first step of our 

analysis is to detect the existence of spatial heterogeneity in the distribution of 

regional per capita GDPs.  In that purpose, we use the G-I* statistics developed by 
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Ord and Getis (1995) 6 on the regional per capita GDP values in 1980 7.  These 

statistics are defined as following:  

{ }

*
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1/ 2* *2
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[( ) ] /( 1)

ij j i
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w x W x
G d
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where wij is an element of the weights matrix W; *
i ij ii

j i
W w w

≠

= +∑ ; n is the size of 

the sample ; * 2
1i ij

j

S w= ∑ , x  and 2s  are respectively the mean and variance of the 

sample.  These statistics are computed for each region and they allow detecting the 

presence of local spatial autocorrelation: a positive value of this statistic for region i 

indicates a spatial cluster of regions with a high per capita GDP, whereas a negative 

value indicates a spatial clustering of regions with a low per capita GDP around 

region i.  Based on these statistics, we determine our spatial regimes, which can be 

interpreted as spatial convergence clubs, using the following rule: if the statistic for 

region i is positive, then this region belongs to the group of “rich” regions and if the 

statistic for region i is negative, then this region belongs to the group of “poor” 

regions. 

For all weights matrices described above, two spatial regimes, representative 

of the well-known core-periphery framework (Krugman 1991a, 1991b; Fujita et al., 

1999), are persistent over the period.  They are represented in figure 1 and highlight 

some form of spatial heterogeneity:  

- 96 regions belong to the spatial regime “rich” which is located in the core and thus 

will be called “Core” from now on: 

Belgium, Germany, Denmark, France, Italy (but Umbria, Marche, Lazio, Abruzzo, 

Molise, Campania, Puglia, Basilicata, Calabria, Sicilia, Sardegna), Luxembourg, the 

Netherlands, the United-Kingdom (but Northern-Ireland and Scotland).  
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- 49 regions belong to the spatial regime “poor” located in “Periphery”: 

Spain, Greece, Ireland, Southern Italy (Umbria, Marche, Lazio, Abruzzo, Molise, 

Campania, Puglia, Basilicata, Calabria, Sicilia, Sardegna), Portugal, the North of the 

United-Kingdom (Northern-Ireland and Scotland).  

[Figure 1 around here] 

Next, based on these two spatial regimes, we assess the evolution of the 

convergence process during 1980-1999 by estimating two β-convergence equations 

for both sub-periods 1980-1989 and 1989-1999.  In order to detect the appropriate 

form of spatial autocorrelation and spatial heterogeneity, we use and adapt the 

classical “specific to general” specification search approach outlined in Anselin and 

Rey (1991) or Anselin and Florax (1995) using tests described in Anselin et al. 

(1996).  Indeed, in the absence of a formal theory, this strategy provides ways to 

discriminate between a spatial lag and a spatial error model.  

More specifically, they suggest Lagrange Multiplier (LM) tests (resp. 

LMERR and LMLAG) and their robust versions (resp. R-LMERR and R-LMLAG). 

The decision rule suggested by Anselin and Florax (1995) is then used to decide the 

most appropriate specification as follows: if LMLAG (resp. LMERR) is more 

significant than LMERR (resp. LMLAG) and R-LMLAG (resp. R-LMERR) is 

significant whereas R-LMERR (resp. R-LMLAG) is not, then the most appropriate 

model is the spatial autoregressive model (resp. the spatial error model).  This choice 

can then be confirmed by performing additional LM tests: the common factor test 

and the test for an additional spatial lag in the presence of spatial error 

autocorrelation.  Florax et al. (2003) show by means of Monte Carlo simulation that 

this classical approach outperforms Hendry’s “general to specific” approach.   
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There is no such formal strategy that has been suggested to detect the form of 

spatial heterogeneity.  Therefore, we will complement the preceding strategy by 

computing the following tests: the Breusch-Pagan test and its spatially adjusted 

version (Anselin, 1988) to test for heteroskedasticity, an LR test for groupwise 

heteroskedasticity in addition to the Wald tests and their spatially adjusted versions 

(Anselin, 1990) to test for individual and global structural instability of the 

coefficients.  

2. Convergence Process over 1980-1989 

The OLS estimation results of the absolute β-convergence model (1) over 

1980-1989 are displayed in table 1, using the squared inverse distance weights matrix 

D(1) with cut-off equal to the first quartile of the distance distribution between the 

regions’ centroids.  This matrix has been chosen since it maximizes the value of 

Moran’s I statistics adapted to regression residuals (Cliff and Ord, 1981).  However, 

we will present some robustness analysis at the end of the section. 

 The results show that β̂  has the expected sign ( β̂  = -0.015) and is 

significant (p-value = 0.000), highlighting the presence of significant absolute β-

convergence among the European regions.  It implies a convergence speed of 1.61% 

and a half-life of 45 years 8.  Looking at the diagnostic tests, it appears that the 

Jarque-Bera test does not reject the assumption of normality of the residuals (p-

value = 0.518).  We also note that the White test clearly rejects homoskedasticity (p-

value = 0.004) as does the Breusch-Pagan test (p-value = 0.025) versus DC, the 

dummy variable for the core regime.  As a consequence, inference based on OLS 

may be biased.  Moreover, as noted by Anselin (1988), the links between 

heteroskedasticity and spatial autocorrelation are strong and complex.  In particular, 

the presence of the former can be due to the omission of the latter.  
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Figure 2 is the standard map of the residuals of model (1) estimated by OLS.  

As can clearly be seen from the map, they are not randomly distributed over the EU 

but spatial concentrations of similar values can be observed.  Specifically, clusters of 

high residuals are to be found in Italy, South of Germany and Spain while clusters of 

low residuals are located in Greece, France, North Germany and Benelux.  Spatial 

autocorrelation in the residuals is therefore highly probable.  In order to detect the 

form taken by spatial autocorrelation, we apply the decision rule presented above.  It 

appears that the spatial error model is the best specification: LMERR (227.009) is 

greater than LMLAG (208.042) and R-LMERR is significant whereas R-LMLAG is 

not.  

[Table 1 and figure 2 around here] 

Our next step is therefore the estimation of a spatial error model (model 4).  

The ML estimation results are also displayed in table 1.  The level of convergence 

( β̂ =0.010) has decreased compared to the OLS-estimation, but is still significant.  

Compared to the OLS specification, the convergence speed has decreased (1.05%) 

and the half-life increased (67 years).  The information criteria (AIC and SC) 

indicate that this model specification is better than the OLS-specification.  We also 

note a positive and significant spatial autocorrelation of the errors ( λ̂ =0.836).  Other 

specification diagnostics to test the assumptions on which the maximum likelihood 

estimation in the spatial error model is based are also provided.  The two tests for 

heteroskedasticity versus the regime variable (the unadjusted and spatially adjusted 

Breusch-Pagan statistics) are not significant anymore (p-value = 0.991) indicating 

absence of residual heteroskedasticity.  Further consideration of spatial heterogeneity 

is therefore not necessary in the first sub-period since it has adequately been dealt 

with by taking spatial autocorrelation into account.  Furthermore, the LR-test on 
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common factor hypothesis and the LM-test on residual spatial lag dependence are not 

significant, indicating that the spatial error model is the appropriate specification.  In 

other words, following the discussion in section 2, since the spatial error model can 

be rewritten under the form of a constrained spatial Durbin model interpreted as a 

minimal conditional convergence model, it is not an absolute but a conditional 

convergence process that is relevant for that period. 

All these results indicate that the spatial error model is the most appropriate 

model for the 1980-1989 sub-period.  This specification implies a rather low 

convergence between the European regions below the 2% usually found in the 

literature (see, for instance, Barro and Sala-I-Martin, 1995).  The presence of spatial 

autocorrelation is synonymous of positive geographic spillovers between regions.  As 

a conclusion, they cannot be considered independent from each other.  

3. Convergence Process over 1989-1999 

Column 1 of table 2 presents the estimation results of model (1) over 1989-

1999.  The results of the Lagrange Multiplier tests and their robust versions show 

that the spatial error model is more appropriate than the spatial lag model (93.4 for 

LMERR is greater than 92.5 for LMLAG and R-LMERR is significant, whereas R-

LMLAG is less significant).  The Koenker-Basset test for heteroskedasticity also 

rejects the null hypothesis of homoskedasticity.  The results of the estimation by ML 

of the spatial error model (4) are presented in column 2 of table 2. As pointed out by 

the Breusch-Pagan heteroskedasticity tests against DC, there is still some groupwise 

heteroskedasticity. Contrary to 1980-1989, further consideration of spatial 

heterogeneity is therefore needed in this subperiod. 

[Table 2 around here] 
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First, we test the presence of spatial heterogeneity by assessing whether there 

is significant presence of structural instability across the two regimes previously 

defined.  We therefore estimated model (7) with dummy variables combined with 

spatial error autocorrelation.  We therefore assume that the same spatial 

autoregressive process affects all the errors. In other words, spatial autocorrelation is 

supposed to be identical in core and in peripheral regions and all the regions are still 

interacting spatially through the spatial weights matrix.  The estimation results by 

ML estimation are displayed in column 3 of table 2 and show that only ˆ
Pβ  has the 

expected sign and is significant ( ˆ
Pβ  = -0.027). This is confirmed by the Chow-Wald 

test for overall structural instability that rejects the null hypothesis of equality of 

coefficients.  Similarly, the individual coefficient stability tests cannot reject the 

corresponding null hypotheses.  In other words, if there is a convergence process for 

the 1989-1999 period, it only concerns the regions located in the periphery of the 

European Union.  Finally, note that a positive and significant spatial autocorrelation 

of the errors is found and that the Breusch-Pagan test versus the core-periphery 

dummy variable rejects homoskedasticity. Groupwise heteroskedasticity is therefore 

still present in the model and should be taken into account.  

 

The last column of table 2 shows the estimation results for the model with 

structural instability, groupwise heteroskedasticity and spatial error autocorrelation:  

0 0T C C C C P P P Pg D D y D D yα β α β ε= + + + +  

with W uε λ ε= +  and 
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The estimation results by ML estimation display significant convergence in 

periphery only ( ˆ
Pβ =-0.027) since ˆ

Cβ  is positive and non-significant. In the 

peripheral regime, the convergence speed is 3.15% corresponding to a half-life of 25 

years. The convergence process for peripheral regions seems therefore to be stronger 

than the one in the initial model without spatial heterogeneity. A positive and 

significant spatial autocorrelation of the errors is found ( λ̂ = 0.748). The Chow-Wald 

test for overall structural instability rejects the null hypothesis on the equality of 

coefficients and is significant (p-value = 0.001). This is confirmed by the individual 

coefficient stability tests, which reject the corresponding null hypotheses as well. 

Moreover, the LR-test on groupwise heteroskedasticity is significant (p-

value = 0.000). The convergence process is therefore quite different across regime.  

In the core regime, the absence of convergence may be due to some form of residual 

intra-regime heterogeneity that deserves to be taken into account.  Indeed, the 

standard deviation of initial per capita GDP is much greater in this regime than in the 

peripheral one (1689.4 versus 1122.5).  This is left for future research.  In the 

peripheral regime, significant convergence means that the poorest regions tend to 

catch-up the most developed regions of this club.  This is not a trivial result since the 

per capita GDP of Scotland (UK) represents as much as 3.7 times the one of Norte 

(Portugal) in 1980.   

Compared to the results found for the 1980-1989 period, these results indicate 

a differentiation of the convergence process between the European regions and the 

formation of a convergence club between the peripheral regions during the nineties.  

In other words, the poorest regions of the periphery have experienced a certain 

process of catching-up towards the richest regions in the periphery.  However, our 

results do not allow us to compare the evolution of the differences between the two 
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regimes.  We also show that the nature of the spatial effects evolves: the steady-state 

to which the regions converge depends on the absolute (convergence clubs) and 

relative (spatial autocorrelation) geographic location of each region in the second 

period, whereas only the relative location matters in the first period.   

 

Tables 3 and 4 provide some robustness analysis when 1988 and 1990 are 

used as cut-offs and when a 10-nearest neighbor and a binary weights matrix are 

used.  In each case, spatial error autocorrelation is found in both sub-periods and 

spatial heterogeneity in the form of structural instability and groupwise 

heteroskedasticity are found only in the second subperiod.  Moreover, all the results 

are qualitatively similar to those previously obtained. 

[Tables 3 and 4 around here] 

IV. CONCLUSION 

The aim of this paper has been to highlight the evolution of the convergence 

process of 145 European regions over the 1980-1999 period.  Over these two 

decades, the European Commission has made significant efforts to foster the 

integration process.  In this context, we assess how the regional convergence process 

has evolved over that period that we decompose into two subperiods, 1980-1989 and 

1989-1999.  In addition, we pay special attention to the presence of spatial effects in 

the determination of the appropriate β -convergence model.  In that purpose, we start 

by using the Getis-Ord statistics to detect the presence of significant local spatial 

autocorrelation in the form of two regimes representative of the well-known core-

periphery pattern (Krugman 1991a, 1991b; Fujita et al. 1999).  Then, various tests 

aiming at including the presence of significant spatial effects in our model lead to a 

spatial error model for both periods.  Spatial heterogeneity in the form of spatial 
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regimes and groupwise heteroskedasticity is detected as well, but only in the second 

period.  Estimation results display significant convergence among all the regions 

over 1980-1989 and significant convergence only among the peripheral regions over 

1989-1999.   

These results highlight the formation of a convergence club between the 

peripheral regions of the European Union and a differentiation between the 

convergence process of the regions located in the core and the one of the regions 

located in periphery after 1989.  This indicates that the steady-state to which the 

regions converge is dependent on relative location over both periods but has become 

dependent on the absolute location only over the second period.  This does not 

necessarily mean that the periphery will always be poorer than the core since no 

significant convergence is detected between the core regions.  In addition, if the 

objective of European integration and cohesion policy is to reduce “disparities 

between the levels of development of the various regions” (Article 158 of the Treaty 

establishing the European Community) then it may have been a relative success for 

the poorest peripheral regions, since they significantly converge to the richest 

peripheral ones.  However, if these efforts were meant to reduce regional differences 

in steady-state growth rates, then our results do not allow us to raise conclusions 

concerning the reduction of inequalities for the whole sample.  Of course, it can 

always be claimed that the situation of the peripheral regions could have been 

worsened without cohesion efforts at all.  This dilemma as well as the question of the 

robustness of our outcomes to other convergence models, samples and methods of 

club convergence detection is left for future research. 
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Notes 
                                                 
1 See Durlauf and Quah (1999), Islam (2003) Magrini (2005) and Durlauf et al. (2005) for recent 
reviews of this extensive literature.  
2 These variables can be state variables – as the stock of physical or human capital – or control 
variables – as the fertility rate, the degree of political instability, urbanization rate, etc. More than 
90 of these variables have been used in the literature (Durlauf et Quah, 1999). 
3 Rey and Janikas (2005) and Abreu et al. (2005) provide extensive literature reviews of the way space 
is integrated into convergence models. 
4 The European Commission uses as administrative regional units the spatial classification established 
by Eurostat on the basis of national administrative units.  Europe can then be divided into 77 NUTS I 
regions, or 211 NUTS II regions, 1031 NUTS III regions, 1074 NUTS IV regions and 98433 NUTS V 
regions.  .  
5 The robustness of the results is also tested by using other weight matrices based on the k-nearest 
neighbors, with k = 10, 15, 20, 25 neighbors.  In the European context, the minimum number of 
nearest neighbors that guarantees international connections between regions is k = 7, otherwise the 
Greek regions would not be linked to Italy.  With k = 10, Ireland is also connected to the UK, which in 
turn is connected to the whole continent; and the islands of Sicilia, Sardegna, Corsica are connected to 
the continental French regions.  Finally, three distance contiguity matrices are built according to the 
critical cut-off previously defined. 
6 All computations in this section are carried out using the SpaceStat 1.91 software (Anselin, 1999). 
7 The use of initial values of per capita GDP is necessary to avoid the selection bias problem raised by 
De Long (1988). 
8 Estimations by GMM lead to similar results. Complete results are available from the authors upon 
request.  The convergence speed is defined as: ln(1 ) /b T Tβ= − + . The half-life is the time necessary 
for the economies to fill half of the variation, which separates them from their steady state.  It is 
defined by: ln(2) / ln(1 )τ β= − + . 
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TABLE 1. ESTIMATION RESULTS OF THE β-CONVERGENCE MODEL OVER 
1980-1989 WITH WEIGHTS MATRIX D(1) 

 
ESTIMATION RESULTS TESTS 

 Model (1) Model (4)  Model 
(1) 

Model (4) 

 OLS-White ML-ERR       OLS-
White 

ML-ERR 

α̂  0.206 
(0.000) 

0.167 
(0.000)           Moran’s I 16.238 

(0.000) 
- 

β̂  -0.015 
(0.000) 

-0.010             
(0.011)          LMERR 227.009 

(0.000) 
- 

λ̂  - 0.836              
(0.000)           R-LMERR 19.106 

(0.000) 
- 

2σ̂  0.0149 0.0094          LMLAG 208.042 
(0.000) 

- 

Convergence 
Speed 1.61% 1.05%             R-LMLAG 0.139 

(0.709) 
- 

Half-life 45 67 Jarque-Bera 1.316 
(0.518) 

- 

Sq. Corr. - 0.165       White test 10.946 
(0.004) 

- 

LIK 405.122 460.859 BP-test for 
heteroskedasticity 

4.981 
(0.025) 

0.0001 
(0.991) 

AIC -806.243 -917.717 Spatial BP-test - 0.0001 
(0.991) 

SC -800.290 -911.764 LR-test common 
factor hypothesis - 1.480 

(0.224) 
   LM-test on spatial 

lag dependence - 0.723 
(0.395) 

 
Notes: p-values are in brackets. OLS-White indicates the use of heteroskedasticity consistent covariance matrix 
estimator. ML-ERR indicates maximum likelihood estimation of the spatial error model. Sq. Corr. is the squared 
correlation between predicted values and actual values. LIK is the value of the maximum likelihood function. 
AIC is the Akaike information criterion. SC is the Schwarz information criterion. MORAN is Moran’s I test for 
spatial autocorrelation adapted to regression residuals (CLIFF AND ORD, 1981). LMERR stands for the 
Lagrange Multiplier test for residual spatial autocorrelation and R-LMERR for its robust version. LMLAG stands 
for the Lagrange Multiplier test for spatially lagged endogenous variable and R-LMLAG for its robust version 
(ANSELIN et al., 1996). BP is the Breusch-Pagan test for groupwise heteroskedasticity and spatial BP-test is its 
spatially adjusted version.  
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TABLE 2. ESTIMATION RESULTS OF THE β-CONVERGENCE MODEL OVER 
1989-1999 WITH WEIGHTS MATRIX D(1) 

 
ESTIMATION RESULTS 

 Model (1) Model (4) Model (5) Model (6) 

 OLS- 
White ML-ERR  

 

ML – ERR 
 

ML – HET/ERR 

   Core  Periph. Core  Periph. 
α̂r  0.210 

(0.000) 
0.116             

(0.000)           
0.024 

(0.565) 
0.295 

(0.000) 
0.025 

(0.475) 
0.293 

(0.000) 
ˆ

rβ  -0.018 
(0.000) 

-0.008             
(0.026)           

0.001 
(0.696) 

-0.027 
(0.000) 

0.001 
(0.666) 

-0.027 
(0.044) 

λ̂  - 0.801             
(0.000)         

0.757 
(0.000) 

0.748 
(0.000) 

2ˆεσ  0.0109 0.0083           0.0079 9.942.10-5        4.552.10-6 

(0.000)          (0.000) 
Convergence 

Speed 1.98% 0.83%           - 3.14% - 3.15% 

Half-life 39 86 - 26 - 25 
Sq. Corr. - 0.294 0.357 0.352 

LIK 450.965 480.509 487.583 499.952 
AIC -897.930 -957.018 -967.167 -991.904 
SC -891.976 -951.065 -955.260 -979.997 

TESTS 

Moran’s I 10.531 
(0.000) - - - 

LMERR 93.414 
(0.000) - - - 

R-LMERR 6.470 
(0.011) - - - 

LMLAG 92.587 
(0.000) - - - 

R-LMLAG 5.642 
(0.017) - - - 

White test 2.431 
(0.296) - - - 

Koenker-Basset test 
for 

heteroskedasticity 

9.899 
(0.001) - - - 

BP-test for 
heteroskedasticity - 12.767 

(0.000) 
11.617 
(0.000) - 

Spatial BP-test - 12.875 
(0.000) - - 

LR-test common 
factor hypothesis - 5.532 

(0.018) 
3.832 

(0.147) - 

LM-test on spatial 
lag dependence - 0.834 

(0.361) 
0.048 

(0.826) - 

Chow-Wald  - - 15.259 
(0.000) 

12.873 
(0.001) 

Ind. stab. test on α̂r  - - 15.016 
(0.000) 

11.743 
(0.000) 

Ind. stab. on ˆ
rβ  - - 14.553 

(0.000) 
11.044 
(0.000) 

LR – group. het. - - - 24.687 
(0.000) 

Notes: see notes table 1. ML-HET/ERR indicates maximum likelihood estimation of the spatial error model with 
groupwise heteroskedasticity. The individual coefficient stability tests are based on a spatially adjusted 
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asymptotic Wald statistics, distributed as 2χ  with 1 degree of freedom. The Chow – Wald test of overall stability 
is also based on a spatially adjusted asymptotic Wald statistic, distributed as 2χ  with 2 degrees of freedom 
(Anselin, 1988). LR is the likelihood ratio test for groupwise heteroskedasticity. 

 
 
 

TABLE 3. ESTIMATION RESULTS FOR DIFFERENT CUT-OFFS 
 

 Cut-off in 1988 Cut-off in 1990 

 1980-1988 1988-1999 1980-1990 1990-1999 
  Core          Periph   Core  Periph. 

α̂r  0.207 
(0.000) 

0.044             0.245 
(0.186)           (0.000) 

0.028 
(0.460) 

0.249 
(0.000) 

ˆ
rβ  -0.015 

(0.000) 
-0.000             -0.021 
(0.976)           (0.002) 

0.205 
(0.000) 
-0.015 
(0.000) 

0.001 
(0.824) 

-0.023 
(0.004) 

λ̂  
0.764 

(0.000) 
0.699              

(0.000)           
0.819 

(0.000) 
0.818 

(0.000) 
2ˆεσ  0.0118 8.116.10-5     4.208.10-5 

(0.000)          (0.000) 0.0100 9.658.10-5        5.443.10-5 

    (0.000)            (0.000) 
Convergence 

Speed 1.61%       -                 2.35% 1.60% - 2.61% 

Half-life 45 -                 32 47 - 30 
Sq. Corr. 0.110 0.408 0.189 0.293 

LIK 431.165 508.666 453.164 492.049 
AIC -858.330 -1009.33 -901.328 -976.099 
SC -852.377 -997.424 -896.375 -964.192 

 
 
 

TABLE 4. ESTIMATION RESULTS FOR DIFFERENT WEIGHTS MATRICES 
 

 10 nearest neighbors Binary D(1) matrix 

 1980-1989 1989-1999 1980-1989 1989-1999 
  Core          Periph   Core  Periph. 

α̂r  0.203 
(0.000) 

0.006             0.378 
(0.891)           (0.000) 

0.066 
(0.142) 

0.374 
(0.000) 

ˆ
rβ  -0.014 

(0.000) 
0.004             -0.036 
(0.332)           (0.000) 

0.196 
(0.000) 
-0.013 
(0.000) 

-0.003 
(0.550) 

-0.035 
(0.004) 

λ̂  
0.823 

(0.000) 
0.827              

(0.000)           
0.922 

(0.000) 
0.872 

(0.000) 
2ˆεσ  0.010 9.145.10-5     4.688.10-5 

(0.000)          (0.000) 0.0102 9.358.10-5        4.991.10-5 

    (0.000)            (0.000) 
Convergence 

Speed 1.48%       -                 4.46% 1.38% - 4.30% 

Half-life 47 -                 19 52 - 19 
Sq. Corr. 0.165 0.310 0.165 0.325 

LIK 466.355 491.957 458.440 484.499 
AIC -928.711 -975.914 -912.879 -960.998 
SC -922.757 -964.007 -906.926 -949.092 
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Figure 1: Spatial regimes detected with the Getis-Ord statistics 

 
 
 

Figure 2: Residuals of model (1) 

 




