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1 Introduction

1.1 Overview

Computability analysis of social choice is concerned with algorithmic properties of
social decision-making. It aims at identifying which social choice rules can be al-
gorithmically executed, and at determining how complex such rules are. This paper
reconsiders Arrow’s Impossibility Theorem [3] from a viewpoint of computability
analysis of social choice.

Arrow’s Impossibility Theorem states that there is no social welfare function
that satisfies the Unanimity, the Independence and the Nondictatorship axioms.
Here, asocial welfare functionmaps each profile of individual preferences into a
“social preference.” The preferences are defined on a set of at least three (social)
alternatives and there are no restrictions on the preferences beyond the usual order-
ing properties.Unanimitysays that when all individuals prefer an alternativex to
another alternativey, then society must “prefer”x to y. Independencemeans that
the only information relevant for determining “social preference” on a setfx;yg is
the individual preferences on the set.Nondictatorshiprules out an individual such
that whenever he prefersx to y, society must “prefer”x to y. Henceforth, I apply
the word “preferences” and related expressions to society as well as to individuals
without the quotation marks.

In this paper, I intend to study feasibility of centralized decision-making such
as voting. I will interpret feasibility of executing a social choice rule by a cen-
tral authority as algorithmic computability of the rule. This is in effect the same
as regarding such an authority as an algorithm (or a digital computer) that com-
putes the rule. Support for this comes from several sources. First, well-known
schemes (for variable, finite number of voters), such as the simple majority rule,
the unanimity rule, and the Condorcet and the Borda rules, are all algorithms. Non-
computable social choice rules cannot be carried out systematically no matter how
well-specified. (Kelly [10] gives examples of noncomputable social choice rules.)
Second, the use of the language by social choice theorists suggests that the social
welfare functions they consider are in fact computable ones. For example, Arrow
defined a social welfare function to be a “process or rule” which, for each profile
of individual preferences, “states” a corresponding social preference [3, p. 23], and
called the function a “procedure” [3, p. 2]. Indeed, he later wrote [4, p. S398] in a
slightly different context, “The next step in analysis, I would conjecture, is a more
consistent assumption of computability in the formulation of economic hypothe-
ses.” Finally, there is a normative reason for supporting algorithmic computability.
Algorithmic social choice rules specify the procedures in such a way that the same
results will be obtained irrespective of who carries out a computation. They leave
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no room for personal judgments by the authority. In this sense, computability of
social choice rules formalizes the notion of “due process.”

However, social choice theory has not traditionally paid much attention to for-
mal problems of computability. This is understandable, for computability of social
welfare functions is automatically satisfied by assuming a fixed, finite set of alter-
natives and a fixed, finite set of individuals—a common assumption in the litera-
ture. Computability is satisfied since, in such cases, a finite table can be constructed
expressing the function.

As a modification to Arrow’s setting, I discard the finite framework. Fish-
burn [7] and Kirman and Sondermann [11] showed that when there are infinitely
many individuals in a society, there is a social welfare function satisfying the ax-
ioms of Unanimity, Independence, and Nondictatorship. Armstrong [1, 2] proved
that this result is unaffected even when profiles are restricted to those measurable
with respect to a Boolean algebra of coalitions. Here, a profile is said to bemeasur-
ablewith respect to a Boolean algebra if for all alternativesx andy, the coalition
that prefersx to y belongs to it.

I apply Armstrong’s framework to a particular set of individuals and a partic-
ular Boolean algebra of coalitions suitable for considering computability, namely
the setN of nonnegative integers and the Boolean algebra of all recursive coali-
tions. Therecursivecoalitions are the coalitions for which there is an algorithm to
decide their membership. The domain restriction thus requires the members of a
coalition to be algorithmically identifiable. We can name recursive coalitions using
the Gödel numbers (codes) of these algorithms. We can then describe each measur-
able profile restricted on a setfx;yg by giving names to (i) the coalition that prefers
x to y, (ii) the coalition that prefersy to x, and (iii) the coalition that is indifferent
betweenx andy.

Suppose that a social welfare function for a denumerable (i.e., countably infi-
nite) society satisfies Independence. The social welfare function satisfiesPairwise
Computabilityif for each pair(x;y) of alternatives, there exists an algorithm that
can decide, for each measurable profile of individual preferences and for each de-
scription of the profile onfx;yg, whether the society prefersx to y, from the de-
scription. I prove (Theorem 1) that if a social welfare function satisfying Unanimity
and Independence also satisfies Pairwise Computability, then it must be dictatorial.
A more desirable notion of computability (“Strong Pairwise Computability”) for
a social welfare function satisfying Independencecould be introduced [15]; how-
ever, the negative result of Theorem 1 implies that strengthening the condition of
computability is not very interesting. On the other hand, the proof of Proposi-
tion 1 shows through examples that while there are some dictatorial social welfare
functions that satisfy Pairwise Computability, not all do.

Pairwise Computability requires neither a finite set of alternatives, nor com-
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putable individual preferences. Also, the information necessary for computation is
readily obtainable, being a description of a profile only on a setfx;yg. Theorem 1
severely limits on practical grounds Fishburn’s resolution, re-establishing Arrow’s
negative result even for denumerable societies.

Since speaking of infinitely many people involved in social choice might seem
unrealistic, I discuss a natural example of a denumerable “society” derived from
only finitely many people. The example does not assume people extending into
the indefinite future. I postpone a concrete example to Section 2.1.3 and give an
abstract version here.

Consider a social choice problem in which there are finitely many people and
there is uncertainty expressed by a denumerable set of states of the world. Assume
that it cannot be known which state will be realized by the time social choice is
made. Then, it is reasonable to suppose that people express their preferences con-
ditioned on states: “personj prefers social alternativex toy if the state iss”—which
is denoted byx�s

j y.
A denumerable “society” is derived from the society of people facing uncer-

tainty as follows. Regardperson j’s preference�s
j in states as the preference

�( j;s) of the newly namedindividual ( j;s). Since there are only finitely many peo-
ple and denumerably many states, we have a denumerable set of individuals( j;s).
This derivation of an infinite “society” as well as the domain restrictions might
seem artificial. However, they are in fact natural and even have some advantages.
First, inter-state comparisons are avoided, in the same sense that inter-personal
comparisons are avoided in Arrow’s setting. Second, in this formulation, people
can express their preferences without estimating probabilities. Third, the domain
restriction requires, for example, that each person can identify (in a finite way) the
setfs : x�s

j yg of states in which he prefersx to y, for eachx andy. This is a
natural epistemological condition since, instead of having to make infinitely many
statements (whetherx�s

j y for infinitely manys) without any recognizable pattern
among the statements, he does have a finite rule that can make those infinitely many
statements.

Hayek [9] points out that economic data, or knowledge, is dispersed: assuming
data to be given to a single mind is a trivialization of social problems. This paper
gives an example of a “trivialized” problem that is impossible to solve nevertheless
once feasibility of information processing is formally required. In this sense, the
paper strengthens Hayek’s thesis about the difficulty of informationally centralized
decision-making.

The negative result (Theorem 1) suggests relaxing the notion of Pairwise Com-
putability to see if the resulting condition can be met by a social welfare function
satisfying Arrow’s axioms. A positive result, using oracle Turing programs, is dis-
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cussed in my dissertation [15]. (In a paper [17] attempting to avoid the Gibbard-
Satterthwaite impossibility, I use the essence of the proof of the positive result to
construct a coalitionally strategyproof social choice function.)

The paper is organized as follows. The rest of the Introduction surveys the
related literature. The main results are stated in Section 3, which is preceded by
informal discussion in Section 2. Section 3 assumes a few terminologies in Ap-
pendix B on recursion theory (the study of algorithms). Appendix A discusses two
notions of computability not covered in the main body. The proofs of the main
results are given in Appendix C, where the knowledge of recursion theory covered
in Appendix B is assumed.

1.2 Related Literature

The modern paradigm of social choice theory began with Arrow’s Impossibility
Theorem [3] in 1951. Surveys (e.g., Sen [19]) of later developments in social
choice reveal that issues relating to computability in social choice have largely
been ignored. This lack of interest is surprising, given that social choice theory
has had a significant impact on philosophy and economics [8]: Philosophers have
been concerned about algorithmic computability in their study of logical reasoning
processes; economists have witnessed [12] the socialist calculation debate among
Mises, Hayek [9], Lange, and Lerner.

Algorithmic (Turing) computability has been studied in the related areas by
Canning [5] in game theory, by Spear [21] on learning rational expectations, by
Wong [22] in general equilibrium theory, and by Lewis [13] in individual choice
theory.

In social choice theory, computability is studied from the recursion theoretic
point of view by the following authors.

Kelly [10] considers computability of variable-voter social choice rules. He is
interested in finding anoncomputable rule satisfying a subset of axioms character-
izing the simple majority rule (which is computable), since he wants to see which
properties of the rule lead to computability.

The paper most closely related with the present study is Lewis [14], which is
motivated by constructive mathematics. It discusses Arrow’s Theorem “within the
recursion theoretic setting.” Although the set of individuals he considers is the
same as mine (the set of natural numbers), our frameworks are different:(i) the
set of alternatives in Lewis is a countable set that contains at least three elements,
while my set of alternatives can be uncountable; (ii) his set of preferences is count-
able, while mine can be uncountable; (iii) Lewis restricts profiles to be recursive
(i.e., there is an algorithm to determine for each individual and each pair of al-
ternatives, his preference on the pair)—such profiles form a strict subclass of my
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REC-measurable profiles to be defined later; (iv) Lewis assumes that coalitions are
recursively enumerable, while in my framework each coalition that prefers one al-
ternative to another is recursive. Lewis states that in his “recursive” setting, there
is a “dictator.” But, in his theorems, he is using the word “dictator” in a much
weaker sense than mine: in essence, he claims that foreachprofile, there is a “dic-
tator” whose preference determines the social preference for that particular profile;
by contrast, I prove existence of a single dictator for all profiles. (Although he
presents the result without referring to the Unanimity or the Independence axioms,
I suppose it is an oversight.)

2 Discussion

This Section is an informal exposition of the framework and the results in Section 3.
In the rest of the paper, I informally use the wordperson(people) to refer to

a person in the ordinary sense, a human being. The wordindividual is used in a
technical sense.An individual may be either a person or a name representing a
person at a certain date or state.

2.1 Domain Restrictions

In this Section, I introduce for a social welfare function a domain suitable for con-
sideration of computability issues in the setting of Arrow’s Theorem. The treatment
is based on Armstrong’s extensions [1] of Arrow’s Impossibility Theorem [3] and
of Fishburn’s resolution [7].

2.1.1 Naming Individuals

Since Arrow’s impossibility persists for any finite set of individuals (a corollary
of Proposition 2 in Appendix C), I consider as a setI of (the names of)individu-
als one of the simplest infinite sets, namely the setN of nonnegative integers. A
denumerable set of individuals arises naturally in social choice.

For example, a denumerable set of individuals may arise when a national gov-
ernment is evaluating alternative policies that can affect future generations. We
can, for example, assign a name to each person as follows: if a person is a fe-
male, she is given a name starting from a nonzero even number; otherwise, an odd
number. Likewise, economic, social, political classifications can be coded into a
name.

Another example of a denumerable set of individuals is given by the case of
finitely many people facing a setX of alternatives and uncertainty expressed by a
denumerable setSof states of the world. This was discussed in the Introduction.
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2.1.2 Coalitions

I assume that only somecoalitions(sets of individuals) are observable. Intuitively,
the observations are made by an agent, called asocial planner, a human or machine
that executes a social welfare function. Since an observation is a cognitive activ-
ity, it seems natural to introduce a structure for observable coalitions. Following
Armstrong [1], I require that the family of observable coalitions form aBoolean
algebra. Namely, if two coalitions are observable so must be their union, intersec-
tion, and complements. For instance, (i) the family of all subsets ofI = N and (ii)
the family of all finite sets andcofinitesets (i.e., the complements of a finite set) of
I = N, each forms a Boolean algebra.

Since I am concerned with algorithmic computability, I restrict coalitions to
those which can be recognized by some algorithm. Then, we will see that (i) be-
comes too broad a family, being uncountable, while (ii) is unnecessarily restric-
tive, excluding the intuitively “describable” coalition of even numbers, for exam-
ple. The observable coalitions that I propose are therecursivesets of individuals.
These are the coalitions whose membership is effectively decidable, i.e., the ones
for which there is an algorithm that can decide for each namei, whether individ-
ual i is in the coalition. The algorithmically decidable nature of recursive coalitions
seems to capture the idea of what we mean by a coalition that is “observable” or
“recognizable” or “identifiable.” The recursive coalitions form a Boolean algebra.

2.1.3 Social Welfare Functions

A social welfare function(formally, an REC-social welfare function) maps aprofile
(list) p = (�p

i )i2I of individual preferences�p
i (on a setX of alternatives) to a

social preference�p. I assume that the setI of individuals isN, and that the
domain includes all those profilesp such that for anyx andy, the coalition f i :
x�p

i yg that prefers x to yis recursive. Such profiles are calledmeasurable(with
respect to the Boolean algebra REC of recursive coalitions). Measurable profiles
are understood to be the ones for which the social planner will be required to give
a social preference.

Remark. The measurability condition might appear unreasonable since it im-
plies that the preferences of different individuals are correlated in some way. To
defend the condition, I give two interpretations. The first is given by the uncertainty
example in the Introduction, where there are only finitely many people facing de-
numerably many states. In this case, the measurability condition simply reflects
the reasonable epistemological requirement that each person can identify the set of
states in which he prefers an alternative to another alternative. The second inter-
pretation is when a society is made up of infinitely many people extending into the
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indefinite future. In this case, it is reasonable to suppose that we are dealing with
imagined preferences rather than actual preferences. The measurability condition
reflects the reasonable requirement that what is imagined should be describable.}

Example. Suppose that the Administration of Food, Drug, Cosmetics, and
Medical Devices (FDCA) is to adopt a usage policy for a newly developed medicine.
The FDCA consults some selected set of people, or “experts” about their prefer-
ences among alternatives policies such as “prescription only” or “experimental use
only on nonhumans.” These policies form the setX of alternatives. The experts are
not comfortable with giving definite answers since the medicine is new and so there
are uncertainties that cannot be resolved by the time a policy has to be adopted. So,
the FDCA decides to specify conditions on which experts may base their opinions.
These conditions constitute the set of states of the world that may involve with, for
example, (i) the potential benefitss1 of research for the next dozen years in case
only experimental use is allowed or (ii) the costs2 in terms of human lives for the
next decade in case a unrestrictive policy is adopted. Each statesspecifies a value
to these variabless1 ands2, among others. It is natural to assume that the setSof
states is denumerable. The discussion of finitely many people facing uncertainty
(Section 1.1) applies to this example.}

2.2 Computability

Proposition 3 in Appendix C implies that if the setI of individuals isN and a social
planner only observes measurable profiles (with respect to REC, the Boolean al-
gebra of recursive coalitions), then a social welfare function (not necessarily com-
putable) exists that satisfies Arrow’s conditions. In this section, I introduce a mod-
est condition for computability of social welfare functions and consider whether
there is acomputablesocial welfare function satisfying Arrow’s axioms.

2.2.1 Naming Restricted Profiles

My notion of computability will be weak in the sense that they are only local re-
quirements: they are concerned about how to obtain, for each pair(x;y), the so-
cial preference on(x;y) from a description of a profile restricted to the setfx;yg.
For this purpose, I describe the restriction(�p

i \fx;yg
2)i2N of a measurable pro-

file p 2 P N
REC to a setfx;yg by a natural numbere (as in Section 3.2). When this is

done, I say thate representsp at (x;y). A natural numbere is illegitimate if edoes
not represent any measurable profile at (any)(x;y); e is legitimateotherwise. (Ife
represents a profile at(x;y), then it represents all the profiles (at(x;y)) whose re-
striction to the setfx;yg is identical. In this sense, each natural number represents
at most one restricted profile.)
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2.2.2 The Notion of Computability

I only consider social welfare functions� satisfying Independence (so that social
preference on a pairfx;yg is determined by the profile restricted to the pair).

I say that a social welfare function� satisfiesPairwise Computability(PC) if
for each pair(x;y), there exists an algorithm that can decide, for each measurable
profile p and for each legitimate representatione of the profile at(x;y), whether
the society prefersx to y according to�p, from the representatione. (If such an
algorithm can be chosen so that it works uniformly for all(x;y), then I say that the
social welfare function satisfies Strong Pairwise Computability [15].) Note that the
computability condition implies that the value given by a deciding algorithm must
be invariant over differente that represent the same profile at(x;y). Also, note that
PC does not require that a single algorithm work for all pairs.

The main result, Theorem 1, states that if a social welfare function satisfy-
ing Unanimity and Independence also satisfies PC, then it must be dictatorial.1

The Introduction interprets this result as strengthening both Arrow’s Theorem and
Hayek’s thesis.

On the other hand, Proposition 1 shows that while there are some dictatorial
social welfare functions that satisfy PC, not all do.Precisely dictatorialsocial
welfare functions (where social preference is always identical with the dictator’s
preference) are examples that do satisfy (Strong) PC.

3 Theorem

3.1 Framework

I is a set ofindividuals, which is either finite or infinite. An example ofI is the setN
of nonnegative integers.X is a set ofalternatives, which has at least three elements.
P is the set of (strict)preferences, i.e., asymmetric and negatively transitive binary
relations onX.

A Boolean algebraB consisting of subsets ofI satisfies the following: (i)/0,
I 2 B; (ii) A[B, A\B, A2 B if A, B2 B (whereA denotes the complement of
A). If I denotes the set of individuals, then intuitively, an element of a Boolean
algebra is a coalition observable by the planner. For example, let REC consist of
all recursive subsets ofN. Then REC forms a Boolean algebra.

A profile is a listp= (�p
i )i2I 2 P I of individual preferences�p

i , i 2 I . A weak
preference�p

i is the negation of�p
i (defined from�p

i in the obvious manner), and
the indifference relation�p

i is the symmetric part of�p
i . A profile (�p

i )i2I is B-

1The PC here should not be confused with “Political Correctness.”
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measurableif f i 2 I : x�p
i yg 2 B for all x, y 2 X. Denote byP I

B the set of all
B-measurable profiles.

A B-social welfare functionis a function�:P I
B ! P mapping each profile

p= (�p
i )i2I to a social preference�(p) =�p. (Using the notation� for a function

would not cause a confusion since preferences are expressed in the form�
p
i or�p,

with profile p always present as a superscript.) Social relations�p, �p, �p, etc.,
are defined in the obvious manner.

I list Arrow’s conditions forB-social welfare functions:

Unanimity For anyx, y2 X, andp 2 P I
B, if f i 2 I : x�p

i yg= I , thenx�p y.

IndependenceFor anyx, y 2 X, andp, p0 2 P I
B, if (x 6= y and)�p

i \fx;yg
2 =

�
p0

i \fx;yg
2 for all i 2 I , then�p \fx;yg2 =�p0

\fx;yg2.

Nondictatorship There is noi 2 I such that for allx, y2 X and allp 2 P I
B, x�p

i
y=) x�p y:

A B-social welfare function violating Nondictatorship is calleddictatorial.

3.2 Computability

I will define computability for social welfare functions using Turing computabil-
ity. Turing computabilityis (one of several equivalents of) the generally accepted
formalization of the intuitive notion of algorithmic computability. Informally, an
algorithm is a finite list of instructions that, given a symbolic input, yields after a
finite number of steps a symbolic output. According to this intuition, a computa-
tion by an algorithm is exact, deterministic and performed in a discrete manner;
inputs and outputs are finitely describable (equivalently,describable by natural
numbers); and so on [18, pp. 1–5]. Turing computability meets all these intuitive
requirements.

The basic idea of a social welfare function is that it maps each profilep to a so-
cial preference�p. So, when one accepts Turing computability, the first approach
that one might attempt in introducing a condition of computability for social wel-
fare functions is to represent profilesp and social preferences by integers, and then,
to define computability in terms of these integers. This approach is unsatisfactory
in general (for example, it is problematic even when I restrict attention to REC-
social welfare functions) unlessX is finite. The reason is that whenX is infinite,
the domain of a social welfare function is not necessarily countable (e.g.,P N

REC is
uncountable [15]), while only countably many profilesp can be represented by a
natural number. This implies a possibility that any algorithm used for obtaining
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social preferences fails to compute an output for “almost all” profiles in the do-
main. One way out of this problem would be to consider only countable domains
for social welfare functions.

However, there is a different solution, which does not require countable do-
mains. To describe the solution, I henceforth let the setI of individuals be the setN
of nonnegative integers and I let the Boolean algebraB of coalitions be REC, the
Boolean algebra of recursive sets. (So, I am considering only REC-social welfare
functions�:P N

REC! P .)
A key assumption that I make for my solution is the Independence axiom: I

suppose that� is an REC-social welfare function satisfying Independence. Cor-
responding to each profilep is the social preference�p, which determines for
each pair(x;y) of alternatives, whetherx�p y or not. By Independence, all that
is needed to determine that, is the restriction of profilep to fx;yg. The Defini-
tion below introduces a method of representing such restricted profiles by a natural
numbere. Such representation (by integers) enables me to apply the notion of Tur-
ing computability. The notion of computability for social welfare functions will be
introduced afterward.

Remark. Restricting my attention to REC-social welfare functions satisfying
Independence is reasonable since my main purpose is to determine whether there is
a nondictatorial social welfare function among those satisfying Unanimity and In-
dependence. Furthermore, the Independence axiom can be regarded as a part of the
computability condition. After all, Independence is a stringent form of an informa-
tional viability condition, which requires finiteness in some aspects of information
to be processed.}

A characteristic indexfor a recursive setA is the Gödel number (name) of an
algorithm computing the characteristic function forA. When a characteristic index
for A is known, one can effectively recover the algorithm from the index; using this
algorithm, one can decide, for any numbere1 2 N, whethere1 is in A. Recall from
Appendix B thate= he1;e2;e3i is the coding (by integer) of a triple(e1;e2;e3) of
integers.

To describe the restriction of a measurable profilep on a pairfx;yg, I first de-
scribe each off i : x�p

i yg, f i : y�p
i xg, andf i : x�p

i yg by its characteristic index
and then aggregate the three indices using the above coding for triples. Formally, I
have the following definition:

Definition e= he1;e2;e3i 2 N representsa profilep = (�p
i )i2N 2 P N

REC at a pair
(x;y) 2 X�X if e1, e2, ande3 are characteristic indices forf i : x�p

i yg,
f i : y�p

i xg, andf i : x�p
i yg respectively.
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If erepresentsp2P N
RECat(x;y), thenedescribes the restricted profile(�p

i \fx;yg
2)i2N

of p onfx;yg completely (in the sense that one and only one restricted profile cor-
responds toe). Note that I need at least two of the three characteristic indices above
to describe the restricted profile completely.

The following definition of computability requires that the process of determin-
ing whetherx�p y holds, be an algorithmic process; it uses as input a representa-
tion e of the restricted profile. Pairwise Computability allows different algorithms
to be used for different pairs(x;y). (In contrast, Strong Pairwise Computabil-
ity [15] requires a single algorithm to work for all pairs.)

Pairwise Computability (PC) For each pair(x;y) 2 X2, there is a partial recur-
sive functionγ such that
(a) for each profilep 2 P N

REC and for each integere2 N, if e representsp
at (x;y), then

x�p y=) γ(e) = 1, and

:x�p y=) γ(e) = 0.

Obviously, “=)” in (a) above can be replaced by “() .” But notice thate is
restricted to those representing somep 2 P N

REC at (x;y).

Remark. In order to appreciate the above notion, it is instructive to consider
several other notions of computability. I give two alternative notions of computabil-
ity in Appendix A. }

I now give the main theorem, whose proof appears in Appendix C. It re-
establishes Arrow’s negative result even for denumerable societies.

Theorem 1 Let�:P N
REC! P be anREC-social welfare function satisfying Una-

nimity and Independence. Then� is dictatorial if it satisfies Pairwise Computabil-
ity.

While Theorem 1 asserts necessity of dictatorship for computability, the next
proposition shows that it is not sufficient.

Proposition 1 Among theREC-social welfare functions satisfying Unanimity and
Independence, there are(i) a dictatorial function satisfying Pairwise Computabil-
ity, and(ii) a dictatorial function not satisfying Pairwise Computability.

Proof. Items (i) and (ii) are proved by Examples 1, 2 respectively. Details are
in Appendix C.
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Example 1. Let
U0 = fA2 REC : 02 Ag

and define by Proposition 3 the social welfare function�:P N
REC! P for p2 P N

REC,
and forx, y2 X by

x�p y () f i : x�p
i yg 2U0:

That is, the individual 0 is the “precise dictator.” Proposition 3 establishes that�

satisfies Unanimity and Independence. Appendix C shows that� satisfies (Strong)
Pairwise Computability.}

Example 2. Let U0 be as in Example 1 and let̂U be an arbitraryfree ultrafilter
(Appendix C) on REC. Define a map� from p 2 P N

REC into a binary relation�p

on X as follows: forp 2 P N
REC, and forx, y2 X,

x�p y iff (a) f i : x�p
i yg 2U0 or

(b) f i : x�p
i yg 2U0 & f i : x�p

i yg 2 Û.

It can be shown [2, 16] that� is a dictatorial REC-social welfare function satis-
fying Unanimity and Independence. The proof that� does not satisfy Pairwise
Computability appears in Appendix C.}

A Strengthening Pairwise Computability

A minor problem with the definition of Pairwise Computability occurs when an
input numbere for a deciding algorithm (for a partial recursive functionγ in (a) in
PC) for a social welfare function is illegitimate, so that it does not represent any
measurable profile at the pair. In this case, application of the algorithm might give
a social preference on(x;y) improperly. This problem is minor since I can safely
think of a scenario in which a planner only processes inputs whose legitimacy she
can prove. While there is no algorithmic procedure to give a proof of legitimacy
for everyinput, there is no inconsistency in assuming that only numbers for which
legitimacy can be proved are input to the social welfare function.

Having said that, let me consider some ways of avoiding obtaining social pref-
erences for illegitimate inputs, for a planner might incorrectly believe that her input
is legitimate. Computability A below requires illegitimate inputs to be indicated
by a certain output; Computability B requires that outputs are givenonly for legit-
imate inputs. Though these notions may be appealing on intuitive grounds, they
are both stronger than Pairwise Computability, and therefore, the main Theorem 1
appliesa fortiori. However, I show here thatno social welfare function satisfying
Independence meets either of these computability conditions. These impossibility
results further justify the use of PC (or Strong PC) as a notion of computability.
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Suppose in the following that�:P N
REC! P is an REC-social welfare function

satisfying Independence.

1. In the definition of Pairwise Computability, it is required that an algorithm
exist that can decide the restricted social preference given a representatione of a
profile at a pair of alternatives. However, there is no requirement as to what the
algorithm should do for an integere2 N that is illegitimate (i.e., that does not
represent any REC-measurable profile at the pair). It would be desirable if the
algorithm could decide for each integerewhethere is legitimate or not, in addition
to deciding the restricted social preference. This leads to the following definition:

Computability A For each pair(x;y) 2 X2, there is a recursive functionγ such
that the condition (a) in Pairwise Computability is satisfied, and
(b) for each integere2N, if edoes not represent anyp 2 P N

REC at (x;y), then
γ(e) = 2.

Unfortunately, Computability A cannot be met by any REC-social welfare
function that satisfies Independence. To see why, fix(x;y) and suppose a recur-
sive γ satisfies (a) and (b). Then it must be thatS= fe : γ(e) = 1 or 0g is r.e. (in
fact, recursive). This is becauseS is the domain of the partial recursive functionγ0
which is defined byγ0(e) = γ(e) iff γ(e) = 1 or 0, andγ0(e) " iff γ(e) = 2. (Thatγ0
becomes partial recursive is straightforward from the Graph Theorem.) However,
Lemma 3 in Appendix C shows thatS= fe : e represents somep 2 P N

REC at (x;y)g
is not r.e.

2. One of the most obvious conditions of computability that one might think
of is the following. It requires existence of a deciding algorithm (for the restricted
social preferences) that gives an output only for legitimate representations of a
profile at a pair.

Computability B For each pair(x;y) 2 X2, there is a partial recursive functionγ
such that the condition (a) in Pairwise Computability is satisfied, and
(c) for each integere2N, if edoes not represent anyp 2 P N

REC at (x;y), then
γ(e) ".

The same argument (thatS is not r.e.) shows that no REC-social welfare func-
tion that satisfies Independence can satisfy Computability B.

B Recursion Theory

This appendix reviews the definitions and results from recursion theory necessary
for understanding technical sections of the present paper. I mostly follow the nota-

14



tions and terminologies in Soare [20]. Other references on recursion theory include
Rogers [18] and Davis and Weyuker [6].

In this appendix,x, y andz denote nonnegative integers. For setsA andB, A
denotes the complement ofA; A�B denotes the set theoretic differenceA\B.

B.1 Partial Functions

A partial function on Nn, wheren� 1 is an integer, is a function (into natural
numbers) whose domain is a subset ofNn. If the domain of a partial function on
Nn is Nn, then it is calledtotal. For partial functionsφ andθ, φ(x) # denotes that
φ(x) is defined;φ(x) " denotes thatφ(x) is undefined;φ = θ denotes that for allx,
φ(x) # iff θ(x) #, and ifφ(x) # thenφ(x) = θ(x); domφ denotes the domain ofφ.

B.2 Algorithms

Informally, analgorithm(for a partial functionφ onN) is a finite list of instructions
that, given an inputx, yields an outputy= φ(x) after a finite number of steps ifφ(x)
is defined. (It should not yield an output ifφ(x) is undefined.) The algorithm must
specify how to obtain each step in the computation from the previous steps and
from the input. Informally, if a partial function is computed by an algorithm, it is
calledpartial recursive.

We acceptChurch’s Thesiswhich identifies the informal class of algorithmi-
cally computable partial functions with the class of partial functions computed by
a Turing program.Turing programscan be defined precisely, but we do not do that
here. For our purpose, it suffices to know that we can list all Turing programs in
such a way that for any program we can algorithmically find its place (the code
number) in the list and conversely. We choose one such algorithmic listing (or
coding orGödel numbering) and fix it.

B.3 Computability Theory

Code (Gödel number) all Turing programs. Fore2 N, let ϕ(n)
e be the partial func-

tion of n variables computed by theeth Turing program. A partial functionφ of n
variables ispartial recursiveif φ = ϕ(n)

e for somee. A partial recursive function is
recursiveif it is total. Write ϕe for ϕ(1)

e .
A setA�N is recursive(A2REC) if the characteristic function forA is recur-

sive.e is acharacteristic indexfor A if ϕe is the characteristic function forA. (The
characteristic function forA takes the value 1 iff an input belongs toA; it takes 0
otherwise.)

15



LetWe= domϕe= fx : ϕe(x) #g. A setA� N is recursively enumerable(r.e.)
if A=We for somee. We is theeth r.e. set.

TheEnumeration Theorem states [20, p. 15] that there is a partial recursive
functionϕ(2)

z of two variables such thatϕ(2)
z (e;x) = ϕe(x) for all eandx.

TheParameter Theorem(s-m-n Theorem) states [20, p. 16] that for everym,
n� 1, there exists a one-to-one recursive functionsm

n of m+1 variables such that
for all x, y1, . . . ,ym,

ϕ(n)
sm
n (x;y1;:::;ym)

(z1; : : : ;zn) = ϕ(m+n)
x (y1; : : : ;ym;z1; : : : ;zn)

for anyz1, . . . ,zn.
TheGraph Theorem states [20, p. 29] that a partial function is partial recursive

iff its graph is r.e.
We let hx;yi denote the image of(x;y) under the standard pairing function

(x2+2xy+ y2+3x+ y)=2, which is a one-to-one recursive function fromN�N
ontoN. Let hx;y;zi denotehhx;yi;zi.

B.4 Lemmas

The following two lemmas will be used in the proofs of Theorem 1 and of Propo-
sition 1.

Lemma 1 There is a one-to-one recursive function r such that for all e and u,

ϕr(e)(u) =

8<
:

1 if ϕe(u) = 0,
0 if ϕe(u) # andϕe(u) 6= 0,
" if ϕe(u) ".

(1)

In particular, if e is a characteristic index for a set A, then r(e) is a characteristic
index for its complementA.

Proof. The right hand side is equal toψ(e;u) = 1� ϕe(u), where� is the
limited subtraction. Since the limited subtraction is recursive,ψ is partial recursive
by the Enumeration Theorem. Then by the Parameter Theorem, there is a one-to-
one recursive functionr such such thatϕr(e)(u) = ψ(e;u).

Details. Sinceψ is partial recursive,ψ = ϕ(2)
z for somez. By the Parameter

Theorem, there is a one-to-one recursive functionssuch that

ϕs(z;e)(u) = ϕ(2)
z (e;u) = ψ(e;u):

Let r(e) = s(z;e). Thenr is one-to-one and recursive.}
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Lemma 2 Let

CRec= fe2 N : e is a characteristic index for a recursive setg:

ThenCRecis not r.e.

Proof. (This proof involves deeper recursion theory than that covered in Ap-
pendix B.) Fix aΣ2 setA. Then, by [20, IV.3.2, p. 66], there is a recursive func-
tion f such that

e2 A=) ϕ f (e)(u) # for only finitely manyu

and
e =2 A=) ϕ f (e)(u) = 0 for all u.

It follows that
e2 A=) f (e) =2 CRec

and
e =2 A=) f (e) 2 CRec:

This shows thatA�m CRec, namely,A is many-one reducible to CRec.
Now, suppose that CRec is r.e., that is, CRec2 Σ1. Then by [20, IV.1.3(v),

p. 61], A2 Σ1, i.e., A2 Π1. This means that anyΣ2 setA is Π1, a contradiction.
Hence, CRec is not r.e.

C Proofs

In this Appendix, we prove Theorem 1 and Proposition 1 in Section 3.
The following Lemma is used in Appendix A and in the proof of Theorem 1.

Lemma 3 Let (x;y) 2 X2. Then the set

S= fe : e represents somep 2 P N
REC at (x;y)g

is not r.e.

Proof. Fix� and(x;y). Suppose thatSis r.e. Lete03 be an arbitrary characteris-
tic index for an empty set. Letr be a recursive function satisfying (1) in Lemma 1.
Let CRec be the set of characteristic indices for some recursive set.

Claim he1; r(e1);e03i 2 S iff e1 2 CRec.
Details. (=)). Suppose thathe1; r(e1);e03i 2 S. Thene1 is a characteristic

index forf i : x�p
i yg.

17



((=). Suppose thate1 is a characteristic index for anA� N. Choose ap 2
P N

REC such thatA= f i : x�p
i yg andA= f i : y�p

i xg. Thenr(e1) is a characteristic
index for A by Lemma 1. So,e1, r(e1), ande03 are characteristic indices forf i :
x�p

i yg, f i : y�p
i xg, andf i : x�p

i yg= /0 respectively.}

Now sinceS is assumed to be r.e., Claim implies that CRec is r.e.
Details. The function f defined by f (e1) = he1; r(e1);e03i is recursive. Since

S is r.e., it is the domain of the partial recursive functionϕz for somez. We have,
by the above Claim, thate1 2 CRec iff f (e1) 2 domϕz. But the latter is equivalent
with e1 2 dom(ϕz� f ). This means that CRec is the domain ofϕz� f ; hence, r.e.}

However, this contradicts Lemma 2 which states that CRec is not r.e.

Before proving Theorem 1 and Proposition 1, we must introduce some prelim-
inary results and notions.

Let B be a Boolean algebra. Afilter F on B is a family of sets inB satisfying:
(i) /0 =2 F ; (ii) if A2 F andA� B, thenB2 F ; (iii) if A, B2 F , thenA\B2 F .
We may think of a filter as a family of “large” sets. Anultrafilter is a filterU that
satisfies: ifA =2U, thenA2U. If U is an ultrafilter, thenA[B2 U implies that
A2U or B2U. SupposeB contains all finite sets ofI . We say an ultrafilterF is
fixed if it is of the form F = fA2 B : i 2 Ag for somei 2 I ; otherwise, it is called
freeand does not contain any finite sets.

Proposition 2 (Armstrong [1, Proposition 3.2]) Let B be a Boolean algebra on
I. Suppose aB-social welfare function� satisfies Unanimity and Independence.
Then there is a unique ultrafilterU� on B such that for allp = (�p

i )i2I 2 P I
B and

x, y2 X,
f i 2 I : x�p

i yg 2U� =) x�p y: (2)

Remark. The uniqueness follows from Proposition 3.1 of Armstrong [1].}

Remark. Armstrong [2] corrects an error in Proposition 3.2 of his earlier
work [1]. Proposition 2 is the corrected version.}

Proposition 3 (Armstrong [1, Proposition 3.1]) LetB be a Boolean algebra on I.
SupposeU is an ultrafilter onB. Then the map� on P I

B defined forp 2 P I
B and x,

y2 X by
x�p y () f i 2 I : x�p

i yg 2U

is a B-social welfare function, satisfying Unanimity and Independence.
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Let�:P N
REC! P be an REC-social welfare functionsatisfying Unanimity and

Independence. Given�, let β� be the partial function onN defined by

β�(e1) =

8<
:

1 if e1 is a characteristic index for a recursive set inU�,
0 if e1 is a characteristic index for a recursive set not inU�,
" if e1 is not a characteristic index for a recursive set,

(3)

whereU� denotes the ultrafilter in Proposition 2. Note thatβ� is well-defined
since eache1 2 N can be a characteristic index for at most one set.

We define a computability condition for an REC-social welfare function satis-
fying Unanimity and Independence using the partial functionβ� defined by (3):

Decidability of Decisive Coalitions (DDC) β� has an extension to a partial re-
cursive function.

Lemma 4 Let �:P N
REC! P be anREC-social welfare function satisfying Una-

nimity and Independence. Then� is dictatorial if and only if it satisfies DDC.

Proof. (=)). Suppose� is dictatorial. Then the ultrafilterU� in Proposition 2
corresponding to� is principal; namely, for somei0 2 N, U� = fW 2 REC :i0 2
Wg:

Defineβ0 by

β0(e) =
�

ϕe(i0) if ϕe(i0) = 0 or 1,
" otherwise.

Then, clearly,β0 is an extension ofβ�. Also, ϕe(i0) is a partial recursive function
of eby the Enumeration Theorem. Hence,β0 is partial recursive.

((=). Let� satisfy the hypothesis and suppose DDC is satisfied but� is not
dictatorial. In this case, the ultrafilterU� corresponding to� is free: it does not
contain any finite sets. Letβ0 be an extension ofβ� which is partial recursive.
Note thatβ�(e) = 1 if e is a characteristic index for a cofinite set sinceU� is a free
ultrafilter.

Let K = fe : e2Weg; K is a nonrecursive r.e. set. SinceK is r.e., there is [20,
II.1.2, p. 28] a recursive setR� N�N such thate2 K () 9zR(e;z). Using the
Parameter Theorem, define a recursive functionf by

ϕ f (e)(u) =

�
1 if 9z� u R(e;z),
0 otherwise.

Details. The functionh defined by

h(e;u) =

�
1 if 9z� u R(e;z),
0 otherwise
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is recursive. Hence, for somez, h= ϕ(2)
z . By the Parameter Theorem, there is a

recursive functionssuch that

ϕs(z;e)(u) = ϕ(2)
z (e;u) = h(e;u):

Let f (e) = s(z;e). Then f is recursive.}
Now,

e2 K =) ϕ f (e)(u) = 1 except for finitely manyu’s

=) f (e) is a characteristic index for a cofinite set

=) β0( f (e)) = β�( f (e)) = 1;

but

e =2 K =) ϕ f (e)(u) = 0 for all u

=) f (e) is a characteristic index for/0
=) β0( f (e)) = β�( f (e)) = 0:

This implies thatK is recursive, contradiction.

Proof of Theorem 1. (Preliminaries for this proof begin after the proof of
Lemma 3.) Let� satisfy the hypotheses and PC. Fix(x;y). There is a partial
recursiveγ that satisfies the condition (a) in PC. We will show that DDC is satis-
fied.

Let e03 be an arbitrary characteristic index for an empty set and letr be a recur-
sive function satisfying (1) in Lemma 1. Then

β�(e1) = γ(he1; r(e1);e
0

3i) (4)

for all e1 2 CRec. ((4) means that when nobody is indifferent betweenx andy,
then to determine the social preference on(x;y), all the planner need to know is the
coalitionf i 2 N : x�p

i yg that prefersx to y.)
Details. Supposee1 2CRec, the domain ofβ�. Then by the Claim in the proof

of Lemma 3,e= he1; r(e1);e03i represents somep 2 P N
REC at (x;y). In particular,e1

andr(e1) are characteristic indices forA= f i 2 N : x�p
i yg andA= f i : y�p

i xg
respectively.

(i) Suppose thatβ�(e1) = 1. Then by (3),f i 2 N : x�p
i yg 2U�. Then (2) in

Proposition 2 implies thatx�p y. So, (a) in PC implies thatγ(e) = 1.
(ii) Supposeβ�(e1) = 0. Then by (3),A =2 U�. SinceU� is an ultrafilter,

it follows that A= f i : y�p
i xg 2 U�. By (2), y�p x. By asymmetry, we have

:x�p y. Henceγ(e) = 0 by (a) in PC.}
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Now, the partial functionψ defined byψ(e1) = γ(he1; r(e1);e03i) is clearly par-
tial recursive. By (4),β�(e1) = ψ(e1) for all e1 2 CRec. Hence, the partial re-
cursive functionψ is an extension ofβ�. So, DDC is satisfied. By Lemma 4, it
follows that� is dictatorial.

Proof of Proposition 1. (Preliminaries for this proof begin after the proof of
Lemma 3.) (i) Let� be the social welfare function in Example 1. We show�
satisfies PC. Since� is dictatorial, Lemma 4 implies that DDC is satisfied. So,
there is a partial recursive functionβ0 that extendsβ�. Define a partial functionγ
by

γ(he1;e2;e3i) = β0(e1):

Then, for any natural numbere= he1;e2;e3i, γ(e) = β0(π(e)), whereπ:e 7! e1.
Sinceπ andβ0 are partial recursive,γ is partial recursive.

We show thatγ satisfies (a) in PC for all(x;y). Fix (x;y) and supposee=
he1;e2;e3i represents ap at (x;y). Thene1 is a characteristic index forf i 2 N :
x�p

i yg and soβ�(e1) #.

� Supposex�p y. Then by the definition of�, f i 2 N : x�p
i yg 2 U0. This

implies thatγ(e) = β0(e1) = β�(e1) = 1.

� Similarly, if :x�p y thenγ(e) = 0.

(ii) Let � be the social welfare function in Example 2. To show� does not
satisfy PC, suppose otherwise. Choose(x;y) arbitrarily. Then there is a partial
recursiveγ that satisfies (a) in PC. Letg be a recursive function such that ife is
a characteristic index for a setA theng(e) is a characteristic index forA�f0g.
Such ag exists by [20, II.2.3, p. 33]. Letr be a recursive function satisfying (1) in
Lemma 1 and lete02 be an arbitrary characteristic index for an empty set. Define a
partial recursive functionβ0 by

β0(e1) = γ(hg(e1);e
0

2; r(g(e1))i):

We show thatβ0 extendsβ
�̂

, where�̂:P N
REC! P is defined by

x�̂py () f i 2 N : x�p
i yg 2 Û:

Notice thatU
�̂
= Û.

� Supposee1 is a characteristic index for a recursive setA in Û. Thene=
hg(e1);e02; r(g(e1))i represents ap at (x;y); in particular,g(e1) being a char-
acteristic index forf i 2 N : x�p

i yg = A�f0g. Clearly,f i 2 N : x�p
i yg

does not belong toU0 since it does not contain 0. Hence its complement
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f i : x�p
i yg belongs toU0. Now,f i 2N : x�p

i yg 2 Û sincef i 2N : x�p
i yg

andA are different at most by the finite setf0g andA is in the free ultrafil-
ter Û. Hence, by the definition of�, it follows thatx�p y. This implies,
by (a) in PC, thatγ(e) = 1. So,β0(e1) = 1.

� Similarly, if e1 is a characteristic index for a recursive set not inÛ, then
β0(e1) = 0.

We have shown thatβ
�̂

has an extensionβ0 that is partial recursive. This means
that�̂ satisfies DDC, contradicting Lemma 4 since�̂ is not dictatorial.
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