
Optimization of Risk Measures
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1 Introduction

Consider a stochastic system whose output variable Z is a real valued random
variable. If it depends on some decision vector x ∈ Rn, we can write the
relation:

Z(ω) = f(x, ω), ω ∈ Ω.

Here f : Rn ×Ω → R, and (Ω,F) is a measurable space. To focus attention,
we shall be interested in the case when smaller values of Z are “better”, for
example, Z may represent random cost or losses. It will be obvious how our
considerations can be adapted to the case of reverse preferences.

In order to find the “best” values of the decision vector x we can formulate
the stochastic optimization problem:

Min
x∈S

{
φ(x) := EP [f(x, ω)]

}
, (1)

where S ⊂ Rn is a set of feasible decision vectors, and P is a probability mea-
sure (distribution) on the sample space (Ω,F). The theory of such stochastic
optimization problems and numerical methods for their solution are well de-
veloped (see [22]).

There are two basic difficulties associated with the above formulation.
First, it is assumed that the probability distribution P is known. In real life
applications the probability distribution is never known exactly. In some cases
it can be estimated from historical data by statistical techniques. However, in
many cases the probability distribution neither can be estimated accurately
nor remains constant. Even worse, quite often one subjectively assigns cer-
tain weights (probabilities) to a finite number of possible realizations (called
scenarios) of the uncertain data. Such a simplified model can hardly be con-
sidered an accurate description of the reality.

The second basic question is why we want to optimize the expected value
of the random outcome Z. In some situations the same decisions under similar
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conditions are made repeatedly over a certain period of time. In such cases
one can justify optimization of the expected value by arguing that, by the Law
of Large Numbers, it gives an optimal decision on average. However, because
of the variability of the data, the average of the first few results may be very
bad. For example, one may lose all his investments, and it does not help that
the decisions were optimal on average.

For these reasons, quantitative models of risk and risk aversion are needed.
There exist several approaches to model decision making under risk. The
classical approach is based on the expected utility theory of von Neumann and
Morgenstern [25]. One specifies a disutility function3 g : R → R and formulate
the problem:

Min
x∈S

{
φg(x) := EP

[
g(f(x, ω))

]}
. (2)

Unfortunately, it is extremely difficult to elicit the disutility function of a
decision maker.

The second approach is to specify constraints on risk. The most common
is the Value at Risk constraint, which involves the critical value zmax allowed
for risk exposure, and the probability pmax of excessive outcomes:

P
[
Z ≥ zmax

]
≤ pmax.

In the stochastic optimization literature such constraints are called proba-
bilistic or chance constraints [15]. Variations of this concept are known as
integrated chance constraints [6], Conditional Value at Risk [20], or expected
shortfall [1].

A direct way to deal with the issue of uncertain probability distribution, is
to identify a plausible family A of probability distributions and, consequently,
to consider the min-max problem

Min
x∈S

{
φ(x) := sup

P∈A
EP [f(x, ω)]

}
. (3)

The idea of the worst-case (min-max) formulation is not new of course. It goes
back to von Neumann’s game theory and was already discussed, for example
in the context of stochastic programming, in Žáčková [26] almost 40 years
ago.

The attempts to overcome the drawbacks of the expected value optimiza-
tion have also a long history. One can try to reach a compromise between
the optimization on average and the minimization of a certain measure of the
involved risk. This leads to the formulation

Min
x∈S

{
φ(x) := ρ[F (x)]

}
, (4)

3 We consider here minimization problems, and that is why we speak about disu-
tility. Any disutility function g corresponds to a utility function u : R → R
defined by u(−z) = −g(z). Note that the function u is concave and increasing
(nondecreasing) iff the function g is convex and increasing (nondecreasing).
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where ρ(Z) is a mean-risk measure, defined on a space of random variables
Z : Ω → R, and [F (x)](ω) = f(x, ω). The classical mean-variance risk measure
ρ(Z) := E[Z] + cVar[Z], where c is a nonnegative constant, is going back to
Markowitz [8].

There are several problems with the mean-variance risk measure. First,
the expectation and variance are measured in different units. Secondly, the
mean-variance model is not consistent with the classical relation of stochastic
dominance, which formalizes risk-averse preferences [11].

In recent years risk analysis came under intensive investigation, in par-
ticular from the point of view of the optimization theory. In this chapter we
discuss a general theory of optimization of risk measures. We show, in partic-
ular, that the above approaches of min-max formulation (3) and risk measure
formulation (4), in a sense, are equivalent to each other.

We also introduce and analyze new models of dynamic optimization prob-
lems involving risk functions. We introduce the concept of conditional risk
mappings, and we derive dynamic programming relations for the correspond-
ing optimization models. In this way we provide an alternative approach to the
recent works [3, 4, 14, 16], where various dynamic risk models are considered.

2 Risk Functions

In this section we give a formal definition of risk functions and we discuss their
basic properties. Let (Ω,F) be a sample space, equipped with sigma algebra
F , on which considered uncertain outcomes (random functions Z = Z(ω))
are defined. By a risk function we understand a function ρ(Z) which maps Z
into the extended real line R = R ∪ {+∞} ∪ {−∞}. In order to make this
concept precise we need to define a space Z of allowable random functions
Z(ω) for which ρ(Z) is defined. It seems that a natural choice of Z will be the
space of all F-measurable functions Z : Ω → R. However, typically, this space
is too large for development of a meaningful theory. In almost all interesting
examples considered in this chapter we deal with the space4 Z := Lp(Ω,F , P ).
We will discuss an appropriate choice of the space Z later.

We assume throughout this chapter that Z is a linear space of F-
measurable functions and considered risk functions ρ : Z → R are proper.
That is, ρ(Z) > −∞ for all Z ∈ Z and the domain

dom(ρ) := {Z ∈ Z : ρ(Z) < +∞}
4 Recall that Lp(Ω,F , P,Rn) denotes the linear space of all F-measurable functions
ψ : Ω → Rn such that

∫
Ω
‖ψ(ω)‖p dP (ω) < +∞. More precisely, an element of

Lp(Ω,F , P,Rn) is a class of such functions ψ(ω) which may differ from each other
on sets of P -measure zero. For n = 1 we denote this space by Lp(Ω,F , P ). Unless
stated otherwise, while dealing with these spaces we assume that p ∈ [1,+∞), P
is a probability measure on (Ω,F) and expectations are taken with respect to P .

For ψ ∈ Lp(Ω,F , P ), its norm ‖ψ‖p :=
(∫

Ω
|ψ(ω)|p dP (ω)

)1/p
.
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is nonempty. We consider the following axioms associated with a risk func-
tion ρ. For Z1, Z2 ∈ Z we denote by Z2 � Z1 the pointwise partial order
meaning Z2(ω) ≥ Z1(ω) for all ω ∈ Ω.

(A1) Convexity:

ρ(αZ1 + (1− α)Z2) ≤ αρ(Z1) + (1− α)ρ(Z2)

for all Z1, Z2 ∈ Z and all α ∈ [0, 1].
(A2) Monotonicity: If Z1, Z2 ∈ Z and Z2 � Z1, then ρ(Z2) ≥ ρ(Z1).
(A3) Translation Equivariance: If a ∈ R and Z ∈ Z, then ρ(Z+a) = ρ(Z)+a.
(A4) Positive Homogeneity: If α > 0 and Z ∈ Z, then ρ(αZ) = αρ(Z).

These axioms were introduced, and risk functions satisfying (A1)–(A4)
were called coherent risk measures, in Artzner, Delbaen, Eber and Heath [2].

In order to proceed with the analysis we need to associate with the space
Z a dual space Z∗ of measures such that the scalar product

〈µ,Z〉 :=
∫

Ω

Z(ω) dµ(ω) (5)

is well defined for all Z ∈ Z and µ ∈ Z∗. That is, we assume that Z∗ is a linear
space of finite signed measures5 µ on (Ω,F) such that

∫
Ω
|Z| d|µ| < +∞ for

all Z ∈ Z. We assume that Z and Z∗ are paired (locally convex topological
vector) spaces. That is, Z and Z∗ are equipped with respective topologies
which make them locally convex topological vector spaces and these topolo-
gies are compatible with the scalar product (5), i.e., every linear continuous
functional on Z can be represented in the form 〈µ, ·〉 for some µ ∈ Z∗, and
every linear continuous functional on Z∗ can be represented in the form 〈·, Z〉
for some Z ∈ Z. In particular, we can equip each space Z and Z∗ with its
weak topology induced by its paired space. This will make Z and Z∗ paired
locally convex topological vector spaces provided that for any Z ∈ Z \ {0}
there exists µ ∈ Z∗ such that 〈µ,Z〉 6= 0, and for any µ ∈ Z∗ \{0} there exists
Z ∈ Z such that 〈µ,Z〉 6= 0.

If Z := Lp(Ω,F , P ), we can consider its dual space Z∗ := Lq(Ω,F , P ),
where q ∈ (1,+∞] is such that 1/p + 1/q = 1. Here Z, equipped with the
respective norm, is a Banach space and Z∗ is its dual Banach space. In order
to make these spaces paired spaces we can equip Z with its strong (norm)
topology and Z∗ with its weak∗ topology. Moreover, if p ∈ (1,+∞), then
Z and Z∗ are reflexive Banach spaces. In that case, they are paired spaces
when equipped with their strong topologies. Note also that in this case every
measure µ ∈ Z∗ has a density ζ ∈ Lq(Ω,F , P ), i.e., dµ = ζdP . When dealing

5 Recall that a finite signed measure µ can be represented in the form µ = µ+−µ−,
where µ+ and µ− are nonnegative finite measures on (Ω,F). This representation
is called the Jordan decomposition of µ. The measure |µ| = µ+ +µ− is called the
total variation of µ.



Optimization of Risk Measures 5

with these spaces we identify the corresponding measure with its density and
for Z ∈ Lp(Ω,F , P ) and ζ ∈ Lq(Ω,F , P ) we use the scalar product

〈ζ, Z〉 :=
∫

Ω

ζ(ω)Z(ω) dP (ω). (6)

Unless stated otherwise we always assume the following.

(C) For every A ∈ F the space Z contains the indicator6 function 1lA.

Since the space Z is linear, this implies that Z contains all step functions of
the form

∑m
i=1 αi1lAi

, where ai ∈ R and Ai ∈ F , i = 1, . . . ,m. This holds
true, in particular, for every space Z := Lp(Ω,F , P ).

The partial order in the space Z, appearing in condition (A2), is defined
by the cone

Z+ := {Z ∈ Z : Z(ω) ≥ 0, ∀ω ∈ Ω},

i.e., Z2 � Z1 iff Z2 − Z1 ∈ Z+. Consider the cone Z∗+ of all nonnegative
measures in the space Z∗. For any Z ∈ Z+ and any µ ∈ Z∗+, we have that
〈µ,Z〉 ≥ 0. Moreover, because of assumption (C) above, we have that Z∗+
coincides with the dual cone of the cone Z+, which is defined as the set of
µ ∈ Z∗ such that 〈µ,Z〉 ≥ 0 for all Z ∈ Z+.

We can now formulate the basic (conjugate) duality result. Recall that the
conjugate function ρ∗ : Z∗ → R of a risk function ρ is defined as

ρ∗(µ) := sup
Z∈Z

{
〈µ,Z〉 − ρ(Z)

}
, (7)

and the conjugate of ρ∗ (the biconjugate function) as

ρ∗∗(Z) := sup
µ∈Z∗

{
〈µ,Z〉 − ρ∗(µ)

}
. (8)

By lsc(ρ) we denote the lower semicontinuous hull of ρ taken with respect
to the considered topology of Z. The following is the basic duality result of
convex analysis (see, e.g., [17, Theorem 5] for a proof).

Theorem 1 (Fenchel-Moreau). Suppose that function ρ : Z → R is convex
and proper. Then ρ∗∗ = lsc(ρ).

It follows that if ρ is convex and proper, then the representation

ρ(Z) = sup
µ∈Z∗

{
〈µ,Z〉 − ρ∗(µ)

}
(9)

holds true if ρ is lower semicontinuous. Conversely, if (9) is satisfied for some
function ρ∗(·), then ρ is lower semicontinuous and convex. Note also that if
ρ is proper, lower semicontinuous and convex, then its conjugate function ρ∗

6 Recall that the indicator function 1lA is defined as 1lA(ω) = 1 for ω ∈ A and
1lA(ω) = 0 for ω 6∈ A.
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is proper. Let us also remark that if Z is a Banach space and Z∗ is its dual
(e.g., Z = Lp(Ω,F , P ) and Z∗ = Lq(Ω,F , P )) and ρ is convex, then ρ is
lower semicontinuous in the weak topology iff it is lower semicontinuous in
the strong (norm) topology.

If the set Ω is finite, say Ω = {ω1, . . . , ωK}, then the technical level of the
analysis simplifies considerably. Every function Z ∈ Z can be identified with
the vector (Z(ω1), . . . , Z(ωK)). Thus the space Z is finite dimensional, Z =
RK , and can be paired with itself. Moreover, in the finite dimensional case, if ρ
is proper and convex, then it is continuous (and hence lower semicontinuous)
at every point in the interior of its domain. In particular, it is continuous at
every point if it is real valued. In order to avoid technical details one can be
tempted to restrict the discussion to finite sample spaces. However, apart from
restricting the generality, this would result in losing some important essentials
of the analysis. It turns out that some important properties enjoyed by risk
functions for continuous distributions do not extend to the discrete case of
finite Ω (see the examples in the next section).

As it was discussed above, in order for the representation (9) to hold we
only need the convexity (condition (A1)) and lower semicontinuity properties
to be satisfied. Let us observe that (9) is equivalent to

ρ(Z) = sup
µ∈A

{
〈µ,Z〉 − ρ∗(µ)

}
, (10)

where
A := {µ ∈ Z∗ : ρ∗(µ) < +∞} (11)

is the domain of ρ∗. It is not difficult to show that if representation (9) (or,
equivalently, representation (10)) holds true, then condition (A2) is satisfied iff
the set A contains only nonnegative measures, and condition (A3) is satisfied
iff µ(Ω) = 1 for every µ ∈ A (cf., [23]). We obtain that if conditions (A1)–(A3)
are satisfied and ρ is lower semicontinuous, then the representation (10) holds
true with A ⊂ P, where P denotes the set of all probability measures in the
space Z∗.

Moreover, if Z is a Banach lattice7 and ρ satisfies conditions (A1) and (A2),
then ρ is continuous at every point8 Z ∈ int(dom(ρ)) ([23]). Note that every
space Lp(Ω,F , P ) is a Banach lattice. Also if ρ is positively homogeneous,
then ρ∗(µ) = 0 for µ ∈ A and ρ∗(µ) = +∞ otherwise. Therefore we have the
following. Recall that

P :=
{
ζ ∈ Lq(Ω,F , P ) :

∫
Ω
ζ(ω) dP (ω) = 1, ζ � 0

}
(12)

7 It is said that a Banach space Z is a Banach lattice, with respect to the considered
partial order defined by the cone Z+, if Z is a lattice, i.e., for any Z1, Z2 ∈ Z the
element max{Z1(·),Z2(·)} also belongs to Z, and moreover if |Z1(·)| ≤ |Z2(·)|,
then ‖Z1‖ ≤ ‖Z2‖.

8 We denote by int(dom(ρ)) the interior of the domain of ρ. That is, Z ∈
int(dom(ρ)) if there is a neighborhood N of Z such that ρ(Z′) is finite for all
Z′ ∈ N .
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denotes the set of probability measures in the dual space Lq(Ω,F , P ).

Theorem 2. Suppose that Z := Lp(Ω,F , P ), risk function ρ : Z → R is
proper and conditions (A1)–(A3) are satisfied. Then for all Z ∈ int(dom(ρ))
it holds that

ρ(Z) = sup
ζ∈P

{
〈ζ, Z〉 − ρ∗(ζ)

}
. (13)

If, moreover, ρ is positively homogeneous, then there exists a nonempty convex
closed set A ⊂ P such that for all Z ∈ int(dom(ρ)) it holds that

ρ(Z) = sup
ζ∈A

〈ζ, Z〉. (14)

In this way we have established the equivalent representation of convex risk
functions, which corresponds to the min-max model (3).

In various forms of generality the above dual representations of con-
vex risk functions were derived in [2, 5, 21, 23]. If the set Ω is finite, say
Ω = {ω1, . . . , ωK} with respective (positive) probabilities p1, . . . , pK , then
the corresponding set

P =
{
ζ ∈ RK :

∑K
k=1 pkζk = 1, ζ ≥ 0

}
is bounded, and hence the set A is also bounded. It follows that if Ω is finite
and ρ is proper and conditions (A1)–(A4) are satisfied, then ρ(·) is real valued
and representation (14) holds.

3 The Utility Model

It is also possible to relate the theory of convex risk functions with the utility
model (2). Let Z := Lp(Ω,F , P ) and Z∗ := Lq(Ω,F , P ), and let g : R → R
be a proper convex lower semicontinuous function such that the expectation
E[g(Z)] is well defined9 for all Z ∈ Z. We can view the function g as a disutility
function. Consider the risk function

ρ(Z) := E[g(Z)] (15)

and assume that ρ is proper. Since g is lower semicontinuous and convex, we
have that

g(z) = sup
α∈R

{αz − g∗(α)} ,

where g∗ is the conjugate of g. As g is proper, the conjugate function g∗ is
also proper. It follows that
9 It is allowed here for E[g(Z)] to take value +∞, but not −∞ since the corre-

sponding risk function is required to be proper.
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ρ(Z) = E
[
sup
α∈R

{αZ − g∗(α)}
]
. (16)

We use the following interchangeability principle (e.g., Rockafellar and
Wets [19, Theorem 14.60]). It is said that a linear space M of F-measurable
functions ψ : Ω → Rm is decomposable if for every ψ ∈ M and B ∈ F ,
and every bounded and F-measurable function W : Ω → Rm, the space M
also contains the function V (·) := 1lΩ\B(·)ψ(·)+1lB(·)W (·). In the subsequent
analysis we work with spaces M := Lp(Ω,F , P,Rm) which are decomposable.
Now let M be a decomposable space and h : Rm×Ω → R be a random lower
semicontinuous function10. Then

E
[

inf
y∈Rm

h(y, ω)
]

= inf
Y ∈M

E
[
HY

]
, (17)

where HY (ω) := h(Y (ω), ω), provided that the right hand side of (17) is less
than +∞. Moreover, if the common value of both sides in (17) is not −∞,
then

Ȳ ∈ argmin
Y ∈M

E[HY ] iff Ȳ (ω) ∈ argmin
y∈Rm

h(y, ω) for a.e. ω ∈ Ω.

Clearly the above interchangeability principle can be applied to a maximiza-
tion, rather than minimization, procedure simply by replacing function h(y, ω)
with −h(y, ω).

Let us return to the dual formulation (16) of the risk function (15). By
using the interchangeability formula (17) with h(α, ω) := −[αZ(ω) − g∗(α)]
we obtain

ρ(Z) = sup
ζ∈Z∗

{
〈ζ, Z〉 − E[g∗(ζ)]

}
. (18)

It follows that ρ is convex and lower semicontinuous, and representation (9)
holds with

ρ∗(ζ) = E[g∗(ζ)].

Moreover, if the function g is nondecreasing, then ρ satisfies the monotonicity
condition (A2). However, the risk function ρ does not satisfy condition (A3)
unless g(z) ≡ z, and ρ is not positively homogeneous unless g is positively
homogeneous.

4 Examples of Risk Functions

In this section we discuss several examples of risk functions which are com-
monly used in applications. In the following, P is a (reference) probability
measure on (Ω,F) and, unless stated otherwise, all expectations and proba-
bilistic statements are made with respect to P .
10 A function h : Rm × Ω → R is said to be random lower semicontinuous if its

epigraphical mapping is closed valued and measurable. Random lower semicon-
tinuous functions are also called normal integrands (cf., [19, Definition 14.27]).
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Example 1 (Mean-variance risk function). Consider

ρ(Z) := E[Z] + cVar[Z], (19)

where c ≥ 0 is a given constant. It is natural to use here the space Z :=
L2(Ω,F , P ) since for any Z ∈ L2(Ω,F , P ) the expectation E[Z] and variance
Var[Z] are well defined and finite.

By direct calculation we can verify that

Var[Z] =
∥∥Z − E[Z]

∥∥2 = sup
ζ∈Z

{
〈ζ, Z − E[Z]〉 − 1

4
‖ζ‖2

}
,

where the scalar products and the norms are in the sense of the (Hilbert)
space L2(Ω,F , P ). Since 〈ζ, Z −E[Z]〉 = 〈ζ −E[ζ], Z〉 we can rewrite the last
expression as follows:

Var[Z] = sup
ζ∈Z

{
〈ζ − E[ζ], Z〉 − 1

4
‖ζ‖2

}
= sup

ζ∈Z

{
〈ζ − E[ζ], Z〉 − 1

4
Var[ζ]− 1

4

(
E[ζ]

)2}
.

Consequently, the above maximization can be restricted to such ζ ∈ Z that
E[ζ] = 0, and hence

Var[Z] = sup
ζ∈Z

E[ζ]=0

{
〈ζ, Z〉 − 1

4
Var[ζ]

}
.

Therefore the risk function ρ, defined in (19), can be equivalently expressed
for c > 0 as follows:

ρ(Z) = E[Z] + c sup
ζ∈Z

E[ζ]=0

{
〈ζ, Z〉 − 1

4
Var [ζ]

}
= sup

ζ∈Z
E[ζ]=1

{
〈ζ, Z〉 − 1

4c
Var[ζ]

}
.

(20)

It follows that for any c ≥ 0 the function ρ is convex and lower semicontinuous.
Furthermore

ρ∗(ζ) =

{
1
4cVar[ζ], if E[ζ] = 1,
+∞, otherwise.

The function ρ satisfies the translation equivariance condition (A3), because
the domain of its conjugate contains only ζ such that E[ζ] = 1. However, for
any c ≥ 0 the function ρ is not positively homogeneous and it does not satisfy
the monotonicity condition (A2), because the domain of ρ∗ contains density
functions which are not nonnegative.
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Example 2 (Mean-deviation risk function of order p). For Z := Lp(Ω,F , P ),
Z∗ := Lq(Ω,F , P ) and c ≥ 0 consider

ρ(Z) := E[Z] + c
(
E
[
|Z − E[Z]|p

])1/p
. (21)

Note that
(
E
[
|Z|p

])1/p = ‖Z‖p, where ‖ · ‖p denotes the norm of the space
Lp(Ω,F , P ). We have that

‖Z‖p = sup
‖ζ‖q≤1

〈ζ, Z〉,

and hence(
E
[
|Z − E[Z]|p

])1/p = sup
‖ζ‖q≤1

〈ζ, Z − E[Z]〉 = sup
‖ζ‖q≤1

〈ζ − E[ζ], Z〉.

It follows that representation (14) holds with the set A given by

A = {ζ ′ ∈ Z∗ : ζ ′ = 1 + ζ − E[ζ], ‖ζ‖q ≤ c} . (22)

We obtain here that ρ satisfies conditions (A1), (A3) and (A4).
The monotonicity condition (A2) is more involved. Suppose that p = 1.

Then q = +∞ and hence for any ζ ′ ∈ A and P -almost every ω ∈ Ω we have

ζ ′(ω) = 1 + ζ(ω)− E[ζ] ≥ 1− |ζ(ω)| − E[ζ] ≥ 1− 2c.

It follows that if c ∈ [0, 1/2], then ζ ′(ω) ≥ 0 for P -almost every ω ∈ Ω,
and hence condition (A2) follows. Conversely, take ζ := c(−1lA + 1lΩ\A), for
some A ∈ F , and ζ ′ = 1 + ζ − E[ζ]. We have that ‖ζ‖∞ = c and ζ ′(ω) =
1 − 2c + 2cP (A) for all ω ∈ A It follows that if c > 1/2, then ζ ′(ω) < 0 for
all ω ∈ A, provided that P (A) is small enough. We obtain that for c > 1/2
the monotonicity property (A2) does not hold if the following condition is
satisfied:

For any ε > 0 there exists A ∈ F such that ε > P (A) > 0. (23)

That is, for p = 1 the mean-deviation function ρ satisfies (A2) if, and provided
that condition (23) holds, only if c ∈ [0, 1/2].

Suppose now that p > 1. For a set A ∈ F and α > 0 let us take ζ := −α1lA
and ζ ′ = 1 + ζ − E[ζ]. Then ‖ζ‖q = αP (A)1/q and ζ ′(ω) = 1 − α + αP (A)
for all ω ∈ A. It follows that if p > 1, then for any c > 0 the mean-deviation
function ρ does not satisfy (A2) provided that condition (23) holds.

Example 3 (Mean-upper-semideviation risk function of order p). Let Z :=
Lp(Ω,F , P ) and for c ≥ 0 consider11

ρ(Z) := E[Z] + c
(
E
[[
Z − E[Z]

]p
+

])1/p

. (24)

11 We denote [a]p+ := (max{0, a})p.
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For any c ≥ 0 this function satisfies conditions (A1), (A3) and (A4), and
similarly to the derivations of Example 2 it can be shown that representation
(14) holds with the set A given by

A =
{
ζ ′ ∈ Z∗ : ζ ′ = 1 + ζ − E[ζ], ‖ζ‖q ≤ c, ζ � 0

}
. (25)

Since |E[ζ]| ≤ E|ζ| ≤ ‖ζ‖q for any ζ ∈ Lq(Ω,F , P ), we have that every element
of the above set A is nonnegative and has its expected value equal to 1. This
means that the monotonicity condition (A2) holds true, if and, provided that
condition (23) holds, only if c ∈ [0, 1] (see [23]). That is, ρ is a coherent risk
function if c ∈ [0, 1].

Example 4 (Mean-upper-semivariance from a target). Let Z := L2(Ω,F , P )
and for weight c ≥ 0 and target τ ∈ R consider

ρ(Z) := E[Z] + cE
[[
Z − τ

]2
+

]
. (26)

We can now use (18) with g(z) = z + c(z − τ)2+. Since

g∗(α) =

{
(α− 1)2/4c+ τ(α− 1), if α ≥ 1,
+∞, otherwise,

we obtain that

ρ(Z) = sup
ζ∈Z, ζ(·)≥1

{
E[ζZ]− τE[ζ − 1]− 1

4c
E[(ζ − 1)2]

}
. (27)

Consequently, representation (10) holds with12 A = {ζ ∈ Z : ζ − 1 � 0} and

ρ∗(ζ) = τE[ζ − 1] +
1
4c

E[(ζ − 1)2], ζ ∈ A.

If c > 0, none of the conditions (A3) and (A4) is satisfied by this risk function.

Example 5 (Mean-upper-semideviation of order p from a target). Let Z :=
Lp(Ω,F , P ) and for c ≥ 0 and τ ∈ R consider

ρ(Z) := E[Z] + c
(
E
[[
Z − τ

]p
+

])1/p

. (28)

For any c ≥ 0 and τ this risk function satisfies conditions (A1) and (A2), but
not (A3) and (A4), if c > 0. We have(

E
[[
Z − τ

]p
+

])1/p

= sup
‖ζ‖q≤1

E
(
ζ[Z − τ ]+

)
= sup

‖ζ‖q≤1, ζ(·)≥0

E
(
ζ[Z − τ ]+

)
= sup

‖ζ‖q≤1, ζ(·)≥0

E
(
ζ[Z − τ ]

)
= sup

‖ζ‖q≤1, ζ(·)≥0

E
[
ζZ − τζ

]
.

12 Recall that A := dom(ρ∗).
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We obtain that representation (10) holds withA = {ζ ∈ Z∗ : ‖ζ‖q ≤ c, ζ � 0}
and ρ∗(ζ) = τE[ζ] for ζ ∈ A.

Example 6. Let v : R → R be a proper lower semicontinuous convex function.
For Z := Lp(Ω,F , P ) consider the function

ρ(Z) := inf
α∈R

E
[
Z + v(Z − α)

]
. (29)

Assume that functions ψα(z) := z+ v(z−α), α ∈ R, are bounded from below
by a P -integrable function, and hence ρ(Z) > −∞ for all Z ∈ Z. Since the
function (Z,α) 7→ E

[
Z + v(Z − α)

]
is convex, it follows that ρ(·) is convex.

Also ρ(Z + a) = ρ(Z) + a for any a ∈ R and Z ∈ Z. This can be shown by
making the change of variables z 7→ z+ a in the calculation of ρ(Z + a). That
is, ρ satisfies conditions (A1) and (A3).

Let us calculate the conjugate of ρ:

ρ∗(ζ) = sup
Z∈Z

{
E[ζZ]− ρ(Z)

}
= sup

Z∈Z, α∈R
E
[
ζZ − Z − v(Z − α)

]
= sup

Z∈Z, α∈R
E
[
(Z + α)ζ − Z − α− v(Z)

]
= sup

Z∈Z

{
E[ζZ − Z − v(Z)]

}
+ sup

α∈R

{
α(E[ζ]− 1)

}
. (30)

By the interchangeability formula (17), the first term in (30) can be expressed
as follows:

sup
Z∈Z

E
[
ζZ − Z − v(Z)

]
= E

[
sup
z∈R

{
z(ζ − 1)− v(z)

}]
= E [v∗(ζ − 1)] ,

where v∗(·) is the conjugate function of v(·). The supremum with respect to
α in (30) is +∞, unless E[ζ] = 1. We conclude that

ρ∗(ζ) =

{
E [v∗(ζ − 1)] , if E[ζ] = 1,
+∞, otherwise.

(31)

The function ρ satisfies the monotonicity condition (A2) iff its domain contains
only probability density functions. This is equivalent to the condition that
E[v∗(ζ − 1)] = +∞ for any such ζ ∈ Z∗ that the event “ζ(ω) < 0” happens
with positive probability. In particular, ρ satisfies (A2) if v∗(t) = +∞ for
t < −1. This is the same as requiring that the function φ(z) := z + v(z) is
monotonically nondecreasing on R.

Example 7 (Conditional value at risk). For Z := L1(Ω,F , P ), Z∗ := L∞(Ω,F , P )
and constants ε1 ≥ 0 and ε2 ≥ 0 consider

ρ(Z) := E[Z] + inf
α∈R

E
(
ε1[α− Z]+ + ε2[Z − α]+

)
. (32)
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Note that the above function ρ is of the form (29) with

v(z) := ε1[−z]+ + ε2[z]+. (33)

We have here that the function z+v(z) is positively homogeneous, and mono-
tonically nondecreasing iff ε1 ≤ 1. It follows that for any ε1 ∈ [0, 1] and ε2 ≥ 0,
the above function ρ is a coherent risk function satisfying conditions (A1)–
(A4). Moreover,

v∗(t) =

{
0, if t ∈ [−ε1, ε2],
+∞, otherwise.

Consequently we have that, for any ε1 ≥ 0 and ε2 ≥ 0, representation (14)
holds with

A =
{
ζ ∈ Z∗ : 1− ε1 ≤ ζ(ω) ≤ 1 + ε2, a.e. ω ∈ Ω, E[ζ] = 1

}
. (34)

For ε1 > 0 and ε2 > 0 we can write ρ in the form

ρ(Z) = (1− ε1)E[Z] + ε1CV@Rκ[Z], (35)

where κ := ε2/(ε1 + ε2) and

CV@Rκ[Z] := inf
a∈R

{
a+

1
1− κ

E
(
[Z − a]+

)}
(36)

is the so called Conditional Value at Risk function, [20]. By the above analysis
we have that CV@Rκ[Z] is a coherent risk function for any κ ∈ (0, 1) and the
corresponding set A is given by

A =
{
ζ ∈ Z∗ : 0 ≤ ζ(ω) ≤ (1− κ)−1, a.e. ω ∈ Ω, E[ζ] = 1

}
. (37)

5 Stochastic Dominance Conditions

In all examples considered in Section 4, the space Z was given by Lp(Ω,F , P )
with Z∗ := Lq(Ω,F , P ) and, moreover, the risk functions ρ(Z) discussed
there were dependent only on the distribution of Z. That is, each risk function
ρ(Z), considered in Section 4, could be formulated in terms of the cumulative
distribution function (cdf) FZ(z) := P (Z ≤ z) associated with Z ∈ Z. In
other words these risk functions satisfied the following condition:

(D) If Z1, Z2 ∈ Z are such that P (Z1 ≤ z) = P (Z2 ≤ z) for all z ∈ R, then
ρ(Z1) = ρ(Z2).

We say that risk function ρ : Z → R is distribution invariant if it satisfies the
above condition (D). For distribution invariant risk functions it makes sense to
discuss their monotonicity properties with respect to various stochastic orders
defined for (real valued) random variables.
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Many stochastic orders can be characterized by a class G of functions
g : R → R as follows. For (real valued) random variables Z1 and Z2 it is
said that Z2 dominates Z1, denoted Z2 �G Z1, if E[g(Z2)] ≥ E[g(Z1)] for
all g ∈ G for which the corresponding expectations do exist. This stochastic
order is called the integral stochastic order with generator G. We refer to [10,
Chapter 2] for a thorough discussion of this concept. For example, the usual
stochastic order, written Z2 �st Z1, corresponds to the generator G formed by
all non-decreasing functions g : R → R. It is possible to show that Z2 �st Z1

iff FZ2(z) ≤ FZ1(z) for all z ∈ R (e.g., [10, Theorem 1.2.8]). We say that the
integral stochastic order is increasing if all functions in the set G are non-
decreasing. The usual stochastic order is an example of increasing integral
stochastic order.

We say that (distribution invariant) risk function ρ is consistent with the
integral stochastic order if Z2 �G Z1 implies ρ(Z2) ≥ ρ(Z1) for all Z1, Z2 ∈ Z,
i.e., ρ is monotone with respect to �G . For an increasing integral stochastic
order we have that if Z2(ω) ≥ Z1(ω) for a.e. ω ∈ Ω, then g(Z2(ω)) ≥ g(Z1(ω))
for any g ∈ G and a.e. ω ∈ Ω, and hence E[g(Z2(ω))] ≥ E[g(Z1(ω))]. That
is, if Z2 � Z1 in the almost sure sense, then Z2 �G Z1. It follows that if ρ
is distribution invariant and consistent with respect to an increasing integral
stochastic order, then it satisfies the monotonicity condition (A2). In other
words if ρ does not satisfy condition (A2), then it cannot be consistent with
any increasing integral stochastic order. In particular, for c > 0 the mean-
variance risk function, defined in (19), is not consistent with any increasing
integral stochastic order, and for p > 1 the mean-deviation risk function,
defined in (21), is not consistent with any increasing integral stochastic order
provided that condition (23) holds.

Consider now the usual stochastic order. By Strassen’s localization theo-
rem, we have that Z2 �st Z1 iff there exists a probability space (Ω,F , P ) and
random variables Ẑ1 and Ẑ2 on it such that13 Ẑ1

D∼ Z1 and Ẑ2
D∼ Z2, and

Ẑ2(ω) ≥ Ẑ1(ω) for all ω ∈ Ω (e.g., [10, Theorem 1.2.4]). In our context, this
relation between the usual stochastic order and the almost sure order cannot
be used directly, because, we are not allowed to freely change the probability
space (Ω,F , P ), which is an integral part of our definition of a risk function.

However, if our space (Ω,F , P ) is sufficiently rich, so that a uniform14

random variable U(ω) exists on this space, we can easily link the monotonicity
assumption (A2) with the consistency with the usual stochastic order. Suppose
that the risk function ρ is distribution invariant and satisfies the monotonicity
condition (A2). Recall that Z2 �st Z1 iff FZ2(z) ≤ FZ1(z) for all z ∈ R.
Consider random variables Ẑ1 := F−1

Z1
(U) and Ẑ2 := F−1

Z2
(U), where the

inverse distribution function is defined as

13 The notation X
D∼ Y means that random variables X and Y , which can be defined

on different probability spaces, have the same cumulative distribution function.
14 Random variable U : Ω → [0, 1] is said to be uniform if P (U ≤ z) = z for every
z ∈ [0, 1].



Optimization of Risk Measures 15

F−1
Z (t) := inf {z : FZ(z) ≥ t} .

We obtain that Ẑ2(ω) ≥ Ẑ1(ω) for all ω ∈ Ω, and by virtue of (A2), ρ(Ẑ2) ≥
ρ(Ẑ1). By construction, Ẑ1 has the same distribution as Z1, and Ẑ2 has the
same distribution as Z2. Since the risk function is distribution invariant, we
conclude that ρ(Z2) ≥ ρ(Z1). Consequently, the risk function ρ is consistent
with the usual stochastic order. It follows that in a sufficiently rich probability
space the monotonicity condition (A2) and the consistency with the usual
stochastic order are equivalent (for distribution invariant risk functions).

It is said that Z2 is bigger than Z1 in increasing convex order, written
Z2 �icx Z1, if E[g(Z2)] ≥ E[g(Z1)] for all increasing convex functions g :
R → R such that the expectations exist. Clearly this is an integral stochastic
order with the corresponding generator given by the set of increasing convex
functions. It is the counterpart of the classical stochastic dominance relation,
which is the increasing concave order (recall that we are dealing here with
minimization rather than maximization procedures). Consider the setting of
Example 6 with risk function ρ defined in (29). Suppose that the function
φ(z) := z+v(z) is monotonically nondecreasing on R. Note that φ(·) is convex,
since v(·) is convex. We obtain that if Z2 ≥icx Z1, then E[φ(Z2 − α)] ≥
E[φ(Z2−α)] for any fixed α ∈ R, and hence (by taking minimum over α ∈ R)
that ρ(Z2) ≥ ρ(Z1). That is, the risk function defined in (29) is consistent with
the increasing convex order. We have in this way re-established the stochastic
dominance consistency result of [13].

The mean-upper-semideviation risk function of order p ≥ 1 (Example 3)
is also consistent with the increasing convex order, provided that c ∈ [0, 1].
We can prove this for p = 1 as follows (see [11]).

Suppose that Z2 �icx Z1. First, using g(z) := z we see that

E[Z1] ≤ E[Z2]. (38)

Secondly, setting g(z) :=
(
z − E[Z1]

)
+

we obtain that

E
[(
Z1 − E[Z1]

)
+

]
≤ E

[(
Z2 − E[Z1]

)
+

]
.

Using (38) we can continue this estimate as follows

E
[(
Z1 − E[Z1]

)
+

]
≤ E

[(
Z2 − E[Z2] + E[Z2]− E[Z1]

)
+

]
≤ E

[(
Z2 − E[Z2]

)
+

]
+ E[Z2]− E[Z1].

This can be rewritten as

E[Z1] + E
[(
Z1 − E[Z1]

)
+

]
≤ E[Z2] + E

[(
Z2 − E[Z2]

)
+

]
, (39)

which is the required relation ρ(Z1) ≤ ρ(Z2) for c = 1. Combining inequalities
(38) and (39) with coefficients 1 − c and c, we obtain the required result for
any c ∈ [0, 1]. The proof for p > 1 can be found in [12] (in the stochastic
dominance setting).
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6 Differentiability of Risk Functions

In this section we discuss differentiability properties of risk functions. In the
analysis of optimization of risk measures we also have to deal with composite
functions of the form

φ(x) := ρ(F (x)).

Here F : Rn → Z is a mapping, defined by [F (x)](·) := f(x, ·), associated with
a function f : Rn ×Ω → R. Of course, in order for this mapping F to be well
defined we have to assume that the random variable Z(ω) = f(x, ω) belongs
to Z for any x ∈ Rn. We say that the mapping F is convex if the function
fω(·) := f(·, ω) is convex for every ω ∈ Ω. It is not difficult to verify and is
well known that the composite function φ(x) is convex if F is convex and ρ is
convex and satisfies the monotonicity condition (A2). Let us emphasize that
in order to preserve convexity of the composite function φ we need convexity
of F and ρ and the monotonicity property (A2).

Consider a point Z̄ ∈ Z such that ρ(Z̄) is finite valued. Since it is assumed
that ρ is proper, this means that Z̄ ∈ dom(ρ). The following limit (provided
that it exists)

ρ′(Z̄, Z) := lim
t↓0

ρ(Z̄ + tZ)− ρ(Z̄)
t

(40)

is called the directional derivative of ρ at Z̄ in direction Z. If this limit exists for
all Z ∈ Z, it is said that ρ is directionally differentiable at Z̄. It is said that ρ is
Hadamard directionally differentiable at Z̄, if ρ is directionally differentiable
at Z̄ and, moreover, the following limit holds

ρ′(Z̄, Z) = lim
Z′→Z

t↓0

ρ(Z̄ + tZ ′)− ρ(Z̄)
t

. (41)

It can be observed that ρ′(Z̄, Z) is just the one sided derivative of the function
g(t) := ρ(Z̄ + tZ) at t = 0. If ρ is convex, then the function g : R → R is also
convex, and hence ρ′(Z̄, Z) exists, although it can take values +∞ or −∞.

It said that an element µ ∈ Z∗ is a subgradient of ρ at Z̄ if

ρ(Z) ≥ ρ(Z̄) + 〈µ,Z − Z̄〉, ∀Z ∈ Z. (42)

The set of all subgradients of ρ, at Z̄, is called the subdifferential of ρ and
denoted ∂ρ(Z̄). It is said that ρ is subdifferentiable at Z̄ if ∂ρ(Z̄) is nonempty.
By convex analysis we have that if ρ is convex and continuous at Z̄, then it is
subdifferentiable at Z̄, and, moreover, if Z is a Banach space (equipped with
its norm topology), then ρ is Hadamard directionally differentiable at Z̄.

It is said that ρ is Gâteaux (Hadamard) differentiable at Z̄ if it is
(Hadamard) directionally differentiable at Z̄ and there exists µ̄ ∈ Z∗ such
that ρ′(Z̄, Z) = 〈µ̄, Z〉 for all Z ∈ Z. The functional µ̄ represents the deriva-
tive of ρ at Z̄ and denoted ∇ρ(Z̄). If the space Z is finite dimensional, then
the concept of Hadamard differentiability coincides with the usual concept of
differentiability. By convex analysis we have the following.
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Theorem 3. Suppose that Z is a Banach space (e.g., Z := Lp(Ω,F , P )), and
ρ is convex and finite valued and continuous at Z̄. Then ρ is subdifferentiable
and Hadamard directionally differentiable at Z̄, and the following formulas
hold

∂ρ(Z̄) = argmaxµ∈Z∗
{
〈µ, Z̄〉 − ρ∗(µ)

}
, (43)

ρ′(Z̄, Z) = supµ∈∂ρ(Z̄)〈µ,Z〉. (44)

Moreover, ρ is Hadamard differentiable at Z̄ if and only if ∂ρ(Z̄) = {µ̄} is a
singleton, in which case ∇ρ(Z̄) = µ̄.

As we mentioned earlier, if Z := Lp(Ω,F , P ) and ρ satisfies conditions
(A1) and (A2), then ρ is continuous and subdifferentiable at every point of
the interior of its domain ([23]). In particular, if ρ is real valued, then ρ
is continuous and subdifferentiable at every point of Z and formulas (43)
and (44) hold. Moreover, if ρ is a real valued coherent risk function, then
representation (14) holds and

∂ρ(Z̄) = argmax
ζ∈A

〈ζ, Z̄〉. (45)

Consider now the composite function φ(x) := ρ(F (x)). Since fω(·) is real
valued, we have that if fω(·) is convex, then it is directionally differentiable at
every point x̄ ∈ Rn and its directional derivative f ′ω(x̄, x) is finite valued. By
using the chain rule for directional derivatives and (44) we obtain the following
differentiability properties of the composite function, at a point x̄ ∈ Rn (cf.,
[23]).

Proposition 1. Suppose that Z is a Banach space, the mapping F : Rn → Z
is convex, the function ρ is convex, finite valued and continuous at Z̄ := F (x̄).
Then the composite function φ(x) = ρ(F (x)) is directionally differentiable at
x̄, its directional derivative φ′(x̄, x) is finite valued for every x ∈ Rn and

φ′(x̄, x) = sup
µ∈∂ρ(Z̄)

∫
Ω

f ′ω(x̄, x) dµ(ω). (46)

Moreover, if ∂ρ(Z̄) = {µ̄} is a singleton, then the composite function φ is
differentiable at x̄ if and only if fω(·) is differentiable at x̄ for µ̄-almost every
ω, in which case

∇φ(x̄) =
∫

Ω

∇fω(x̄) dµ̄(ω). (47)

It is also possible to write the above differentiability formulas in terms
of subdifferentials. Suppose that F is convex. Then for any15 measure µ ∈
Z∗+ the integral function ψµ(x) :=

∫
Ω
fω(x) dµ(ω) is also convex. Moreover,

15 Recall that Z∗
+ denotes the set of nonnegative measures µ ∈ Z∗.
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if the integral function ψµ(·) is finite valued (and hence continuous) in a
neighborhood of a point x̄ ∈ Rn, then

ψ′µ(x̄, x) =
∫

Ω

f ′ω(x̄, x) dµ(ω), (48)

and by Strassen’s disintegration theorem the following interchangeability for-
mula holds

∂ψµ(x̄) =
∫

Ω

∂fω(x̄) dµ(ω). (49)

The integral in the right hand side of (49) is understood as the set of all
vectors of the form

∫
Ω
δ(ω) dµ(ω), where δ(ω) is a µ-integrable selection16 of

∂fω(x̄).
Suppose that the assumptions of Proposition 1 hold, and monotonicity

condition (A2) is satisfied and hence φ is convex and ∂ρ(Z̄) ⊂ Z∗+. Now
formula (46) means that φ′(x̄, ·) is equal to the supremum of ψ′µ(x̄, ·) over
µ ∈ ∂ρ(Z̄). The functions ψ′µ(x̄, ·) are convex and positively homogeneous,
and hence ∂φ(x̄) is equal to the topological closure of the union of the sets
∂ψ′µ(x̄) over µ ∈ ∂ρ(Z̄). Consequently, we obtain that formula (46) can be
written in the following equivalent form17

∂φ(x̄) = cl
{⋃

µ∈∂ρ(Z̄)

∫
Ω
∂fω(x̄) dµ(ω)

}
. (50)

Note that since ∂ρ(Z̄) is convex, it is straightforward to verify that the set
inside the parentheses at the right hand side of (50) is convex. Moreover, if
the maximum in the right hand side of (46) is attained for any x ∈ Rn, then
this set is closed. Now if Z := Lp(Ω,F , P ), with p ∈ [1,+∞), then ∂ρ(Z̄) is
weakly∗ compact, provided that ρ is continuous at Z̄. In that case, indeed,
the maximum in the right hand side of (46) is always attained. We obtain the
following result.

Theorem 4. Suppose that Z := Lp(Ω,F , P ), with p ∈ [1,+∞), the mapping
F : Rn → Z is convex, the function ρ satisfies conditions (A1) and (A2),
finite valued and continuous at Z̄ := F (x̄). Then

∂φ(x̄) =
⋃

ζ∈∂ρ(Z̄)

∫
Ω

ζ(ω)∂fω(x̄) dP (ω). (51)

Let us consider now some examples discussed in Section 4.

Example 8 (Mean-upper-semideviation risk function of order p). Consider the
setting of Example 3. We have that the risk function ρ, defined in (24), is
a convex real valued continuous function. It follows that for any Z ∈ Z the
16 It is said that δ(ω) is a selection of ∂fω(x̄) if δ(ω) ∈ ∂fω(x̄) for almost every ω.
17 By cl(S) we denote the topological closure of the set S ⊂ Rn.
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subdifferential ∂ρ(Z) is nonempty and formula (45) holds with the set A given
in (25). That is,

∂ρ(Z) =
{
1 + ζ − E[ζ] : ζ ∈ ∆Z

}
, (52)

where

∆Z := argmax
ζ∈Z∗

{
〈ζ, Y 〉 : ‖ζ‖q ≤ c, ζ � 0

}
and Y := Z − E[Z]. (53)

If p ∈ (1,+∞), then the set ∆Z can be described as follows. If the function
Z(·) is constant, then Y (·) ≡ 0 and hence ∆Z = {ζ : ‖ζ‖q ≤ c, ζ � 0}.
Suppose that Z(·) is not constant18 and hence Y (·) is not identically zero.
Note that the ‘argmax’ in (53) is not changed if Y is replaced Y+(·) := [Y (·)]+.
With Y+ is associated a unique point ζ∗ ∈ Z∗ such that ‖ζ∗‖q = 1 and
〈ζ∗, Y 〉 = ‖Y ‖p. Since Y+ � 0, it follows that ζ∗ � 0 and ∆Z = {c ζ∗}. That
is, for p > 1 and nonconstant Z ∈ Z, the subdifferential ∂ρ(Z) is a singleton,
and hence ρ is differentiable at Z.

Suppose now that p = 1 and hence q = +∞. In that case

∆Z =
{
ζ ∈ Z∗ :

ζ(ω) = c if Y (ω) > 0, ζ(ω) = 0 if Y (ω) < 0,
0 ≤ ζ(ω) ≤ c if Y (ω) = 0

}
. (54)

It follows that∆Z is a singleton, and hence ρ is differentiable at Z, iff Y (ω) 6= 0
for P -almost every ω ∈ Ω.

Example 9 (Mean-upper-semideviation of order p from a target). Consider the
setting of Example 5. The risk function ρ, defined in (28), is real valued convex
and continuous. We have that

∂ρ(Z) = argmax
ζ∈Z∗

{
〈ζ, Z − τ〉 : ‖ζ‖q ≤ c, ζ � 0

}
. (55)

Similarly to the previous example, we have here that if p > 1, then ρ is
differentiable at Z iff P{Z(ω) 6= τ} > 0. If p = 1, then ρ is differentiable at Z
iff P{Z(ω) 6= τ} = 1.

Example 10. Consider the setting of Example 6 with the risk function ρ defined
in (29). Because of (31) and by (43) we have

∂ρ(Z) = argmaxζ∈Z∗, E[ζ]=1 E
[
ζZ − v∗(ζ − 1)

]
. (56)

Also the subdifferential of function h(ζ) := E
[
ζZ − v∗(ζ − 1)

]
is given by

∂h(ζ) =
{
Z ′ ∈ Z : Z ′(ω) ∈ Z(ω)− ∂v∗(ζ(ω)− 1), ω ∈ Ω

}
.

By the first order optimality conditions we have then that ζ̄ ∈ Z∗ is an optimal
solution of the right hand side problem of (56) iff there exists λ̄ ∈ R such that
18 Of course, this and similar statements here should be understood up to a set of
P -measure zero.
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Z(ω)− λ̄ ∈ ∂v∗(ζ̄(ω)− 1), a.e. ω ∈ Ω, and E[ζ̄] = 1. (57)

Since the inclusion a ∈ ∂v∗(z) is equivalent to z ∈ ∂v(a) we obtain

∂ρ(Z) =
{
ζ ∈ Z∗ : ζ(ω) ∈ 1 + ∂v(Z(ω)− λ̄), a.e. ω ∈ Ω, E[ζ] = 1

}
. (58)

Note that λ̄ is an optimal solution of the dual problem

Min
λ∈R

sup
ζ∈Z∗

E
[
ζZ − v∗(ζ − 1)− λ(ζ − 1)

]
.

By interchanging the integral and max operators (see (17)), the above problem
can be written in the following equivalent form

Minλ∈R E
[
supz∈R

{
(Z − λ)z − v∗(z − 1) + λ

}]
.

Example 11 (Conditional value at risk). Consider the setting of Example 7
with ρ defined in (32). We can use results of the previous example with func-
tion v(z) defined in (33). We have here that λ̄ is an optimal solution of the
problem

Minλ∈R E
[
− ε1[λ− Z]+ + ε2[Z − λ]+

]
. (59)

For ε1 > 0 and ε2 > 0 an optimal solution λ̄ of (59) is given by a κ-quantile
of Z (recall that κ = ε2/(ε1 + ε2)). That is, λ̄ ∈ [a, b] where

a := inf {t : P (Z ≤ t) ≥ κ} and b := sup {t : P (Z ≤ t) ≥ κ} .

By (58) we have

∂ρ(Z) =

ζ ∈ Z∗ :

ζ(ω) = 1− ε1, if Z(ω) < λ̄
ζ(ω) = 1 + ε2, if Z(ω) > λ̄
ζ(ω) ∈ [1− ε1, 1 + ε2], if Z(ω) = λ̄
E[ζ] = 1

 . (60)

Note that elements (functions) ζ ∈ ∂ρ(Z) are defined up to sets of P -measure
zero and the above formula (60) holds for any κ-quantile λ̄ ∈ [a, b]. Also recall
that for ε1 = 1 the risk function ρ(·) coincides with CV@Rκ[ · ].

7 Optimization of Risk Functions

In this section we consider the optimization problem

Min
x∈S

{
φ(x) := ρ(F (x))

}
. (61)

Recall that with mapping F : Rn → Z is associated function f(x, ω) =
[F (x)](ω). We assume throughout this section, and the following sections 8
and 9, that:
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(i) S is a nonempty closed convex subset of Rn,
(ii) the mapping F : Rn → Z is convex,
(iii) the risk function ρ : Z → R is proper, lower semicontinuous and satisfies

conditions (A1) and (A2).

It follows that the composite function φ : Rn → R is convex, and hence op-
timization problem (61) is a convex problem. Because of the Fenchel-Moreau
theorem, we can employ representation (10) of the risk function ρ to write
problem (61) in the following min-max form

Min
x∈S

sup
µ∈A

Φ(x, µ), (62)

where A := dom(ρ∗) and

Φ(x, µ) := 〈µ, F (x)〉 − ρ∗(µ). (63)

Note that because of the assumed monotonicity condition (A2), the set A
contains only nonnegative measures, i.e., A ⊂ Z∗+. If, moreover, assumption
(A3) holds, then A is a subset of the set P ⊂ Z∗ of probability measures, and
for µ ∈ P,

〈µ, F (x)〉 = Eµ[F (x)] =
∫

Ω
f(x, ω) dµ(ω).

If assumption (A4) also holds, then ρ∗(µ) = 0 and hence Φ(x, µ) = Eµ[F (x)]
for any µ ∈ A. Therefore if ρ is a coherent risk function, then problem (61)
can be written in the min-max form

Min
x∈S

sup
µ∈A

Eµ[F (x)]. (64)

We have here that the function Φ(x, µ) is concave in µ and, since F is
convex, is convex in x. Therefore, under various regularity conditions, the
‘min’ and ‘max’ operators in (62) can be interchanged to obtain the problem

Max
µ∈A

inf
x∈S

Φ(x, µ). (65)

For example, the following holds (cf., [23]).

Proposition 2. Suppose that Z is a Banach space, the mapping F is convex,
the function ρ is proper, lower semicontinuous and satisfies assumptions (A1)–
(A3). Then the optimal values of problems (62) and (65) are equal to each
other, and if their common optimal value is finite, then problem (65) has an
optimal solution µ̄. Moreover, the optimal values of (62) and (65) are equal to
the optimal value of the problem

Min
x∈S

Φ(x, µ̄), (66)

and if x̄ is an optimal solution of (62), then x̄ is also an optimal solution
of (66).
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We obtain that, under assumptions specified in the above proposition,
there exists a probability measure µ̄ ∈ P such that problem (61) is ‘almost’
equivalent to problem (66). That is, optimal values of problems (61) and (66)
are equal to each other and the set of optimal solutions of problem (61) is
contained in the set of optimal solutions of problem (66). Of course, the cor-
responding probability measure µ̄ is not known apriori and could be obtained
by solving the dual problem (65).

We also have that if the optimal values of problems (62) and (65) are
equal to each other, then x̄ is an optimal solution of (62) and µ̄ is an optimal
solution of (65) iff (x̄, µ̄) is a saddle point of Φ(x, µ), i.e.,

x̄ ∈ argmin
x∈S

Φ(x, µ̄) and µ̄ ∈ argmax
µ∈A

Φ(x̄, µ).

Conversely, if Φ(x, µ) possesses a saddle point, then the optimal values of prob-
lems (62) and (65) are equal. Because of convexity and lower semicontinuity
of ρ we have that ρ∗∗(·) = ρ(·), and by (63) we obtain that

argmax
µ∈A

Φ(x̄, µ) = ∂ρ(Z̄),

where Z̄ := F (x̄). Moreover, if ψ(·) := Eµ̄[F (·)] is finite valued in a neighbor-
hood of x̄, then the first order optimality condition for x̄ to be a minimizer of
ψ(x) over x ∈ S is that19 0 ∈ NS(x̄) + ∂ψ(x̄). Together with Strassen’s disin-
tegration theorem (see (49)) this leads to the following optimality conditions.

Proposition 3. Suppose that Z is a Banach space, the risk function ρ satisfies
conditions (A1)–(A3), the set S and the mapping F are convex, and x̄ ∈ X
and µ̄ ∈ P are such that Eµ̄[F (·)] is finite valued in a neighborhood of x̄.
Denote Z̄ := F (x̄). Then (x̄, µ̄) is a saddle point of Φ(x, µ) if and only if:

0 ∈ NS(x̄) + Eµ̄[∂fω(x̄)] and µ̄ ∈ ∂ρ(Z̄). (67)

Under the assumptions of Proposition 3, conditions (67) can be viewed as
optimality conditions for a point x̄ ∈ S to be an optimal solution of problem
(61). That is, if there exists a probability measure µ̄ ∈ ∂ρ(Z̄) such that the
first condition of (67) holds, then x̄ is an optimal solution of problem (61), i.e.,
(67) are sufficient conditions for optimality. Moreover, under the assumptions
of Proposition 2, the existence of such a probability measure µ̄ is a necessary
condition for optimality of x̄.

8 Nonanticipativity Constraints

The optimization problem (61) can be written in the following equivalent form

19 By NS(x̄) :=
{
x ∈ Rn : (x− x̄)T y ≤ 0, ∀ y ∈ S

}
we denote the normal cone to S

at x̄ ∈ S. By the definition NS(x̄) = ∅ if x̄ 6∈ S.
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Min
X∈MS , x∈Rn

ρ(FX) subject to X(ω) = x, ∀ω ∈ Ω, (68)

where M := Lp(Ω,F , P,Rn) and [FX ](ω) := f(X(ω), ω), for X ∈M, and

MS := {X ∈M : X(ω) ∈ S, a.e. ω ∈ Ω}.

Although the above problem involves optimization over the functional space
M, the constraintsX(ω) = x, ω ∈ Ω, ensure that this problem is equivalent to
problem (61). These constraints are called the nonanticipativity constraints.

Ignoring the nonanticipativity constraints we can write the following re-
laxation of problem (68):

Min
X∈MS

ρ(FX). (69)

Let us note now that the interchangeability principle, similar to (17), holds
for risk functions as well.

Proposition 4. Let Z := Lp(Ω,F , P ), ρ : Z → R be a real valued risk
function satisfying conditions (A1) and (A2), f : Rn × Ω → R be a random
lower semicontinuous function and G : Ω ⇒ Rn be a closed valued measurable
multifunction20. Let FG(ω) := infx∈G(ω) f(x, ω) and suppose that FG ∈ Z.
Then

ρ(FG) = inf
X∈M

{
ρ
(
FX

)
: X(ω) ∈ G(ω) a.e. ω ∈ Ω

}
. (70)

The above interchangeability formula can be either derived from (17) by
using the dual representation (10) or proved directly. Indeed, for any X ∈M
such that X(·) ∈ G(·) we have that FG(·) ≤ f(X(·), ·), and hence it follows by
assumption (A2) that ρ(FG) ≤ ρ(FX). This implies that ρ(FG) is less than
or equal to the right hand side of (70). Conversely, suppose for the moment
that the minimum of f(x, ω) over x ∈ G(ω) is attained for a.e. ω ∈ Ω, and
let X̄(·) ∈ arg minx∈G(·) f(x, ·) be a measurable selection such that X̄ ∈ M.
Then ρ(FG) = ρ(FX̄), and hence ρ(FG) is greater than or equal to the right
hand side of (70). It also follows then that

X̄ ∈ argmin
X∈M

{
ρ
(
FX

)
: X(ω) ∈ G(ω) a.e. ω ∈ Ω

}
. (71)

Such arguments can be also pushed through without assuming existence of
optimal solutions by considering ε-optimal solutions with arbitrary ε > 0. Let
us emphasize that the monotonicity assumption (A2) is the key condition for
(70) to hold.

By employing (70) with G(ω) ≡ S and denoting FS(ω) := infx∈S f(x, ω),
we obtain that the optimal value of problem (69) is equal to ρ(FS), provided

20 A multifunction G : Ω ⇒ Rn maps a point ω ∈ Ω into a set G(ω) ⊂ Rn. It is
said that G is closed valued if G(ω) is a closed subset of Rn for any ω ∈ Ω. It
is said that G is measurable if for any closed set A ⊂ Rn the inverse image set
G−1(A) := {ω ∈ Ω : G(ω) ∈ A} is F-measurable.
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that FS ∈ Z. The difference between the optimal values of problems (61) and
(69), that is

RVPIρ := inf
x∈S

ρ[F (x)]− ρ(FS), (72)

is called the Risk Value of Perfect Information. Since problem (69) is a relax-
ation of problem (61), we have that RVPIρ is nonnegative. It is also possible
to show that if ρ is real valued and satisfies conditions (A1)–(A4), and hence
representation (14) holds, then

inf
µ∈A

EVPIµ ≤ RVPIρ ≤ sup
µ∈A

EVPIµ, (73)

where
EVPIµ := infx∈S E

[
f(x, ω)]− Eµ

[
infx∈S f(x, ω)

]
(74)

is the Expected Value of Perfect Information associated with the probability
measure µ (cf., [23]).

9 Dualization of Nonanticipativity Constraints

In addition to the assumptions (i)–(iii) of section 7, we assume in this sec-
tion that Z := Lp(Ω,F , P ) and Z∗ := Lq(Ω,F , P ), and that M∗ :=
Lq(Ω,F , P,Rn) is the dual of the space M := Lp(Ω,F , P,Rn). Consider the
Lagrangian

L0(X,x, λ) := ρ(FX) + E[λT (X − x)], (X,x, λ) ∈M× Rn ×M∗,

associated with the nonanticipativity constraints of problem (68). Note that
problem (68) can be written in the following equivalent form

Min
X∈MS , x∈Rn

{
sup

λ∈M∗
L0(X,x, λ)

}
. (75)

By interchanging the ‘min’ and ‘max’ operators in (75) we obtain the (La-
grangian) dual of problem (68). Observe that infx∈Rn L0(X,x, λ) is equal to
−∞ if E[λ] 6= 0, and to L(X,λ) if E[λ] = 0, where

L(X,λ) := ρ(FX) + E[λTX].

Therefore the (Lagrangian) dual of problem (68) takes on the form

Max
λ∈M∗

{
inf

X∈MS

L(X,λ)
}

subject to E[λ] = 0. (76)

By the standard theory of Lagrangian duality we have that the optimal value
of the primal problem (68) is greater than or equal to the optimal value of the
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dual problem (76). Moreover, under appropriate regularity conditions, there
is no duality gap between problems (68) and (76), i.e., their optimal values are
equal to each other. In particular, if the Lagrangian L0(X,x, λ) possesses a
saddle point ((X̄, x̄), λ̄), then (X̄, x̄) and λ̄ are optimal solutions of problems
(68) and (76), respectively, and there is no duality gap between problems
(68) and (76). Noting that L0(X,x, λ) is linear in x and λ, we obtain that
((X̄, x̄), λ̄) is a saddle point iff the following conditions hold:

X̄(ω) = x̄, a.e. ω ∈ Ω, and E[λ̄] = 0, (77)
X̄ ∈ argmin

X∈MS

L(X, λ̄). (78)

Consider function Φ(X) := ρ(FX) : M → R. Because of convexity of F
and assumptions (A1) and (A2), this function is convex. Its subdifferential
∂Φ(X) ⊂ M∗ is defined in the usual way. By convexity, assuming that ρ is
continuous at Z̄ := F (x̄), we can write the following optimality conditions for
(78) to hold:

−λ̄ ∈ NS(x̄) + ∂Φ(X̄). (79)

Therefore we obtain that if problem (61) possesses an optimal solution x̄,
then the Lagrangian L0(X,x, λ) has a saddle point iff there exists λ̄ ∈ M∗

satisfying condition (79) and such that E[λ̄] = 0. We shall now show the
existence of such λ̄.

By formula (51) and the optimality condition

0 ∈ NS(x̄) + ∂φ(x̄),

we have that (under the assumptions of Theorem 4) there exists ζ ∈ ∂ρ(Z̄)
such that

0 ∈ NS(x̄) +
∫

Ω

ζ(ω)∂fω(x̄) dP (ω).

This means that there exists a measurable selection g(ω) ∈ ∂fω(x̄) such that

0 ∈ NS(x̄) +
∫

Ω

ζ(ω)g(ω) dP (ω). (80)

Let us now define

λ̄(ω) :=
∫

Ω

ζ(ω)g(ω) dP (ω)− ζ(ω)g(ω), ω ∈ Ω.

By construction, E[λ̄] = 0. Furthermore, since g(ω) ∈ ∂fω(x̄), we have that

fω(X(ω)) ≥ fω(x̄) + g(ω)T (X(ω)− x̄), ω ∈ Ω.

Because of ζ ∈ ∂ρ(Z̄), this implies that

ρ(FX) ≥ ρ(F (x̄)) +
∫

Ω

ζ(ω)g(ω)T (X(ω)− x̄) dP (ω).



26 Andrzej Ruszczyński and Alexander Shapiro

We obtain that ζg ∈ ∂Φ(X̄). This together with equation (80) imply that λ̄
satisfies condition (79).

We obtain the following result.

Proposition 5. Suppose that problem (61) possesses an optimal solution x̄
and the assumptions of Theorem 4 hold. Then there exists λ̄ such that
((X̄, x̄), λ̄), where X̄(ω) ≡ x̄, is a saddle point of the Lagrangian L0(X,x, λ),
and hence there is no duality gap between problems (61) and (76), and (X̄, x̄)
and λ̄ are optimal solutions of problems (68) and (76), respectively.

Let us return to the question of decomposing problem (78). Suppose that
ρ is real valued and conditions (A1)–(A3) are satisfied, and hence by Theorem
2 representation (13) holds. Then

inf
X∈MS

L(X,λ) = inf
X∈MS

sup
ζ∈P

{
E[ζFX + λTX]− ρ∗(ζ)

}
. (81)

Suppose, further, that the ‘inf’ and ‘sup’ operators at the right hand side of
the above equation (81) can be interchanged (note that the function inside
the parentheses in the right hand side of (81) is convex in X and concave in
ζ). Then

inf
X∈MS

L(X,λ) = sup
ζ∈P

inf
X∈MS

{
E[ζFX + λTX]− ρ∗(ζ)

}
= sup

ζ∈P

{
E
(

inf
x∈S

[ζ(ω)f(x, ω) + λ(ω)Tx]
)
− ρ∗(ζ)

}
,

where the last equality follows by the interchangeability principle. Therefore,
we obtain that, under the specified assumptions, the optimal value of the dual
problem (76) is equal to supE[λ]=0,ζ∈P D(λ, ζ), where

D(λ, ζ) := E
{

inf
x∈S

[ζ(ω)f(x, ω) + λ(ω)Tx]
}
− ρ∗(ζ). (82)

If, moreover, there is no duality gap between problems (61) and (76), then
the following duality relation holds

inf
x∈S

ρ[F (x)] = sup
λ∈M∗, ζ∈P

E[λ]=0

D(λ, ζ). (83)

Note the separable structure of the right hand side of (82). That is, in order
to calculate D(λ, ζ) one needs to solve the minimization problem inside the
parentheses at the right hand side of (82) separately for every ω ∈ Ω, and
then to take the expectation of the optimal values calculated.

10 Two-Stage Programming

Suppose now that the function f(x, ω) is given in the form
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f(x, ω) := inf
y∈G(x,ω)

g(x, y, ω), (84)

where g : Rn × Rm ×Ω → R is a random lower semicontinuous function and
G : Rn × Ω ⇒ Rm is a closed valued measurable multifunction. Note that it
follows that the optimal value function f(x, ω) is measurable, and moreover
is random lower semicontinuous provided that G(·, ω) are locally uniformly
bounded. We refer to the corresponding problem (61) as a two-stage program.
For example, if the set S is polyhedral,

g(x, y, ω) := cTx+ q(ω)T y, (85)
G(x, ω) :=

{
y : T (ω)x+W (ω)y = h(ω), y ≥ 0

}
, (86)

and ρ(Z) ≡ E[Z], then problem (61) becomes a two-stage linear stochastic
programming problem.

It is important to note that it is implicitly assumed here that for every x ∈
S the optimal value f(x, ω) is finite for all ω ∈ Ω. In particular, this requires
the second stage problem to be feasible (i.e., G(x, ω) 6= ∅) for every ω ∈ Ω.
That is, it requires the considered two-stage problem to have a relatively
complete recourse.

Suppose that ρ satisfies conditions (A1) and (A2). Then by the inter-
changeability formula (70) we have that, for a fixed x ∈ S,

ρ(F (x)) = inf
Y∈M

Y (·)∈G(x,·)

ρ [ΓY (x)] ,

where [ΓY (x)](ω) := g(x, Y (ω), ω) and M := Lp(Ω,F , P,Rm). Consequently
the first stage problem (61) is equivalent to the problem

Min
x∈S, Y ∈M

ρ [ΓY (x)] s.t. Y (ω) ∈ G(x, ω) a.e. ω ∈ Ω. (87)

Note again that the key property ensuring equivalence of problems (61) and
(87) is the monotonicity condition (A2).

If the set Ω = {ω1, . . . , ωK} is finite, we can identify space Lp(Ω,F , P,Rm)
with the finite dimensional space RmK of vectors Y = (y1, . . . , yK). In that
case ΓY (x) = (g(x, y1, ω1), . . . , g(x, yK , ωK)) ∈ RK and ρ is a function from
RK to R. Then problem (87) can be written in the form

Min
x∈Rn, Y ∈RmK

ρ [ΓY (x)] s.t. x ∈ S, yk ∈ G(x, ωk), k = 1, . . . ,K. (88)

In particular, if the function g and mapping G are given in the form (85) and
(86), respectively, then problem (88) takes the form

Min
x∈S, Y ∈RmK

ρ
(
cTx+ qT

1 y1, . . . , c
Tx+ qT

KyK

)
subject to Tkx+Wkyk = hk, yk ≥ 0, k = 1, . . . ,K,

(89)

where qk := q(ωk), Tk := T (ωk), Wk := W (ωk) and hk := h(ωk). If, further,
condition (A3) is satisfied, then
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ρ
(
cTx+ qT

1 y1, . . . , c
Tx+ qT

KyK

)
= cTx+ ρ

(
qT
1 y1, . . . , q

T
KyK

)
.

Assume now that condition (A4) also holds true. Then the set A of proba-
bility measures, constituting the domain of the conjugate function ρ∗, can be
identified with a certain convex closed subset of the simplex in RK :

A ⊂
{
p ∈ RK :

∑K
k=1 pk = 1, pk ≥ 0, k = 1, . . . ,K

}
.

In this case we can rewrite problem (89) as follows

Min
x∈S, Y ∈RmK

(
cTx+ max

p∈A

K∑
k=1

pkq
T
k yk

)
subject to Tkx+Wkyk = hk, yk ≥ 0, k = 1, . . . ,K.

In the following sections of this chapter we shall extend this observation to
multistage problems.

11 Conditional Risk Mappings

In order to construct dynamic models of risk we need to extend the concept
of a risk function. In multi-stage (dynamic) stochastic programming the main
theoretical tool is the concept of conditional expectation. That is, let (Ω,F2, P )
be a probability space, F1 be a sigma subalgebra of F2, i.e., F1 ⊂ F2, and Xi,
i = 1, 2, be spaces of all Fi-measurable and P -integrable functions Z : Ω → R.
The conditional expectation E[ · |F1] is defined as a mapping from X2 into X1

such that∫
A

E[Z|F1](ω) dP (ω) =
∫

A

Z(ω)dP (ω), for allA ∈ F1 and Z ∈ X2.

The approach that we adopt here is aimed at extending this concept to risk
mappings. Our presentation is based on [24]. Let (Ω,F2) be a measurable
space, F1 be a sigma subalgebra of F2, and Zi, i = 1, 2, be linear spaces of
Fi-measurable functions Z : Ω → R. We assume that Z1 ⊂ Z2 and each space
Zi is sufficiently large such that it includes all Fi-measurable step functions,
i.e., condition (C) is satisfied. Also we assume that with each Zi is paired a
dual space Z∗i of finite signed measures on (Ω,Fi). In applications we typically
use spaces Zi := Lp(Ω,Fi, P ) and Z∗i := Lq(Ω,Fi, P ) for some (reference)
probability measure P . At this moment, however, this is not essential and is
not assumed. Let ρ : Z2 → Z1 be a mapping, referred to as risk mapping.
Consider the following conditions21:
21 Recall that the relation Z1 � Z2 denotes the inequality Z1(ω) ≤ Z2(ω) for all
ω ∈ Ω.
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(M1) Convexity:

ρ(αZ1 + (1− α)Z2) � αρ(Z1) + (1− α)ρ(Z2)

for all Z1, Z2 ∈ Z2 and all α ∈ [0, 1].
(M2) Monotonicity: If Z1, Z2 ∈ Z2 and Z2 � Z1, then ρ(Z2) � ρ(Z1).
(M3) Translation Equivariance: If Y ∈ Z1 and Z ∈ Z2, then

ρ(Z + Y ) = ρ(Z) + Y.

(M4) Positive Homogeneity: If α > 0 and Z ∈ Z2, then ρ(αZ) = αρ(Z).

If the sigma algebra F1 is trivial, i.e., F1 = {∅, Ω}, then any F1-measurable
function is constant over Ω, and hence the space Z1 can be identified with R.
In that case ρmaps Z2 into the real line R, and conditions (M1)–(M4) coincide
with the respective conditions (A1)–(A4). In order to emphasize that the risk
mapping ρ is associated with spaces Z1 and Z2 we sometimes write it as
ρZ2|Z1 . We say that the risk mapping ρ is a conditional risk mapping if it
satisfies conditions (M1)–(M3).

Remark 1. Note that if Y ∈ Z1, then we have by condition (M3) that

ρ(Y ) = ρ(0 + Y ) = Y + ρ(0).

If, moreover, ρ is positively homogeneous (i.e., condition (M4) holds), then
ρ(0) = 0. Therefore, if conditions (M1)–(M4) hold, then ρ(Y ) = Y for any
Y ∈ Z1.

For ω ∈ Ω, we associate with a risk mapping ρ the function

ρω(Z) := [ρ(Z)](ω), Z ∈ Z2. (90)

Note that since it is assumed that all functions of the space Z1 are real valued,
it follows that ρω maps Z2 into R, i.e., ρω(·) is also real valued. Conditions
(M1), (M2) and (M4) simply mean that function ρω satisfies the respective
conditions (A1), (A2) and (A4) for every ω ∈ Ω. Condition (M3) implies (but
is not equivalent) condition (A3) for the functions ρω, ω ∈ Ω.

We say that the mapping ρ is lower semicontinuous if for every ω ∈ Ω
the corresponding function ρω is lower semicontinuous. With each function
ρω : Z2 → R is associated its conjugate function ρ∗ω : Z∗2 → R, defined in (7).
Note that although ρω is real valued, it can happen that ρ∗ω(µ) = +∞ for
some µ ∈ Z∗2 .

By PZ∗i we denote the set of all probability measures on (Ω,Fi) which are
in Z∗i . Moreover, with each ω ∈ Ω we associate a set of probability measures
PZ∗2 |F1(ω) ⊂ PZ∗2 formed by all ν ∈ PZ∗2 such that for every B ∈ F1 it holds
that

ν(B) =

{
1, if ω ∈ B,
0, if ω 6∈ B.

(91)
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Note that ω is fixed here and B varies in F1. Condition (91) simply means
that for every ω and every B ∈ F1 we know whether B happened or not. In
particular, if F1 = {∅, Ω}, then PZ∗2 |F1(ω) = PZ∗2 for all ω ∈ Ω.

We can now formulate the basic duality result for conditional risk map-
pings (cf., [24]) which can be viewed as an extension of Theorem 2. Recall
that 〈µ,Z〉 = Eµ[Z] for µ ∈ PZ∗i and Z ∈ Zi.

Theorem 5. Let ρ = ρZ2|Z1
be a lower semicontinuous conditional risk map-

ping satisfying conditions (M1)–(M3). Then for every ω ∈ Ω it holds that

ρω(Z) = sup
µ∈PZ∗2 |F1

(ω)

{
〈µ,Z〉 − ρ∗ω(µ)

}
, ∀Z ∈ Z2. (92)

Moreover, if ρ is positively homogeneous (i.e., condition (M4) holds), then for
every ω ∈ Ω there is a closed convex set A(ω) ⊂ PZ∗2 |F1(ω) such that

ρω(Z) = sup
µ∈A(ω)

〈µ,Z〉, ∀Z ∈ Z2. (93)

Conversely, suppose that a mapping ρ : Z2 → Z1 can be represented in
form (92) for some ρ∗ : Z∗2 × Ω → R. Then ρ is lower semicontinuous and
satisfies conditions (M1)–(M3).

Remark 2. As it was mentioned in the discussion following Theorem 1, if Z2

is a Banach lattice (e.g., Z2 := Lp(Ω,F2, P )) and ρ satisfies conditions (M1)
and (M2), then for any ω ∈ Ω the corresponding function ρω : Z2 → R
is continuous, and hence is lower semicontinuous. Therefore, in the case of
Z2 := Lp(Ω,F2, P ), the assumption of lower semicontinuity of ρ in the above
theorem holds true automatically.

Remark 3. The concept of conditional risk mappings is closely related to the
concept of conditional expectations. Let P be a probability measure on (Ω,F2)
and suppose that every Z ∈ Z2 is P -integrable. For Z ∈ Z2, define

ρ(Z) := E[Z|F1].

Suppose, further, that the space Z1 is large enough so that it contains E[Z|F1]
for all Z ∈ Z2. Then ρ : Z2 → Z1 is a well defined22 mapping. The conditional
expectation mapping ρ satisfies conditions (M1)–(M3) and is linear, and hence
is positively homogeneous. The representation (93) holds with A(ω) = {µ(ω)}
being a singleton and µω = µ(ω) being a probability measure on (Ω,F2) for
every ω ∈ Ω. Moreover, for any A ∈ F2 it holds that

µω(A) = E[1lA|F1](ω) = [P (A|F1)](ω).

That is, µ(·) is the conditional probability of P with respect to F1. Note that
E[Z|F1](ω) = Eµω [Z].
22 Note that the function E[Z|F1](·) is defined up to a set of P -measure zero, i.e.,

two versions of E[Z|F1](·) can be different on a set of P -measure zero.
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The family of conditional risk mappings is closed under the operation of
taking maximum. That is, let

{
ρν = ρν

Z2|Z1

}
ν∈I be a family of conditional

risk mappings satisfying assumptions (M1)–(M3). Suppose, further, that for
every Z ∈ Z2 the function

[ρ(Z)](·) := sup
ν∈I

[
ρν(Z)

]
(·) (94)

belongs to the space Z1, and hence ρ maps Z2 into Z1. It is then straightfor-
ward to verify that the max-function ρ also satisfies assumptions (M1)–(M3).
Moreover, if ρν , ν ∈ I, are lower semicontinuous and/or positively homoge-
neous, then ρ is also lower semicontinuous and/or positively homogeneous. In
particular, let ρν(Z) := Eν [Z|F1], ν ∈ I, where I is a family of probability
measures on (Ω,F2). Suppose that the corresponding max-function

[ρ(Z)](·) := sup
ν∈I

Eν [Z|F1](·) (95)

is well defined, i.e., ρ maps Z2 into Z1. Then ρ is a lower semicontinuous
positively homogeneous conditional risk mapping. It is possible to show that,
under certain regularity conditions, the converse is also true, i.e., a positively
homogeneous conditional risk mapping can be represented in form (95) (cf.,
[24]).

12 Multistage Optimization Problems

In this section we discuss optimization of risk measures in a dynamical setting.
We use the following framework. Let (Ω,F) be a measurable space and F1 ⊂
F2 ⊂ · · · ⊂ FT be a sequence of sigma algebras such that F1 = {∅, Ω} and
FT = F . Let Z1 ⊂ Z2 ⊂ · · · ⊂ ZT be a corresponding sequence of linear
spaces of Ft measurable functions, t = 1, . . . , T , and let ρZt|Zt−1 : Zt → Zt−1

be conditional risk mapings satisfying assumptions (M1)–(M3). Also consider
a sequence of functions Zt ∈ Zt, t = 1, . . . , T . By the definition of spaces Zt,
each function Zt : Ω → R is Ft-measurable, and since the sigma algebra F1

is trivial, Z1(ω) is constant and the space Z1 can be identified with R.
Consider the composite mappings23 ρZt−1|Zt−2 ◦ ρZt|Zt−1 . Let us observe

that conditions (M1)–(M4) are preserved by such compositions. That is, if con-
ditions (M1) and (M2) (and also (M3), (M4)) hold for mappings ρZt−1|Zt−2 and
ρZt|Zt−1 , then these conditions hold for their composition as well. Therefore
the assumption that the mappings ρZt|Zt−1 , t = 2, . . . , T , satisfy conditions
(M1)–(M3) implies that the risk functions

ρt := ρZ2|Z1 ◦ · · · ◦ ρZt|Zt−1 : Zt → R, t = 2, . . . , T,

23 The composite mapping ρZt−1|Zt−2 ◦ ρZt|Zt−1 : Zt → Zt−2 maps Zt ∈ Zt into

ρZt−1|Zt−2

[
ρZt|Zt−1(Zt)

]
.



32 Andrzej Ruszczyński and Alexander Shapiro

satisfy conditions (A1)–(A3). Moreover, consider the space Z := Z1×·· ·×ZT

and Z := (Z1, . . . , ZT ) ∈ Z. Define function ρ̃ : Z → R as follows:

ρ̃(Z) := Z1 + ρZ2|Z1

[
Z2 + ρZ3|Z2

(
Z3 + . . .

· · ·+ ρZT−1|ZT−2

[
ZT−1 + ρZT |ZT−1

(
ZT

)])]
.

(96)

By assumption (M3) we have

ZT−1 + ρZT |ZT−1

(
ZT

)
= ρZT |ZT−1

(
ZT−1 + ZT

)
,

and so on for t = T − 1, . . . , 2. Therefore we obtain that

ρ̃(Z) = ρT (Z1 + · · ·+ ZT ). (97)

Thus, condition (M3) allows us to switch between the cumulative formulation
(97) and nested formulation (96).

Remark 4. As it was mentioned above, we have that if ρZt−1|Zt−2 and ρZt|Zt−1

are positively homogeneous risk mappings, then the composite mapping
ρZt|Zt−2 := ρZt−1|Zt−2◦ρZt|Zt−1 is also a positively homogeneous risk mapping.
By virtue of Theorem 5, with these mappings are associated closed convex sets
At−1,t−2(ω), At,t−1(ω) and At,t−2(ω), depending on ω ∈ Ω, such that the cor-
responding representation (93) holds, provided that these mappings are lower
semicontinuous. It is possible to show (cf., [24]) that At,t−2(ω) is formed by
all measures µ ∈ Z∗t representable in the form

µ(A) =
∫

Ω

[µ2(ω̃)](A) dµ1(ω̃), A ∈ Ft, (98)

where µ1 ∈ At−1,t−2(ω) and µ2(·) ∈ At,t−1(·) is a weakly∗ Ft-measurable
selection. Unfortunately, this formula is not very constructive and in general
it could be quite difficult to calculate the dual representation of the composite
mapping explicitly.

Remark 5. Consider the composite function ρ̃(·). As we mentioned in Remark
4, it could be difficult to write it explicitly. The situation simplifies consider-
ably if we assume a certain type of “between stages independence” condition.
That is, suppose that Z ∈ Z is such that the functions

[
ρZt|Zt−1(Zt)

]
(ω),

t = T, . . . , 2, are constants, i.e., independent of ω. Then by condition (M3) we
have that

ρ̃(Z) = Z1 + ρZ2|Z1(Z2) + · · ·+ ρZT |ZT−1(ZT ). (99)

We discuss this further in Example 12 of the following section.

Now let us formulate a multistage optimization problem involving risk
mappings. Suppose that we are given functions ft : Rnt × Ω → R and mul-
tifunctions Gt : Rnt−1 × Ω ⇒ Rnt , t = 1, . . . , T . We assume that the func-
tions ft(xt, ω) are Ft-random lower semicontinuous24, and the multifunctions
24 Recall that it is said that function ft(xt, ω) is Ft-random lower semicontinuous

if its epigraphical mapping is closed valued and Ft-measurable.
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Gt(xt−1, ·) are closed valued and Ft-measurable. Note that since the sigma al-
gebra F1 is trivial, the function f1 : Rn1 → R does not depend on ω ∈ Ω, and
by the definition G1(ω) ≡ G1, whereG1 is a fixed closed subset of Rn1 . LetMt,
t = 1, . . . , T , be linear spaces of Ft-measurable functions Xt : Ω → Rnt , and
M := M1×· · ·×MT . With functions ft we associate mappings Ft : Mt → Zt

defined as follows

[Ft(Xt)](ω) := ft(Xt(ω), ω), Xt ∈Mt.

Since F1 is trivial, the space M1 can be identified with Rn1 , and hence
F1(X1) = f1(X1).

Consider the problem

Min
X∈M

ρT

(
F1(X1) + · · ·+ FT (XT )

)
,

s.t. Xt(ω) ∈ Gt(Xt−1(ω), ω), ω ∈ Ω, t = 1, . . . , T.
(100)

We refer to (100) as a multistage risk optimization problem. By (96) and (97)
we can write the equivalent nested formulation:

ρT

(
F1(X1) + · · ·+ FT (XT )

)
= F1(X1) + ρZ2|Z1

[
F2(X2)+

· · ·+ ρZT−1|ZT−2

[
FT−1(XT−1) + ρZT |ZT−1

(
FT (XT )

)]]
.

(101)

Since X ∈ M, it is assumed that Xt(ω) are Ft-measurable, and hence (100)
is adapted to the filtration Ft, t = 1, . . . , T .

As an example consider the following linear setting. Suppose that25

ft(xt, ω) := ct(ω) · xt,
Gt(xt−1, ω) :=

{
xt ∈ Rnt : Bt(ω)xt−1 +At(ω)xt = bt(ω), xt ≥ 0

}
,

(102)

where ct(ω), bt(ω) are vectors and Bt(ω), At(ω) are matrices of appropriate
dimensions. It is assumed that the corresponding vector-valued functions

ξt(ω) := (ct(ω), Bt(ω), At(ω), bt(ω)), t = 1, . . . , T,

are adapted to the filtration Ft, i.e., ξt(ω) is Ft-measurable, t = 1, . . . , T .
Then the nested formulation of the corresponding multistage risk optimization
problem can be written as follows

Min
x1∈G1

(
c1 · x1 + ρZ2|Z1

[
infx2∈G2(x1,ω)

(
c2(ω) · x2 + · · ·

+ρZT−1|ZT−2

[
infxT−1∈G2(xT−2,ω) cT−1(ω) · xT−1

+ρZT |ZT−1 [infxT∈GT (xT−1,ω) cT (ω) · xT ]
])])

.

(103)

The precise meaning of the nested formulation of problem (100) is explained by
dynamic programming equations as follows. Define the (cost-to-go) function
25 In order to avoid notational confusion we denote here by a · b the standard scalar

product of two vectors a, b ∈ Rn.
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QT (xT−1, ω) :=
[
ρZT |ZT−1

(
VT (xT−1)

)]
(ω), (104)

where
[VT (xT−1)](ω) := inf

xT∈GT (xT−1,ω)
fT (xT , ω). (105)

And so on for t = T − 1, . . . , 2,

Qt(xt−1, ω) :=
[
ρZt|Zt−1

(
Vt(xt−1)

)]
(ω), (106)

where

[Vt(xt−1)
]
(ω) := inf

xt∈Gt(xt−1,ω)

{
ft(xt, ω) +Qt+1(xt, ω)

}
. (107)

Of course, equations (106) and (107) can be combined into one equation:

[Vt(xt−1)
]
(ω) = inf

xt∈Gt(xt−1,ω)

{
ft(xt, ω) +

[
ρZt+1|Zt

(
Vt+1(xt)

)]
(ω)
}
. (108)

Finally, at the first stage we solve the problem

inf
x1∈G1

Q2(x1). (109)

The optimal value and the set of optimal solutions of problem (109) provide
the optimal value and the first-stage set of optimal solutions of the multistage
program (100).

It should be mentioned that for the dynamic programming equations (108)
to be well defined we need to ensure that Vt(xt−1) ∈ Zt for every considered
xt−1. Note that since the function fT (xt, ω) is FT -random lower semicon-
tinuous and GT (xT−1, ·) is closed valued and FT -measurable, it follows that
[VT (xT−1)](·) is FT -measurable (e.g., [19, Theorem 14.37]). Still one has to
verify that VT (xT−1) ∈ ZT in order for QT (xT−1, ω) to be well defined. It will
follow then that QT (xT−1, ·) is Ft−1-measurable. In order to continue the pro-
cess for t = T − 1, it should be verified further that the function QT (xT−1, ω)
is FT−1-random lower semicontinuous. And so on for t = T − 2, . . . , 2. Fi-
nally, for t = 2 the function Q2(x1, ·) is F1-measurable, and hence does not
depend on ω. Let us emphasize that the key assumption ensuring equivalence
of the two formulations of the risk optimization problem is the monotonicity
condition (M2) (cf., [24]).

Remark 6. In some cases the function [VT (·)](ω), where VT is defined in (105),
is convex for all ω ∈ Ω. This happens, for example, if fT (·, ω) is convex for all
ω ∈ Ω, and GT is defined by linear constraints of form (102). If [VT (·)](ω) is
convex, then conditions (M1) and (M2) ensure that the corresponding function
QT (·, ω) is also convex. Similarly, the convexity property propagates to the
functions Qt(·, ω), t = T − 1, . . . , 2. In particular, in the linear case, where ft

and Gt are defined in (102), the functions Qt(·, ω), t = T, . . . , 2, are convex
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for all ω ∈ Ω. In convex cases it makes sense to talk about subdifferentials26

∂Qt(xt−1, ω). In principle, these subdifferentials can be written in a recursive
form by using equations (106) and (107) and the analysis of Section 6.

13 Examples of Risk Mappings and Multistage Problems

In this section we adopt the framework of Sections 11 and 12 with Zt :=
Lp(Ω,Ft, P ) and Z∗t := Lq(Ω,Ft, P ), t = 1, . . . , T . As before, unless stated
otherwise, all expectations and probability statements are made with respect
to the probability measure P . As it was already mentioned in Section 11, the
conditional expectation

ρZt|Zt−1(Zt) := E[Zt|Ft−1]

provides a (relatively simple) example of a conditional risk mapping. For that
choice of conditional risk mappings, we have that(

ρZt−1|Zt−2 ◦ ρZt|Zt−1

)
(Zt) = E[Zt|Ft−2],

and ρT (·) = E[ · ]. In that case (101) becomes the standard formulation of a
multistage stochastic programming problem and (104)–(109) represent well
known dynamic programming equations.

Now let us discuss analogues of some examples of risk functions considered
Section 4.

Example 12. Consider the following extension of the mean-upper-semideviation
risk function (of order p ∈ [1,+∞)) discussed in Example 3. For Zt ∈ Zt and
ct ≥ 0 define

ρZt|Zt−1(Zt) := E[Zt|Ft−1] + ct σp(Zt|Ft−1), (110)

where

σp(Zt|Ft−1) :=
(
E
[[
Zt − E[Zt|Ft−1]

]p
+

∣∣Ft−1

])1/p

. (111)

If the sigma algebra Ft−1 is trivial, then E[ · |Ft−1] = E[ · ] and σp(Zt|Ft−1)
becomes the upper semideviation of Zt of order p. For a while we keep t fixed
and we use the notation ρ for the above mapping ρZt|Zt−1 .

By using the analysis of Example 3 it is possible to show that ρ satisfies
conditions (M1),(M3) and (M4), and also condition (M2), provided that ct ∈
[0, 1]. Indeed, clearly ρ is positively homogeneous, i.e., condition (M4) holds.
Condition (M3) can be verified directly. That is, if Y ∈ Zt−1 and Zt ∈ Zt,
then
26 These subdifferentials are taken with respect to xt−1 for a fixed value ω ∈ Ω.
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ρ(Zt + Y ) = E[Zt + Y |Ft−1] + ct

(
E
[(
Zt + Y − E[Zt + Y |Ft−1]

)p
+

∣∣Ft−1

])1/p

= E[Zt|Ft−1] + Y + ct

(
E
[(
Zt − E[Zt|Ft−1]

)p
+

∣∣Ft−1

])1/p

= ρ(Zt) + Y.

For ω ∈ Ω consider the function ρω(·) = [ρ(·)](ω). Consider also the condi-
tional probability of P with respect to Ft−1, denoted µ(ω) or µω (see Re-
mark 3). Recall that E[Zt|Ft−1](ω) = Eµω [Zt], and hence

ρω(Zt) = Eµω
[Zt] + ct

(
Eµω

[(
Zt − Eµω [Zt]

)p
+

])1/p

. (112)

For a fixed ω the function ρω coincides with the risk function analyzed in
Example 3 with µω playing the role of the corresponding probability measure.
Consequently, ρω is convex, i.e., condition (M1) holds, and condition (M2)
follows, provided that ct ∈ [0, 1].

We have that µω ∈ PZ∗t |Ft−1(ω) and its conditional probability density
gω = dµω/dP has the following properties: gω ∈ Z∗t , gω ≥ 0, for any A ∈ Ft,
the function ω 7→

∫
A
gω(ω̃) dP (ω̃) is Ft−1-measurable and, moreover, for any

B ∈ Ft−1 it holds that∫
B

∫
A

gω(ω̃) dP (ω̃) dP (ω) = P (A ∩B).

By the analysis of Example 3 it follows that the representation

ρω(Zt) = sup
ζt∈At(ω)

E[ζtZt], (113)

holds with

At(ω) =
{
ζ ′t ∈ Z∗t : ζ ′t = gω

(
1 + ζt − E[gωζt]

)
, ‖ζt‖q ≤ ct, ζt � 0

}
. (114)

In order to write the corresponding multistage problem in form (100) we need
to describe the composite function ρ̃ defined in (96). In general a description of
ρ̃ is quite messy. Let us consider the following two particular cases. Suppose
that p = 1 and all ct are zero except one, say cT . That is, ρZt|Zt−1(·) :=
E[ · |Ft−1], for t = 2, . . . , T − 1. In that case

ρZT−1|ZT−2

[
ZT−1 + ρZT |ZT−1(ZT )

]
= E

[
ZT−1 + ρZT |ZT−1(ZT )

∣∣FT−2

]
= E

[
ZT−1 + ZT

∣∣FT−2

]
+ cT E

[(
ZT − E[ZT |FT−1]

)
+

∣∣FT−2

]
,

and
ρ̃(Z) = E

[
Z1 + · · ·+ ZT + cT

[
ZT − E[ZT |FT−1]

]
+

]
. (115)

Another case where calculations are simplified considerably is under the “be-
tween stages independence” condition (compare with Remark 5). That is,
suppose that the objective functions ft and the constraint mappings Gt,
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t = 2, . . . , T , are given in the form ft(xt, ξt(ω)) and Gt(xt−1, ξt(ω)), re-
spectively, where ξt(ω) are random vectors defined on a probability space
(Ω,F , P ). That is the case, for example, if ft and Gt are defined in the form
(102). With some abuse of notation we simply write ft(xt, ξt) and Gt(xt−1, ξt)
for the corresponding random functions and mappings. It will be clear from
the context when ξt is viewed as a random vector and when as its particular
realization.

Assume that sigma algebra Ft is generated by (ξ1(ω), . . . , ξt(ω)), t =
1, . . . , T . Assume also that ξ1 is not random, and hence the sigma algebra
F1 is trivial. Assume further the following condition, referred to as the be-
tween stages independence condition:

(I) For every t ∈ {2, . . . , T}, random vector ξt is (stochastically) independent
of (ξ1, . . . , ξt−1).

Then the minimum in the right hand side of (105) is a function of xT−1 and
ξT , and hence is independent of the random vector (ξ1, . . . , ξT−1). It follows
then that the corresponding cost-to-go function QT (xT−1), defined in (105),
is independent of ω. By continuing this process backwards we obtain that,
under the between stages independence condition, the cost-to-go functions
are independent of ω and the corresponding dynamic programming equations
can be written in the form

Qt(xt−1) = ρZt|Zt−1(Vt(xt−1)), (116)

Vt(xt−1)(ξt) = inf
xt∈Gt(xt−1,ξt)

{
ft(xt, ξt) +Qt+1(xt)

}
, (117)

with

ρZt|Zt−1(Vt(xt−1)) = E
[
Vt(xt−1)

]
+ ct

(
E
[(
Vt(xt−1)− E[Vt(xt−1)]

)p
+

])1/p

.

Also in that case the optimization in problem (100) should be performed over
functions Xt(ξt) and (compare with (99))

ρT (F1(X1) + F2(X2) + · · ·+ FT (XT )) =
F1(X1) + ρZ2|Z1(F2(X2)) + · · ·+ ρZT |ZT−1(FT (XT )). (118)

Example 13. Consider the framework of Example 6. Let v : R → R be a
convex real valued function such that the function z + v(z) is monotonically
nondecreasing on R. Define[

ρZt|Zt−1(Zt)
]
(ω) := inf

Y ∈Zt−1
E
[
Zt + v(Zt − Y )|Ft−1

]
(ω). (119)

Of course, a certain care should be exercised in verification that the right
hand side of equation (119) gives a well defined mapping. For a while we will
keep t fixed and use notation ρ = ρZt|Zt−1 . Since the function (Zt, Y ) 7→
E
[
Zt + v(Zt − Y )|Ft−1

]
(ω) is convex, it follows that ρω(·) is convex, i.e., the
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condition (M1) holds. Since z + v(z) is nondecreasing, condition (M2) holds
as well. It is also straightforward to verify that condition (M3) holds here
by making change of variables Zt 7→ Zt − Y . Let us calculate the conjugate
function ρ∗ω. In a way similar to (30) we have for ζt ∈ Z∗t ,

ρ∗ω(ζt) = sup
Zt∈Zt

{
E[ζtZt]− ρω(Zt)

}
= sup

Zt∈Zt

{
E[ζtZt] + supY ∈Zt−1

E
[
− Zt − v(Zt − Y )|Ft−1

]
(ω)
}

= sup
Zt∈Zt

{
E[ζt(Zt + Y )] + supY ∈Zt−1

E
[
− Zt − Y − v(Zt)|Ft−1

]
(ω)
}
,

and hence

ρ∗ω(ζt) = sup
Zt∈Zt

{
E[ζtZt]− E

[
Zt + v(Zt)|Ft−1

]
(ω)
}

+ sup
Y ∈Zt−1

E
[
Y (ζt − 1)|Ft−1

]
(ω). (120)

Since Y ∈ Zt−1, and hence Y (ω) is Ft−1-measurable, we have

E
[
Y (ζt − 1)|Ft−1

]
(ω) = Y (ω)

(
E[ζt|Ft−1](ω)− 1

)
.

Therefore, the second maximum in the right hand side of (120) is equal to
zero if E[ζt|Ft−1](ω) = 1, and to +∞ otherwise. It follows that the domain of
ρ∗ω is included (this inclusion can be strict) in the set

A∗t (ω) :=
{
ζt ∈ Z∗t : E[ζt|Ft−1](ω) = 1

}
. (121)

Note that for any B ∈ Ft−1 and ζt ∈ A∗t (ω) it holds that
∫

B
ζt dP is equal

to 1 if ω ∈ B, and to 0 if ω 6∈ B, i.e., A∗t (ω) is a subset of PZ∗t |Ft−1(ω).
Consider the conditional probability of P with respect to Ft−1, denoted

µ(ω) or µω (see Remark 3). We have that µω ∈ PZ∗t |Ft−1(ω) and let gω =
dµω/dP be its conditional probability density (properties of gω were discussed
in the previous example). Recall that E[Zt|Ft−1](ω) = Eµω

[Zt], and hence

E
[
Zt + v(Zt)|Ft−1

]
(ω) = E[gω(Zt + v(Zt))].

By using this and since by the interchangeability formula the maximum over
Zt at the right hand side of (120) can be taken inside the integral, we obtain

ρ∗ω(ζt) =
{

E
[
supzt∈R

{
(ζt − gω)zt − gωv(zt)

}]
, if ζt ∈ A∗t (ω),

+∞, otherwise. (122)

By Theorem 5 we have then that

ρω(Zt) = sup
ζt∈A∗t (ω)

{
E[ζtZt]− ρ∗ω(ζt)

}
. (123)

In particular, let Zt := L1(Ω,Ft, P ), Z∗t := L∞(Ω,Ft, P ) and take
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v(z) := ε1[−z]+ + ε2[z]+,

where ε1 ∈ [0, 1] and ε2 ≥ 0 (compare with Example 7). This function v(z)
is convex positively homogeneous, and the corresponding function z + v(z) is
nondecreasing. The maximum inside the expectation in the right hand side
of (122) is equal to zero if −ε1gω ≤ ζt − gω ≤ gωε2, and to +∞ otherwise. It
follows that the corresponding risk mapping ρ satisfies conditions (M1)–(M4),
and

ρω(Zt) = sup
ζt∈At(ω)

E[ζtZt], (124)

where η1 := 1− ε1, η2 := 1 + ε2,

At(ω) =
{
ζt ∈ Z∗t :

η1gω(ω̃) ≤ ζt(ω̃) ≤ η2gω(ω̃), a.e. ω̃ ∈ Ω,
E[ζt|Ft−1](ω) = 1

}
. (125)

The between stages independence condition can be introduced here in a
way similar to the previous example. Under this condition formulas (116),
(117) and (118) will hold here as well.
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