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Abstract

Since 80’, fault tree theory has known a great development in industrial sys-
tems’ sector. Its …rst goal is to estimate and model the probability and events’
combination which could lead a given system to failure. Later static and dynamic
studies arise such as Dugan, Venkataraman & Gulati (1997), Gulati & Dugan
(1997) and Ngom et al. (1999) for example. Improvements are also proposed by
Anand & Somani (1998), Zhu et al. (2001) and Reory & Andrews (2003) among
others. Since credit risk valuation attempts to quantify …rms’ default risk, we
propose to apply one alternative approach of fault tree, or equivalently, reliabil-
ity study to assess …rms’ default risk. We set a very simple framework and use
French …rms’ bankruptcy statistics to quantify default probabilities. From these
empirical default probabilities and under the assumption that the lifetime process
follows an exponential law with a constant parameter, we estimate this constant
parameter for French sectors. Each parameter’s estimation corresponds to the
related hazard rate on the time horizon under consideration. Checking for the
consistency of our constant parameter’s assumption, we compute the monthly
implied parameters related to our exponential law setting. Results show a time
varying behavior for those parameters. Indeed, each exponential law’s parameter
is a convex decreasing function of time. Whatever, such an approach may be
useful to give a statistical benchmark for common credit risk models’ improve-
ment.

Keywords : credit risk, default probability, failure rate, fault tree, reliability,
survival.
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JEL codes : C1, D8.

1 Introduction
Risk represents a measure of danger which is expressed as a function of both

an undesirable event’s realization (i.e., probability, frequency) and some mea-
sure of this event’s e¤ects or consequences. In our study, we de…ne a danger as a
situation whose consequences may harm society (i.e., production loss, …nancial
loss). To assess a danger’s importance, critical levels are established through
a risk scale. Such a risk scale is computed starting from the studied event’s
realization frequency and e¤ects. Reliability allows to study the required con-
ditions leading to some given undesirable event. Speci…cally, fault tree theory
represents the events’ combinations leading to this event’s realization through
a deduction process. This theory takes place in an operational approach of risk
since its goal is to reduce potential risks in case of dangerous or disastrous sit-
uations, and to establish or develop compensation and recovery policies in case
of default.
Reliability leads to study systems which are subject to some physical pro-

cess such as (de)fault or repairing among others. Such an analysis assumes
the availability of both qualitative (i.e., working state, default triggering) and
quantitative (i.e., failure rate, repair rate) informations about the studied sys-
tem. Moreover, we could consider simple systems (i.e., systems with a single
component) or complex systems (i.e., multi-components systems).
In this paper, we consider only single component systems and we assume that

only sudden and complete defaults could occur. Two main families of reliabil-
ity theory could be distinguished : minimal sets models and stochastic process
models1. Fault tree theory belongs to the …rst family and is mainly designed
to study complex systems. Barlow & Proschan (1975) introduce this approach
through the notion of ‘event tree’. The study of a system’s reliability requires
successively a tree building, a qualitative analysis and a quantitative study. The
…rst step’s goal is to represent any cause explaining the system’s default. The
qualitative analysis studies any events’ combination corresponding to a minimal
set2 , leading to default. Di¤erently, the quantitative analysis …rst achieves val-
uation of the tree top-event3 probability, this undesirable event corresponding
to default. Second, this analysis assesses the in‡uence and importance of the
events entering the combination which leads to our system’s default. Notice
that fault tree theory could be also used while dividing our system’s state space
in working states and non working states for any system modeled through some

1For further information, the reader could refer to Limnios (1991) book. This author
realizes an exhaustive presentation of fault tree theory.

2A minimal set is the smallest events’ combination whose simultaneous realization leads to
the undesirable event’s realization (i.e., default). Namely, minimal sets are signi…cant defaults’
combinations. Fault trees’ reduction through computation of minimal sets allows to identify
critical ways leading to a given system’s default.

3 In a fault tree, the top-event represents the origin (i.e., the top) of the tree which is default
state, or equivalently, the worst possible event.

2



stochastic process. Such an approach is realized, among others, through credit
risk structural approach valuation like Merton (1974) or reduced form approach
like Jarrow & Turnbull (1995).
Consequently, following our remark, we could apply fault tree theory’s al-

ternative approach to assess credit risk. We therefore attempt to apply fault
tree theory (mostly used in industry) to assess any …rm’s default probability
in a very simple case. We consider that only one event generates the …rm’s
default, namely our undesirable top-event (without focus on default’s severity
in our study).
Our paper is organized as follows. Section 2 introduces the theoretical frame-

work and makes a parallel with credit risk valuation. It also gives some key in-
sights to …t reality while modeling a …rm’s default process. Section 3 attempts to
achieve an empirical application of fault tree theory. Finally, section 4 exposes
concluding remarks and further required extensions.

2 Fault tree theory
In this section, we make a parallel between the two existing approaches

of fault tree theory while assessing a …rm’s default probability. One of this
approach has been commonly used in credit risk literature : structural models
and reduced form ones. In such models and therefore one fault tree theory’s
approach, working state and non working state are modeled through a stochastic
process. We propose here to apply the alternative approach.

2.1 Assumptions and framework

In structural models, bankruptcy occurs when a …rm assets value crosses a
given threshold while decreasing. Such a barrier often corresponds to the book
value of the …rm’s debt4 (see for example, Black & Cox [1976] or Longsta¤
& Schwartz [1995]). Indeed, a …rm goes bankrupt when it becomes unable to
honour its contractual debt commitments and therefore generates losses for its
creditors. In reduced form models also called intensity models, the default state
is modeled by a bankruptcy jump process which, following a jump, switches from
a non default state to a default state5 (see Jarrow, Lando & Turnbull [1997] for
example). Sometimes default is not complete since some given recovery rate is
guaranted, depending on each debt contract’s terms.
We encompass the two standviews of structural and reduced form approaches

while considering the following elementary tree :

4This is equivalent to observe if the …rm’s solvency ratio crosses down a unit barrier.
5The probability that a jump occurs over a given time set is driven by a default intensity, or

equivalently, a hazard rate process. The interested reader could refer to the book of Ammann
(2001) for a detailed description of each type of credit risk models.

3



Default event Firm's bankruptcy

Elementary default tree.

When a default event occurs, the …rm goes bankrupt which means that its
lifetime is forced to end. Speci…cally, we consider one source of economic losses
risk which may be harmful for any …rm, namely default risk. Our framework
requires to make the following assumptions about any …rm’s default :

² We consider a unique component system corresponding to the …rm.

² We are in a continuous time case.
² Any default event is related to …rm’s debt outstandings.
² Default occurs suddenly and completely at any time6, which means that
our system is non repairable here.

² Before default, the …rm is always in a working state.

Indeed, any default event represents a bankruptcy triggering and signals the
…rm’s imminent death. Namely, default is not reversible and occurs immediately
after failure so that the default state is an absorbing state. We characterize such
a situation underneath through the plot of the related function structure. The
function structure ª is equal to one as long as the …rm is in a working state,
and it switches to zero when the …rm defaults.

0 Time (t)

ψ

1

td
td + ∆t

Default process.
6Clearly, default may occur at any time between a debt’s issue date and its related maturity

date. When this event occurs, default is complete which means that the …rm ends its activity
and is bound to undergo a liquidation. There may be a possible recovery or not for creditors
after default. Since we are not interested in recovery conditions here, we make no assumption
about a possible recovery rate.
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where

² Time 0 is the starting date of observation;
² td is the time when a default event occurs;
² td +¢t corresponds to liquidation date;
² ¢t is a negligible time subset.

Therefore, our default study, or equivalently, our fault tree analysis, leads us
to concentrate on the …rm’s lifetime X. Our …rm’s lifetime is then the heart of
our reliability study while considering our …rm’s default probability in a simple
framework.

2.2 Some basic notions

In this subsection, we introduce some basic notions related to our reliability
framework and …rm’s default study.
Let our …rm’s lifetime X be a random variable corresponding to the time

interval during which the …rm is non defaulting, or equivalently, in a working
state. Speci…cally, for a …rm issuing a debt of maturity T at time 0 or having
debt outstandings at this initial time 0, X represents the random time (starting
from the observation date 0) at the end of which the …rm may default or switch
to a non working state7. Considering our …rm’s default probability8 pt at time
t is then equivalent to consider the probability that its lifetime ends between 0
and t. Namely, we consider :

pt = F (t) = P (X · t) (1)

where

² t is the current date;
² F (:) is the cumulative distribution function associated to X and supposed
to be absolutely continuous;

² with conditions9 : F (0) = 0 and F (+1) = 1.
7Notice that we consider binary systems here since we only have a two states space : default

(i.e., working) and non default (i.e., non working). Moreover, we do not focus on the …rm’s
debt structure here since its debt outstandings (i.e., debt’s existence) generate a default risk
(i.e., …rm’s death risk).

8This is the probability that the …rm defaults between times 0 and t, or equivalently, the
probability that a default event occurs between times 0 and t.

9 Initially, the probability of default, for example at the issue date of debt, is zero since
the …rm is in a working state (i.e., non default state) at this time. And the probability of
default when time tends towards in…nity is naturally equal to one. Indeed, the longer the time
horizon, the riskier the …rm’s situation and surrounding uncertainty (i.e., the higher default
risk).
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Therefore, the distribution function or density f (:) of the …rm’s lifetime may
be expressed as follows for each t ¸ 0 :

f (t) =
dF (t)

dt
= lim

¢t!0+

P (t < X · t+¢t)
¢t

(2)

Notice that the event ft < X · t+¢tg means that the …rm’s default event
occurs at time t and therefore the …rm defaults between dates t and t + ¢t.
Moreover, we are able to de…ne the related mean time to failure which corre-
sponds to the expected …rm’s lifetime. Namely, mean time to failure takes the
form :

E [X] =

Z +1

0

s f (s) ds (3)

Analogously to its lifetime, we could consider the …rm’s survival function
R (:) which is a complementary notion. The …rm’s survival or our system’s
reliability is de…ned by the next relation for each t ¸ 0 :

R (t) = 1¡ F (t) = P (X > t) =

Z +1

t

f (s) ds (4)

with R (0) = 1 and R (+1) = 0. Such a concept10 leads to the notion of hazard
rate also called (de)fault rate in our case. The instantaneous hazard rate ¸ (t)
is expressed in the following way for each t ¸ 0 :

¸ (t) = lim
¢t!0+

P (t < X · t+¢t j X > t)

¢t
(5)

with ¸ (t) ¸ 0 and R +1
0

¸ (s) ds = +1. Then, the cumulative hazard rate on
the time interval [0; t] is H (t) =

R t
0
¸ (s) ds whereas the total hazard rate during

the …rm’s lifetime equals H =
RX
0
¸ (s) ds where H follows an exponential law

with a parameter equal to one.

Given the previous basic notions, we could introduce some fundamental re-
lation satis…ed by reliability, namely11 :

dR (t)

dt
+ ¸ (t) R (t) = 0 (6)

10Analogously to relation (3), we could de…ne the mean remaining survival. Refer to ap-
pendix for details.
11Default process satis…es a Kolmogorov type equation. For further details, the reader is

invited to consult the teaching manual of Roussignol & Filipo (2002) for example.
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under limit conditions R (0) = 1 and R (+1) = 0. Resolution of relation (6)
leads to the next expression for the survival function12 :

R (t) = exp

·
¡
Z t

0

¸ (s) ds

¸
= e¡H(t) (7)

From a practical point of view, reliability requires to postulate some law for
our …rm’s survival, or at least to know its distribution13. Four probability laws
are commonly used, in this context, to characterize our …rm’s survival time. The
most used is the exponential law since it characterizes the markov property of a
system’s stochastic behavior (i.e., without memory). The lognormal law is also
used for two reasons. In one hand, it models repairing times in a good manner
and, in an other hand, it characterizes uncertainty’s propagation in fault trees.
Finally, Weibull and Gamma distributions are also used due to the variety of
probability distribution’s shapes they encompass through their parameters.

First of all, systems’ reliability and therefore …rms’ reliability requires data
related to components or …rms. Namely, we have to know default and repairing
probabilities or failure and repairing rates for example. Such data are obtained
through empirical observations or simulations eventually (i.e., to deduce esti-
mations illustrating the empirical behavior of …rms). At least, historical data
and observations are required to proceed to our default study along with fault
tree theory. Of course, such data could be treated parametrically or non para-
metrically to get the required risk measures (i.e., default probabilities here).

3 Empirical application
To adapt the alternative approach of fault tree theory in order to study

…rms’ default, we have to analyze some historical data. Since we are interested
in …rms’ default and we consider the simplest framework, we need data allowing
us to compute empirical default probabilities. For this purpose, we will focus
on French …rms’ bankruptcy statistics.

12We give a complementary basic notion known as maintainability in the appendix.
13 Indeed, the probability that the top-event occurs is driven by the probability that the

basic event occurs in our elementary tree framework. In some simple systems, there may
be many basic events. We …nd systems where one component’s default generates the other
components’ defaults and therefore the system’s failure. There are also simple systems where
all components’ simultaneous defaults generate the system’s default. Whatever the considered
case, quantifying default requires knowledge about the probability (or probabilities) of basic
event’s (or events’) realization, or equivalently, their statistical laws. Recall that reliability is
a static failure analysis in its simplest form and also in our elementary framework.
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3.1 Data

We consider monthly data issued by the INSEE14 (i.e., the French National
Institute of Statistics and Economic Studies) and running from january 1990 to
december 1999, namely nine years (i.e., 120 observations per series). We con-
sider the total15 number of French corporate bankruptcy cases and numbers of
coporate failures for 16 economic sectors. The sectors16 we study are private
services (SP), food processing sector (IA), hotels, catering and cafés industry
(HR), business services (SE), real estate (IM), sport industry (TT), other spe-
cialized retail trade (DS), specialized food retail trade (DA), non-specialized
retail trade (DN), non-food wholesale trade (GN), food wholesale trade (GA),
construction and civil engineering (BP), intermediate goods (BI), capital goods
(BE), consumer goods (BC), and …nally motor trade and repairing industry
(AU). We also consider the total number of existing …rms and numbers of exist-
ing …rms for each sector above-mentioned. Such statistics allow us to compute
empirical default probabilities p̂t (for all …rms or for a given sector) as follows
for t 2 f1; :::; 120g :

p̂t =
number of failures
number of …rms

(8)

where the number of …rms is the sum of defaulting and non defaulting …rms.
Recall that failure is envisioned without considering potential losses’ severity
and …rms’ debt structure in our study.
However, empirical default probabilities computed here exhibit aberrant

(i.e., abnormal) points showing a sharp decrease. This type of decrease takes
place mostly in school holiday times depending on the considered year. Those
date e¤ects or calendar anomalies come from the fact that, during holiday,
French Courts dealing with trade disputes highly slow down their activity, and
only deal with urgent receivership proceedings. To solve such anomalies, we re-
alize a smoothing of default probabilities while achieving a linear interpolation
on anomalies’ occuring times. Namely, abnormal empirical default probabilities
are smoothed while replacing each of them with the arithmetic mean of default
probabilities of the previous and following months respectively17.

After our smoothing, we get the following descriptive statistics about default
probabilities with ‘TOTAL’ refering to the general empirical default probability
all sectors included. We present our results in the following table.
14Although INSEE data consider all French …rms, 98% of these data are related to small

and medium enterprises (i.e., SMEs). On the other hand, they concern bankruptcy …llings
tried by the Court dealing with trade disputes.
15All existing sectors included.
16 Sectors are de…ned according to the French nomenclature.
17Times where linear interpolation takes place are the following ones : april, august, decem-

ber 1990; may, august, december 1991; may, august, december 1992; may, august, december
1993; april, august, december 1994; april, august, december 1995; may, august, november
1996; april, august, september 1997; may, september, december 1998; and september, novem-
ber 1999.
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Sector Mean Standard
deviation Skewness Excess

kurtosis
AU 0.027216 0.003511 -0.045516 -0.234631
BC 0.040650 0.007373 -0.000103 -0.290836
BE 0.035770 0.009847 0.458533 -0.215878
BI 0.031221 0.008797 0.402617 -0.381186
BP 0.035815 0.004825 -0.081663 -0.014400
DA 0.021921 0.003146 -0.166066 -0.332933
DN 0.026944 0.006208 -0.192109 -0.409625
DS 0.022448 0.003530 -0.324960 -0.316261
GA 0.031041 0.005001 0.178000 0.475443
GN 0.035126 0.005170 -0.205242 -0.464660
HR 0.029702 0.004410 -0.071837 -0.393484
IA 0.020638 0.003384 -0.182819 -0.290739
IM 0.040416 0.011411 -0.064042 -0.728700
SE 0.016459 0.002506 -0.082994 -0.414606
SP 0.013838 0.002041 0.134186 -0.286063
Total 0.026314 0.003544 -0.200222 -0.117115
TT 0.026249 0.004252 0.238633 -0.243542

We notice that TOTAL gives some economic trend for failures all sectors
included. Among all these average default probabilities on our time horizon,
SP sector exhibits the lowest default probability whereas BC sector exhibits
the highest one. Moreover, we are able to compute corresponding empirical
survival probabilities R̂ (t) since R̂ (t) = 1¡ p̂t. Such survival functions exhibit
the characteristics listed in the table underneath.

Sector Mean Standard
deviation Skewness Excess

kurtosis
AU 0.972784 0.003511 0.045516 -0.234631
BC 0.959350 0.007373 0.000103 -0.290836
BE 0.964230 0.009847 -0.458533 -0.215878
BI 0.968779 0.008797 -0.402617 -0.381186
BP 0.964185 0.004825 0.081663 -0.014400
DA 0.978079 0.003146 0.166066 -0.332933
DN 0.973056 0.006208 0.192109 -0.409625
DS 0.977552 0.003530 0.324960 -0.316261
GA 0.968959 0.005001 -0.178000 0.475443
GN 0.964874 0.005170 0.205242 -0.464660
HR 0.970298 0.004410 0.071837 -0.393484
IA 0.979362 0.003384 0.182819 -0.290739
IM 0.959584 0.011411 0.064042 -0.728700
SE 0.983541 0.002506 0.082994 -0.414606
SP 0.986162 0.002041 -0.134186 -0.286063
Total 0.973686 0.003544 0.200222 -0.117115
TT 0.973751 0.004252 -0.238633 -0.243542
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As expected, BC sector has the lowest survival probability whereas SP sector
has the highest average survival probability.

In the following of the paper, we apply fault tree theory (simple frame-
work) to characterize evolutions of default probabilities. Such an application is
achieved after choosing a distribution law for each survival.

3.2 Study

Our preliminary analysis of the previous subsection allows us to exhibit
some features of French failures. In our elementary setting, the empirical default
probabilities computed characterize the evolutions of survival times for each
sector and for the whole sectors. Therefore, to realize our simple reliability
study, we have to choose some distribution function characterizing survivals’
behaviors.

Recall that Jarrow & Turnbull (1995) use a constant parameter exponential
law to describe the evolution of any instant of default (i.e., a constant hazard
rate). Such a choice leads those authors to get a Markovian survival probabil-
ity. Therefore, analogously to Jarrow & Turnbull (1995), we choose a constant
parameter exponential law to characterize the survival time associated to each
default probability as introduced before. Such an assumption implies that the
state space process related to any …rm’s situation (i.e., default or non default)
is a Markov chain.

Let the survival time X follow an exponential law with a constant parameter
¸. Then, its distribution function f , cumulative distribution function F and
related survival probability R have the following expressions18 :

f (t) = ¸ e¡¸t1ft¸0g (9)

F (t) = 1¡ e¡¸t (10)

R (t) = e¡¸t (11)

Moreover, relation (6) implies that 8t ¸ 0; ¸ (t) = ¸. The hazard rate or failure
rate is then constant. Finally, the expected survival time, or equivalently, the
mean time to failure writes:

E [X] =
1

¸
(12)

18Computation details are given in the appendix.
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And, we therefore have V ar (X) = 1
¸2
.

We have a complete characterization of survivals’ distribution which has now
to be estimated. For this purpose, we introduce the random variable Zt =
¡ ln (1¡ pt) and consequently Ẑt = ¡ ln (1¡ p̂t). According to our framework
and relation (11), we have Zt = ¸t for t 2 f1; :::; 120g. Consequently, to in-
duce an estimation of ¸ parameter on our time horizon, we achieve the linear
regression19 of Zt on time t. Unfortunately, our results show the existence of
a strong positive autocorrelation between residuals of each regression. Indeed,
related Durbin Watson statistics range from 0:389288 to 1:494238, and clearly
lie under the critical value of 1:65. Such a stylized fact was expected since we
realized a smoothing of our default probabilities to correct for calendar anoma-
lies. Consequently, our previous regressions are biased. In this case, one way
to whiten our regressions’ residuals is to use the Cochrane-Orcutt methodology.
But, such a methodology presents an important drawback since the estimated
parameter may correspond to a local minimum of the related regression errors
instead of a global minimum20.

We propose to solve this problem while minimizing the following sum of
squared errors relative to ¸ parameter for each sector under consideration and
for all of them:

min
¸

(
120X
t=1

³
Ẑt ¡ ¸t

´2)
(13)

We achieve this non linear minimization with a quasi-Newton numerical method
using a Davidon-Fletcher-Powell type algorithm21. On the time horizon ranging
from january 1990 to december 1999, the ¸ parameter estimation’s results we
get are displayed in the table underneath for each sector and for all of them.
Since we work with monthly data, we estimate monthly lambda parameters. To
get a global view, annual lambda parameters are also given in the appendix.

19We would like to mention that, after achieving a Phillips-Perron test with a constant
term, we …nd that all empirical default probabilities are stationary. Although statistics are
not displayed, they remain available upon request. To sum up, default probabilities are
stationary at a one percent level except for the four following sectors. For BC and IM sectors,
default probabilities are stationary at a …ve percent level whereas default probabilities of BE
and BI sectors are stationary at a ten percent level.
20 See book of Bourbonnais (2000) for example.
21The reader could refer to the book of Press et al. (1989) for explanations.
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Sector ¸
Kolmogorov-Smirnov

Statistic
AU 0.000335 0.362697
BC 0.000489 0.458514
BE 0.000421 0.501945
BI 0.000359 0.428752
BP 0.000438 0.416937
DA 0.000274 0.284780
DN 0.000307 0.445304
DS 0.000268 0.282832
GA 0.000378 0.394610
GN 0.000451 0.344028
HR 0.000376 0.286436
IA 0.000247 0.276315
IM 0.000529 0.423077
SE 0.000207 0.166206
SP 0.000177 0.159042
Total 0.000324 0.275844
TT 0.000318 0.328772

Notice that SP sector exhibits the lowest hazard rate whereas IM sector is
characterized by the highest failure rate.

We also display in the previous table the Kolmogorov-Smirnov statistic22

to test the assumption H0 of adequacy of survivals’ empirical distributions to
related theoretical distributions. At a …ve percent test level, the critical values
of Kolmogorov-Smirnov statistic are 1:340000 and 1:346000 for observations
numbers of 100 and 200 respectively. After achieving a linear interpolation,
we get a critical value of 1:341200 at a …ve percent level for 120 observations.
Since all Kolmogorov-Smirnov statistic values are less than this critical value, we
conclude that all survivals’ exponential distributions are well speci…ed at a 95%
con…dence level. Therefore, relation (12) allows to induce estimations about
expected survival times23 for each sector and for all of them. In the same way,
we are able to compute easily the probability that a …rm survives in the n coming
months given that it has not defaulted before december 1999 or equivalently t =
120. Such a conditional probability writes P (X > t+ n j X > t) = P (X>t+n)

P (X>t) =

e¡¸n. We compute this conditional survival probability on coming one year, two
years and …ve years horizons for each available sector and for all sectors. Results
are displayed underneath.

22Explanations about this test are provided in the appendix.
23Results are not given but remain available upon request. The expected survival time

ranges from approximatively 157 years for IM sector to 470 years for SP sector.
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Sector 1 year 2 years 5 years
AU 0.995982 0.991981 0.980073
BC 0.994145 0.988324 0.971065
BE 0.994965 0.989955 0.975075
BI 0.995697 0.991413 0.978672
BP 0.994756 0.989539 0.974053
DA 0.996723 0.993457 0.983722
DN 0.996322 0.992657 0.981743
DS 0.996793 0.993597 0.984069
GA 0.995478 0.990977 0.977594
GN 0.994602 0.989233 0.973300
HR 0.995496 0.991012 0.977682
IA 0.997042 0.994094 0.985299
IM 0.993670 0.987381 0.968749
SE 0.997519 0.995044 0.987656
SP 0.997873 0.995751 0.989412
Total 0.996120 0.992256 0.980752
TT 0.996195 0.992405 0.981120

The longer the time horizon, the smaller the conditional survival probability
on this horizon24. Furthermore, SP sector exhibits the highest conditional sur-
vival probabilities whereas such conditional survival probabilities are the lowest
for IM sector.

For further investigation, we try to check if assuming a constant ¸ parameter
is a convenient assumption. We investigate our concern while inverting relation
(11) according to lambda. Such a process allows us to get implied monthly
lambda parameters as follows25:

^̧
t =

¡ ln
³
R̂ (t)

´
t

(14)

We plot these implied values of lambda parameter in graphs exposed under-
neath.
24The complementary conditional default probabilities are computed in the appendix.
25We could have used this methodology to estimate our ¸ parameter as the arithmetic

mean of monthly implied parameters. Namely, we could have set ¸ = 1
120

P120
t=1

^̧
t. But, the

Kolmogorov-Smirnov statistics we get in this case are on average 3:804727 times higher than
those we get while achieving a ‘quadratic’ estimation of ¸. This suggests that this implied
parameter-based methodology is less appropriate for ¸ estimation.
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Roughly speaking, we notice a time varying behavior of the lambda parame-
ter which suggests to model it through some convex decreasing function of time
for example. We also could get such a time varying pro…le while modeling the
survival’s evolution using at least two constant parameters type distributions.
First, we could use a mixture of exponential laws. Second, since an exponential
law is equivalent to a gamma law with a shape parameter equal to one, we could
charaterize the survival’s distribution through some gamma law with a negative
shape parameter26.

26For further details, the reader is invited to consult the book of Gouriéroux (1989).
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4 Conclusion
In a risk reducing standview, fault tree theory allows to identify causes

and failure events leading to an undesirable event’s realization. We apply this
technique to assess credit risk. Speci…cally, reliability is used to assess possible
corporate death in an elementary framework.
In a …rst step, we introduce this risk theory and explain the way to …t it

to credit risk assessment. We make a brief comparison with current credit risk
models which consist of stochastic modeling of default. Namely, data required
for fault tree modeling are at least default probabilities in our case, or equiva-
lently, failure rates. In a second step, we apply this theory in a simple framework
to French bankruptcy statistics.
Having numbers of failures and existing (i.e., alive at the beginning of each

elementary time subset) …rms for 16 sectors and for all sectors included, we com-
pute related empirical default probabilities on a monthly horizon ranging from
january 1990 to december 1999. Since default probabilities are linked to …rms’
survival times, we are able to characterize bankruptcy process for each sector or
all sectors included. For this purpose, we assume that each survival time follows
a constant parameter exponential law. This distribution assumption has some
interesting and simple implications for theoretical expressions of default proba-
bility, survival function and expected survival time. Mainly, the induced hazard
rate process is constant and the state space process characterizing any …rm’s
evolution is a Markov chain. Starting from empirical default probabilities, these
simple speci…cations allow to get estimations of ¸ parameter for each sector and
for all sectors over the studied time horizon. A basic linear regression method
is su¢cient. Moreover, we compute related conditional survival probabilities for
some coming time horizons (i.e., one year, two years and …ve years). Finally,
we investigate the coherency of a constant ¸ parameter while inverting the sur-
vival probabilitiy as a function of this parameter. We induce therefore monthly
implied ¸ parameters which exhibit a time varying behavior. Accordingly, the
hazard rate process should be a convex decreasing function of time.
But, such a simple framework exhibits two main shortcomings in so far as

fault trees take into account all default causes without taking into account their
severity, and allow only to make a static analysis. This last drawback may be
solved through graphs theory (i.e., Markov graphs or stochastic Petri networks
for example) to take into account systems’ dynamics. Indeed, a qualitative risk
analysis requires successively to identify any danger, classify risks starting from
their severity, and develop some compensation or recovery policy to avoid any
disaster (i.e., failure). Namely, this is equivalent to study the impact of a failure
on any …rm’s reliability or lifetime, and establish some default risk scale through
time.
Moreover, the simple framework we introduced could be clearly improved

to …t reality. First, the …rm should be represented by some multicomponents
or multistates system whose components could fail separately or exhibit some
failure dependence. For example, components could be …nancial ratios such
as solvency ratio in order to characterize the …rm’s …nancial state. In such a
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case, the top-event is driven by basic and intermediate states whose realization
probability’s knowledge is required. Fault trees would therefore allow to iden-
tify the sets of combinations of components’ default events leading to corporate
bankruptcy and potentially to liquidation. Importance and severity study of
each fatal events’ combination would then allow to take into account several
failure modes. Second, multistates representation would lead to compute tran-
sition probabilities from one state to another, and also invariant probabilities
analogously to credit rating transitions. Such a representation would lead to
another characterization of rating migration risk. Third, we should introduce
some failure delay system’s representation to encompass the potential delay
which could pass between default event’s realization and …rm’s death when sig-
ni…cant. Finally, along with fault trees, the study of common cause failures
would allow to analyze simultaneous failures of several systems (i.e., …rms here)
due to a given cause such as economic and …nancial settings for example. This
theoretical feature would allow to set a study framework for default risk at a
systemic level. Furthermore, such a process would allow to quantify a risk of
multiple or chain coporate failures, or equivalently, systemic credit risk. This
concern is highly important in some economic or …nancial crisis state.

5 Appendix
In this section, we give some details inherent to reliability and explain some

of our computations.

5.1 Mean remaining survival

The mean remaining survival L (t) of a system at time t given that this one
did not default between times 0 and t has the following expression :

L (t) = E [X ¡ t j X > t] =

Z +1

t

R (s)

R (t)
ds (15)

which satis…es the next properties :

L (t) ¸ 0 and L (0) = E [X] (16)

dL (t)

dt
¸ ¡1 and

Z +1

0

ds

L (s)
= +1 (17)

For further details, the reader could refer to the book of Limnios (1991).

5.2 Maintainability

Maintainability corresponds to the probability that a system is repaired
(i.e., our …rm goes on working and existing after any failure) between times
0 and t given the system has switched to a non working state (i.e., the …rm
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defaulted) at time 0. In this case, the non working state has to be de…ned for
…rms since they lie in a failure state according to the default event but they do
not end their activity (i.e., some short term insolvency situation for example).
Let Y be the random variable representing the time during which our …rm

remains non working (i.e., in a default state) after a default event and let M (:)
and m (:) be its continuous cumulative distribution function (supposed to be
absolutely continuous) and distribution function respectively. We could write
M (t) = P (Y · t) and m (t) = dM(t)

dt with condition M (0) = 0. This last
condition means that we are not able to repair our system instantaneously and
a delay is required to make the …rm switch to a non default state. Time has
to elapse. Therefore, the related repairing rate is expressed as follows for each
t ¸ 0 :

± (t) = lim
¢t!0+

P (t < Y · t+¢t j Y > t)
¢t

(18)

Notice that when default is complete in so far as it will lead to …rm’s liquidation,
we have M (t) = 0 as an extreme scenario, or at least M (t) very low and near
to zero. The mean time to repair is then de…ned as E [Y ] =

R +1
0

sm (s) ds.
Like the survival function, we have some fundamental relation for maintain-

ability such as :

dM (t)

dt
+ ± (t) [1¡M (t)] = 0 (19)

under the condition previously mentioned. This leads to the next expression for
maintainability for each t ¸ 0 :

M (t) = 1¡ exp
·
¡
Z t

0

± (s) ds

¸
(20)

We represent such a situation through the graph underneath.

td td
'0 td + ∆t

t

∆t1 ∆t2Y

Maintainability representation.

where

² Time 0 is the starting date of observation;
² td and t0d are times when a default event occurs;
² td +¢t corresponds to the time when solvency is recovered;
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² ¢t1 and ¢t2 are negligible time subsets.

We are then able to characterize the possibility that a …rm survives after un-
dergoing a default, which takes into account the fact that default does not neces-
sarily lead to liquidation. We may then consider some more realistic features of
default environment since Y could represent some regulatory observation delay
stated by a regulatory entity such as a Federal (Disrict) Court27 for example.
When Y is zero, our …rm goes bankrupt ‘instantaneously’ and dies. When Y is
non zero, at the end of Y , whether the …rm dies or it goes on doing its business
(given some conditions and recovery measures). For example, assuming that
our …rm’s insolvency is the default event, after a default, a …rm could undergo
a reoganization and then recover solvency. We could therefore encompass some
arbitrage between the …rm’s economic value and its liquidation value while con-
sidering creditors and shareholders viewpoints, and also potential economic and
social bene…ts related to the …rm’s remaining goodwill.

5.3 Exponential distribution features

In this subsection, we explain some implications related to a constant pa-
rameter exponential law to describe the survival time’s X evolution. Recall that
f (t) = ¸ e¡¸t1ft¸0g with ¸ > 0. Therefore, the related cumulative distribution
function is :

F (t) =

Z t

0

¸e¡¸sds =
£¡e¡¸s¤t

0
= 1¡ e¡¸t (21)

Therfore, the related survival function is for each t ¸ 0 :
R (t) = 1¡ F (t) = e¡¸t (22)

Moreover, according to relation (6), we have
dR(t)
dt

R(t) = ¡¸ (t) with dR(t)
dt =

¡¸ e¡¸t which implies that 8t ¸ 0; ¸ (t) = ¸. And the expected survival time
writes :

E [X] =

Z +1

0

s¸e¡¸sds =
Z +1

0

u (s) v
0
(s) ds (23)

with u (s) = s and v
0
(s) = ¸e¡¸s. And we have then u

0
(s) = 1 and v (s) =

¡e¡¸s. Using an integration by part methology, we could write :

E [X] = [u (s) v (s)]+10 ¡
Z +1

0

u
0
(s) v (s) ds (24)

=
£¡se¡¸s¤+1

0
+

Z +1

0

e¡¸sds

27 In France, the regulatory entity handling legal failure framework is the Court dealing with
trade disputes. After …lling for bankruptcy, any …rm is placed under a receiver’s monitoring
and given an observation delay at the end of which the …rm may be liquidated or not.
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We have to underline two points here. First, the exponential function’s limit
development of …rst order around zero allows us to write that lim

s¡!0+
e¡¸s =

lim
s¡!0+

(1¡ ¸s) and therefore lim
s¡!0+

se¡¸s = lim
s¡!0+

s (1¡ ¸s) = 0. Second, since
we know that lim

s¡!+1
ln(s)
s = 0 and we have se¡¸s = eln(s)¡¸s = es(

ln(s)
s ¡¸), we

deduce the following limit :

lim
s¡!+1 se

¡¸s = lim
s¡!+1 e

s( ln(s)s ¡¸) = lim
s¡!+1 e

¡¸s = 0 (25)

Consequently, the expected survival takes the …nal form :

E [X] =

Z +1

0

e¡¸sds =
·
e¡¸s

¡¸
¸+1
0

=
1

¸
(26)

In the same way, we could de…ne the probability that a …rm survives in the n
coming months given that this one did not default during the t previous months.
Namely, this conditional survival probability writes :

P (X > t+ n j X > t) =
P (X > t+ n)

P (X > t)
=
R (t+ n)

R (t)
(27)

=
e¡¸(t+n)

e¡¸t
= e¡¸n

The conditional survival probability is then only depending on the coming
running time horizon which is considered. Namely, it depends on the n coming
months and corresponds to the failure accounting factor on the length of the
time subset [t; t+ n].

5.4 Annual lambda parameters

In this subsection, we compute annualized failure rates given estimated
monthly failure rates (i.e., estimated lambda parameters) for each sector and
for all of them. Extrapolating monthly failure rates to an annual frequency
allows to get an average annual trend for failures among sectors. Results are
displayed in the table below.
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Sector ¸
AU 0.004033
BC 0.005888
BE 0.005060
BI 0.004320
BP 0.005271
DA 0.003287
DN 0.003691
DS 0.003217
GA 0.004542
GN 0.005426
HR 0.004524
IA 0.002966
IM 0.006368
SE 0.002487
SP 0.002131
Total 0.003894
TT 0.003819

The highest annual failure rate is achieved for IM sector with ¸ = 0:636836%
while the lowest annual failure rate is achieved for SP sector with ¸ = 0:213093%.

5.5 Kolmogorov-Smirnov test

We explain brie‡y how one distribution’s adequacy test28 called Kolmogorov-
Smirnov test runs. Let fX1; ¢ ¢ ¢ ;Xng be a sample of n observations of some
random variable X. Let F̂ (:) be the empirical cumulative distribution func-
tion of this random variable and assume that F (:) is the theoretical cumulative
distribution function chosen to model the random variable’s evolution.
The Kolmogorov-Smirnov test studies the maximal distance between theo-

retical and empirical distributions. Indeed, this test builds the following dis-

tance statistic dn =
p
n max
i2f1;:::;ng

¯̄̄
F̂ (Xi)¡ F (Xi)

¯̄̄
to test in a bilateral way the

assumption:

H0 : adequacy of F̂ (:) to F (:) : (28)

Given some level ® (i.e., a con…dence level of 1 ¡ ®), we accept H0 if the test
statistic dn is less than its corresponding critical value d (n;®) in the Kolmogorov
table. If this is not the case, we reject the adequacy assumption H0.

28We could also have used the independency Khi square test. But such a test requires to
de…ne a set of classes which seems to be a tricky task in so far as we do not know what are
the optimal classes given the problem under consideration.
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5.6 Conditional default probabilities

In this subsection, we compute conditional default probabilities for each
sector and for all of them. The probability that a …rm defaults in the n coming
years given that it has not defaulted before december 1999 (i.e., time t) writes:

P (X < t+ n j X > t) = 1¡ P (X > t+ n)

P (X > t)
= 1¡ e¡¸n (29)

Indeed, we have the following relation:

P (X < t+ n j X > t) =
P (t < X < t+ n)

P (X > t)
(30)

=
P (t < X < t+ n) + P (X > t+ n)¡ P (X > t+ n)

P (X > t)

=
P (X > t)¡ P (X > t+ n)

P (X > t)

and, consequently:

P (X < t+ n j X > t) = 1¡ P (X > t+ n)

P (X > t)
(31)

Related results are displayed in percent in the table below.

Sector 1 year 2 years 5 years
AU 0.401765 0.801915 1.992746
BC 0.585510 1.167592 2.893468
BE 0.503539 1.004542 2.492466
BI 0.430256 0.858661 2.132849
BP 0.524417 1.046085 2.594729
DA 0.327710 0.654346 1.627846
DN 0.367843 0.734332 1.825733
DS 0.320674 0.640320 1.593120
GA 0.452184 0.902323 2.240565
GN 0.539798 1.076682 2.670008
HR 0.450405 0.898781 2.231829
IA 0.295756 0.590636 1.470056
IM 0.632973 1.261939 3.125051
SE 0.248101 0.495587 1.234366
SP 0.212659 0.424866 1.058783
Total 0.387957 0.774409 1.924792
TT 0.380489 0.759531 1.888025
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The longer the time horizon, the bigger the conditional default probability
on this horizon. Furthermore, IM sector exhibits the highest conditional default
probabilities whereas such conditional default probabilities are the lowest for
SP sector.
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