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ABSTRACT: Given three stylized facts about the US Coast Guard (USCG), namely, soft penalties for 
safety violations, low incidence of penalties relative to the number of violations, and substantial resources 
devoted to inspections of vessels, this paper seeks (i) a theoretical lens to view USCG activities and (ii) an 
empirical assessment of whether those activities improve performance. Harrington’s (1988) model is 
motivated by these stylized facts about US regulation in general, and provides a solution via targeting of 
good and poor performers. The model generates hypotheses about optimal regulation in the context of 
pollution prevention activities of the USCG. An organization-level panel data set consisting of thousands 
of US flag tank barges is constructed to test those hypotheses. A count model that controls for vessel 
heterogeneity yields mixed evidence. If USCG inspections are considered exogenous variables (as the 
theory presumes), they appear to prevent pollution spills. But if inspections are endogenous and respond 
to previous spills then correcting for endogeneity reverses the earlier result. In addition, violations are 
found to be good predictors of pollution occurrences, suggesting that inspections are not as effective as 
they could be. Targeting as in Harrington’s model therefore appears to be incomplete, and the findings 
suggest that more complete targeting could increase performance. An interesting finding is that stronger 
penalties could increase performance.  
 

                                                           
1   Funding from the NSF is acknowledged.  This paper is part of a project testing predictions from agency models 
about regulation using US Coast Guard inspections and incidents data.  
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1.  Introduction 

The question of how law enforcement agencies organize their activities has attracted 

considerable attention in the economics and political science literature. Empirical studies of 

whether these agencies perform effectively, far too numerous to list, include examinations of 

police and the reduction of crime, the Environmental Protection Agency and the control of 

pollution and hazardous waste, OSHA and the enforcement of safety laws, and the Nuclear 

Regulatory Commission and compliance with safety standards at reactors and nuclear power 

plants.  

A theory often invoked to study the effectiveness of law enforcement agencies is the 

principal-agent model (e.g. Shavell 1979; Holmstrom 1979). The law enforcing government 

agency seeks to minimize violations using appropriate incentives. The regulated firm or 

individual is interested in maximizing private profits, and cares less about the costs or negative 

externalities it imposes on society. Thus, a polluting firm fails to internalize the externalities it 

imposes on society if it only minimizes its private costs. In the principal-agent model the 

enforcement agency recognizes that the objective of maximizing social welfare runs counter to 

the firm’s objectives, and uses incentives in the form of penalties for noncompliance and rewards 

for compliance in order to make the firm internalize the externalities as much as possible. 

Principal-agent relationships in law enforcement are usually hierarchical relationships in which 

the regulating agency has the force of legal authority to conduct inspections and penalize.  

We consider a principal-agent model proposed by Harrington (1988) in which the 

regulating agency has the force of law behind it but is severely limited in its ability to use high-

powered incentives, such as penalties, to solve the problem. Our context is the law enforcement 

effort of the US Coast Guard (USCG), the agency charged with maintaining safe seaways and 

waterways. One of its main responsibilities is conducting safety inspections of vessels in order to 

prevent pollution incidents. What distinguishes the US Coast Guard from other law enforcement 

agencies is that it rarely uses the courts or harsh monetary penalties to enforce US maritime laws. 

In part, this is because harsh penalties would restrict commerce and raise costs to consumers. 



 3 

Although a system of penalties exists, for all but repeat offenders they amount to a slap on the 

wrist. It is therefore surprising that pollution incidents in US waters are not more frequent.  

The seminal empirical study of the USCG by Epple and Visscher (1984), using data from 

1970s, found that increased monitoring activity resulted in lower oil spill volume.2 However, 

they also found that the frequency of spills increased with resources devoted to enforcement. 

Their explanation is that increased enforcement of pollution increased detection of spills that 

would otherwise be unreported. That is, enforcement is endogenous. In a subsequent study that 

emphasized optimal penalties, Cohen (1987) found that while monitoring oil transfer operations 

and random port patrols designed to detect spills were effective, routine inspections designed to 

determine if vessels were in compliance with oil spill prevention regulations had no significant 

effect on spill size. Anderson and Tally (1995) compared USCG enforcement efforts on US and 

foreign tankships and confirmed Cohen’s results. Gawande and Wheeler (1999) actually found 

routine inspections to be effective in lowering the number of oil spills aboard US flag tankships 

during the late 1980s, but did not account for possible endogeneity of hours spent on 

enforcement. Gawande and Bohara (2003) used panel data from the 1990’s and confirmed 

Cohen’s earlier conclusion about the ineffectiveness of inspections designed to check 

compliance. Other studies of enforcement and pollution, comprehensively surveyed in Cohen 

(1998), generally indicate that enforcement lowers pollution, although there is no real consensus 

about whether there is over-enforcement, that is, whether enforcement efforts pass a cost-benefit 

test. 

In this paper we investigate whether that conclusion hold for USCG inspections of tank 

barges. Barges are numerous and, though some sail ocean routes, mainly transport cargo across 

inland waterways. Typically, tank barges transfer their cargo from large ocean-sailing tankships 

that come into an ocean port. During ship-to-ship transfer of oil and chemicals spills are likely to 

occur if the personnel aboard the barges are inattentive or not well trained. Pollution incidents 

                                                           
2  The existence of the comprehensive MSMS database from which more recent studies, including this 
one, draw is in large part due to their work and recommendations. 
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while sailing US waterways are also likely if a barge is not in peak operating condition, or if the 

barge owner/operator is negligent, or is the barge owner/operator seeks to reduce costs by using 

disposal techniques that are cheaper but not legal.  

A study of the USCG that is based on Harrington’s (1988) model, and close in spirit to 

ours, is Viladrich-Grau and Groves (1997). Viladrich-Grau and Groves examine the USCG’s 

recently implemented policy of grouping vessels into a less frequently monitored low-risk group 

and a regularly monitored high-risk group, a policy consistent with Harrington’s model. While 

they find that this policy of targeting vessels both reduces the cost of enforcement and achieves 

compliance, our results are not unambiguous. A result that stands out is our finding that 

violations aboard vessels are excellent predictors of pollution occurrences. But in a panel data set 

that represents a repeated game setting, we should not find such a result if targeting is done 

effectively according to theory.  

The results raise questions about public management issues. Might it be that the USCG 

uses a combination of governance styles to achieve its regulatory objective: hierarchical 

governance using incentives such as penalties (as postulated by the principal-agent model) and 

horizontal governance that emphasizes networking and gentle suasion? Perhaps it uses penalties 

only as a last resort, and building networks as a primary strategy. Notably, the number of 

pollution incidents, especially large spills, has declined in recent years. It is appropriate at this 

point in time to question whether styles of governance other than the command-and-control style 

implicit in the principal-agent logic of law enforcement might not work better. This paper 

examines these questions.  

The paper proceeds as follows. Section 2 provides relevant background information on 

USCG vessel inspections. Section 3 describes Harrington’s model and derives testable 

predictions based on the model, presuming the model represents how the USCG organizes its 

activities. Section 4 describes the data and the count data model used to study tank barge 

inspections. Section 5 discusses the results. Section 6 discusses an agenda for future research that 

emphasizes public management issues. Section 7 presents our conclusions. 
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2.  Background: US Coast Guard Inspections 

The US Coast Guard is charged with creating and regulating standards for ships in order 

to promote marine safety and environmental protection.3 The purpose of the standards is to 

prevent human casualties and pollution occurrences, and reduce the severity of harm if such 

events do occur. The enforcement authority of the USCG is bestowed upon it by the Oil 

Pollution Act of 1990 (OPA90), the Clean Water Act, the Clean Vessel Act, the Marine Plastic 

Pollution Research and Control Act, and the International Convention for the Prevention of 

Pollution from Ships at Sea (MARPOL).  

The standards enforcement effort by the Coast Guard can broadly be defined as ex ante 

and ex post inspections. Ex post inspections investigate the causes and liability of a reported 

collision, allision, grounding, or some other accident. Ex ante inspections are scheduled for fixed 

intervals and are independent of casualties. Many ex ante inspections are periodic in order to 

certify a vessel’s seaworthiness. For example, vessels are required to come to a Coast Guard 

facility for a general audit or a comprehensive hull inspection. Non-routine inspections are 

random, follow-up or re-inspections. If a ship is found to be substantially out of compliance in 

any given type of inspection, it may be re-inspected. The penalties for non-compliance are 

surprisingly small, and are discussed below in the context of the theory. In fact, this is 

generically the case with enforcement of US regulations, and is not anomalous. The theory 

discussed in the next section provides a rationale for why this may not necessarily hinder USCG 

enforcement efforts. 

 

3.  Theory and Hypotheses 

3.1  State-independent theory (Becker, 1982): Maximal fines 

The best-known solution to the principal-agent problem of optimal fines in order to 

achieve maximum deterrence is Becker (1968). The model is ex post to the violation, and 

                                                           
3 42 CFR 1 outlines the organization and authority for marine safety functions. 
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presumes the violation is detected only with a probability less than one. In the context of the 

USCG, Cohen (1987) and Epple and Visscher (1984) have derived the optimal fines as follows. 

Supposing the vessel purposefully or accidentally discharges x gallons of oil, the probability it 

will be detected is p(x, m), where m is the resources expended by the USCG towards detection. 

For on-sea incidents p(x, m), while positive, is low given the detection technology and resources 

devoted to inspections. For on-shore incidents during oil transfers, the detection probability is 

higher because monitoring resources can be and are used more efficiently. If detected, the vessel 

is charged a penalty t(x).  

Suppose the damage and clean-up costs from spillage of x gallons of oil are D(x) and 

C(x), respectively. Assuming risk-neutrality on the part of the vessel owner (agent), the optimal 

penalty formula, derived by Cohen (1987), is  

 

t(x)=[D(x)+C(x)]/ p(x,0).        (1) 

 

With this penalty function, the social optimum may be achieved without expending any 

resources toward detection so long as p(x,0)>0. The optimal penalty function equates the penalty, 

if the polluting vessel is detected, to environmental damage plus cleanup cost scaled by the 

probability of detection. Where the probability of detection is low, the optimal penalty, once 

detected, far exceeds the actual social cost. This is precisely when deterrence is most effective. In 

order to induce vessel owners to take the socially optimal level of care of their vessels, penalties 

increase as the probability of detection decreases, an idea that was advanced in Becker (1968).  

 However, fines in actuality are nowhere near this level. While the penalties paid as a 

result of the Exxon Valdez spill ($1 bn. toward damage and $2 bn. toward cleanup) appear to be 

in line with the optimal penalty formula, this was largely the result of negligence on the part of 

the crew captain. OPA90 applies liability limits in the event that the accident is not due to 

negligent behavior. These limits are a small fraction of the penalties paid by Exxon.  
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 Gawande and Bohara (2003) explain the considerable resources devoted to ex ante 

inspections due to the fact that ex post penalties are large. They extend the Becker formula to ex 

ante inspections and penalties on violations found due to such inspections. Nevertheless, theirs is 

also an optimal penalty solution, and does not resolve the fact that USCG penalties are small. 

Furthermore, their theories are static and do not consider inspections as a repeated game. 

 

3.2  State-dependent theory (Harrington, 1988): Limited fines 

A collection of papers beginning with Greenberg (1984) and Landsberger and Meilijson 

(1982) has considered the moral hazard problem of regulation in the more realistic repeated 

game setting. Relaxing some assumptions to make the model more suitable to the real world 

delivers predictions that sometimes are fundamentally different from the Becker/Stigler optimal 

penalty rule. The first paper to do this in the context of regulating environmental pollution is 

Harrington (1988). In Harrington’s model the regulating agency (EPA, NRC, or USCG) is 

assumed to know the cost of compliance for each firm under its regulatory jurisdiction. It is also 

assumed that, upon monitoring a firm, the agency knows with certainty whether the firm is in 

compliance or is not in compliance. For example, inspections reveal with certainty the precise 

amount of hazardous waste emitted (in the case of the EPA), or safety violations in nuclear 

power plants (in the case of the NRC). Based on this information the agency can then determine 

whether the firm is in compliance with the law or not. If the firm is found to be non-compliant 

then the agency has a set of tools at its disposal, as described below. 

 Harrington’s model is motivated by the need to explain three stylized facts that have 

been empirically documented in the literature. These facts also apply to the USCG that is the 

subject of this study. First, the severity of penalties sanctioned by regulating agencies is low. 

Second, this occurs in the face of a considerable number of violations noted by the regulating 

agencies. Third, despite the fact of lenient penalties, many firms are actually in compliance. 

Harrington constructs a state-dependent model which makes predictions consistent with these 

three observations. The regulating agency classifies firms into two groups (states), G1 and G2, 
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depending on their record of compliance. G1 firms are compliant firms whereas G2 firms are 

not. In order to be compliant and therefore in group G1 or move to it from G2, non-compliant 

firms must incur costs. Compliance costs are the same for all firms. Firms decide whether to 

incur such a cost or to cheat and hope that they are not inspected. If a G1 firm is inspected, it 

reveals with certainty whether the firm is compliant or not. If it is found to be non-compliant, the 

firm is moved into state G2 (and may be penalized). Firms in state G2 can only return to state G1 

if they are inspected and found to be in compliance. Their return, even if found to be compliant, 

is not certain and occurs with a probability that the agency sets. If a G2 firm is found to be non-

compliant, it may be fined. Firms make their decision based on the expected present value of that 

decision (equal to the present cost plus the present value of expected future penalties). The 

decision variables for the agency are (i) the probability of inspection of a firm being in each 

state, (ii) the penalty that agency will apply to firms in each state, and (iii) the probability with 

which a compliant G2 firm is reclassified as a G1 firm.  

 The model predicts that, depending on their compliance costs and the agency’s 

probability of inspection, firms will either (i) comply in both states whether they are G1 or G2 

firms, (ii) cheat in both states, or (iii) cheat in state G1 and comply in state G2.4 What is the 

agency’s best policy in terms of its five decision variables, given a (low) ceiling on maximum 

allowable fine? The agency would like to achieve three objectives: minimize its resource costs 

(average inspection rate), maximize the average compliance rate, and give proper incentives to 

firms with the highest compliance cost, that is, the firms that are the least likely to comply in the 

absence of incentives. But these objectives are in conflict, and thus the agency must achieve one 

of these conditionally to a target rate of the other two. For example, if the agency seeks perfect 

compliance, then the inspection rates must be high, and the maximum fine must exceed the 

highest compliance cost. High fines make it possible, even likely, for high cost firms to not 

comply since the cost of complying exceeds the present value of future fines. In order to achieve 

                                                           
4  The surprise is that no firms will comply in state G1 and cheat in state G2, that is, the “good guys” 
cheat and the “bad guys” comply in order to go back to G1 where they get a chance to cheat. 
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some level of compliance, then, the agency must lower the fine. Harrington finds that the agency 

trades lower fine for a higher rate of inspection. In fact, the optimal penalties are zero for firms in 

G1, and the maximum allowable (although lower than according to the Becker rule) for firms in 

G2. But since the fine for G1 firms is zero, there is incentive for G2 firms to always comply (in 

order to return to G1 and possibly cheat). As a result no fines are actually collected. In order to 

obtain the maximum compliance possible for the G2 firms, it is also necessary for the probability 

of inspection to be high for G2 firms. Harrington also shows that this state-dependent strategy 

produces a higher compliance rate with the same resources as a state-independent strategy in 

which the decision to inspect and penalize is independent of past behavior of firms (so long as 

perfect compliance, which is very expensive to achieve anyway, is not desired). 

  Thus, the ability (or desire) to levy only low penalties may not hamper regulatory 

enforcement. Low penalties for firms in state G1 combined with high frequency of inspection for 

firms in G2 (consistent with real-world observations about the general incidence of low penalties 

together with considerable resources devoted to inspections) can produce fairly high compliance 

rates (consistent with real-world findings in this regard).  

 A set of papers has sought to qualify or extend the results from Harrington’s model, 

beginning with Harford and Harrington (1991). They show that if the objective is to minimize 

control costs for a given total pollution reduction, then a state-independent approach in which the 

pollution standard used to define compliance and non-compliance is different from Harrington’s 

model works better. Raymond (1995) challenges Harrington’s conclusion that a high compliance 

rate can co-exist with low expected fines on the grounds that firms are neither identical nor are 

their compliance costs known with certainty. He shows that Harrington’s results are reversed in 

the presence of such information asymmetry and uncertainty. Intuitively, if an industry contains 

a high proportion of firms with low compliance costs then keeping the fine for this group to a 

maximum is optimal. Lowering their fine encourages even low-cost firms to become non-

compliant, with the result that the average compliance rate declines and the average inspection 

rate goes up. Therefore, setting the G1 penalties to zero is sub-optimal.  
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Other papers bolster Harrington’s predictions. Bose (1995) shows that when inspections 

by the agency lead the agency to wrongly determine that a compliant firm is out of compliance 

(“regulatory error”) or a non-compliant firm is being compliant, then Becker’s maximum fine, 

even if it were possible to levy, is not the optimal solution. Expending monitoring resources is 

more effective than levying large fines. In fact, lower penalties and lower monitoring rates can 

induce full compliance in the presence of regulatory errors. Bose’s model works best in a 

hierarchical regulatory structure where the regulatory agency operates within a legal structure 

that has been determined by the government (for example, where laws might limit the amount of 

fines as in the case of the U.S Coast Guard). 

 An interesting extension of Harrington’s model is by Livernois and McKenna (1999), 

who introduce self-reporting by firms into the model. In this model lowering the fine for non-

compliance has two effects. The first is the conventional effect of reducing the number of firms 

that choose not to comply. The second and more interesting effect is that lowering the fine raises 

the proportion of non-compliant firms that file truthful reports about their compliance status. 

Thus, non-compliant firms identify themselves and save the agency from expending resources on 

determining non-compliance. Innes (1999) also shows that with self-reporting the government 

can costlessly impose stiffer non-reporter penalties that simultaneously increase compliance and 

reduce the agency’s enforcement effort. 

 Heyes and Rickman (1999) provide an alternative explanation for why firms will comply 

despite the small fines imposed by the regulatory agency. Their argument is that the regulatory 

agency uses tolerance in some areas that induces compliance in other areas. Tolerance is 

practiced in certain areas due to the difficult regulatory environment in those areas, where it 

would be difficult to induce compliance without expending substantial resources anyway.  For 

example, when performing safety inspection, USCG inspectors often train the crew by giving 

them valuable advice on best practices.  

Despite its seemingly restrictive assumptions, Harrington’s model is an attractive theory 

upon which to base an empirical study of the USCG for a variety of reasons. First, the low level 
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of equilibrium penalties in the model is in line with USCG policies. Figure 1 depicts the 

empirical distribution of monetary penalties that USCG inspectors have levied on vessels during 

the period between 1986-1998. These data are from the USCG Marine Safety Management 

System (MSMS) database. Of the 3050 penalty cases, 32% have assessments of less than $100. 

These small penalties are akin to traffic tickets that can be mailed in along with evidence that the 

penalized violation has been corrected. About 92% of the penalties are at or below $1000, which 

is not an onerous fine for most vessel operators. Weber and Crew (2000) document low penalties 

for actual spillage. In 1996, 26 of the 46 enforcement jurisdictions assessed mean penalties of 

less than $3.60 per liter. Thus, small penalties appear to be the norm. Repeat violators can be 

taken to court by the USCG, but such legal cases are rare. Due to the costs involved, only 

extreme cases are penalized in this manner.5  

Second, numerous violations are recorded by the USCG inspectors. Since Harrington’s 

model shows that even with low penalties in the face of a considerable number of violations, an 

agency is still capable of achieving a target rate of compliance in a repeated game setting, 

consistent with USCG data, we view USCG law enforcement activities through the theoretical 

lens provided by the model. The model’s assumption that is most vulnerable in the context of the 

USCG is that inspections precisely reveal whether the vessel is in compliance or not. Violations 

as a measure of compliance or non-compliance are necessarily inaccurate, even though they may 

be good predictors of oil spills.6 This point is brought home in Gawande and Bohara (2003). In 

fact, the possibly large variance of the conditional distribution of oil spills (conditional on 

violations observed by U.S Coast Guard) discourages the use of penalties based on observed 

violations.7 Research extending Harrington’s model along these lines would be useful. 
                                                           
5 The Oil Pollution Act of 1990 (OPA90), under which Exxon Corp. was sued for the 1989 Exxon Valdez 
spill in Alaska, perhaps provides the greatest deterrence. But even so, OPA90 limits liabilities for 
accidents in which negligence of the ship owner/operator or crew is not an issue (e.g. Gawande and 
Bohara, 2003). 
6  Further, if we assume imprecision about compliance, then individual heterogeneity across vessels 
makes it difficult to model because the predictive distribution of spills conditional upon violations varies 
across vessels. 
7  Bose’s (1995) analysis of regulatory errors and the optimal use of low fines is consistent with USCG 
policy as well. 
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Third, circumstantial and direct evidence suggests that USCG inspections are state-

dependent. Viladrich-Grau and Groves (1997) document such a policy in effect since 1985:  

“Since 1985, the Coast Guard has followed a two-tier policy; ships entering a 

harbor are classified either as High or Low Priority vessels. A vessel is classified as High 

Priority if there has been a recent history of either: (a) a safety violation, (b) an accident, 

and (c) if it has not been inspected during the last year or monitored during the previous 

six months. The transfer operations of High Priority vessels are automatically monitored, 

whereas those of the Low Priority vessels are only infrequently monitored. LP vessels 

may be randomly selected for inspection but only if all the HP vessels that enter the 

harbor have been monitored.” (Viladrich-Grau and Groves, 1997, fn 6). 

Our conversations with numerous USCG inspectors indicate this to be the case with 

foreign-flag vessels, and to some extent with US-flag vessels. In the case of foreign-flag vessels, 

an explicit USCG-wide policy that classifies vessels according to flag and other historic vessel 

information is in effect. In the case of US-flag vessels, such a policy is implicit. Even though 

many U.S Coast Guard inspections are periodic (e.g., hull inspections, annual inspections, and 

certificate inspections), the intensity with which a vessel is inspected during these scheduled 

inspections is based on the historic behavior of the vessel owner/operator. Interviews with 

several USCG personnel indicate that vessels with significant violations in the past or with a 

record of oil spills are inspected with greater intensity than vessels with cleaner records. This is 

consistent with Harrington’s model with two states. The USCG frequently requires reinspections 

of vessels found by inspectors to have numerous violations in areas such as human safety, 

navigational equipment and maintenance. Reinspections are designed to keep firms from being 

out of compliance for too long. They therefore serve the purpose of allowing vessels to move 

from state G2 to state G1. In sum, USCG enforcement policy has many features in common with 

Harrington’s model, which makes the model appropriate to use to theoretically analyze USCG 

enforcement. 
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3.3  Hypotheses 

 Harrington’s model has been empirically studied by Helland (2000) using data from the 

EPA’s Permit Compliance System database specifically for the pulp and paper industry, which is 

the largest single industrial polluter of the nation’s waterways. Quarterly data on inspections of 

paper mills by the EPA and self-reporting and violations at those mills during 1990-1993 are 

used for this study. Helland finds that these mills are noncompliant about 16% of the time. He 

finds some support for Harrington’s model. Consistent with the model, very low-cost and very 

high-cost plants do not self-report as much as do intermediate-cost firms. In Harrington’s model 

the incentives largely apply to these firms. Harrington’s model describes the plant–regulator 

interaction for that subset of paper mills that the EPA has decided to inspect for political reasons 

and at which it wishes to discourage violations actively. Thus, targeting does produce greater 

cooperation in the form of self-reporting, but such interest-driven targeting (as opposed to 

targeting based purely on past violations) does not deter violations.  

The USCG is less politically driven, and its targeting of vessels based on past vessel 

records is in line with Harrington’s model. Since greater compliance should result in a lower 

number of oil spills, Harrington’s model would imply that (even with the lower amount of 

penalties) USCG resources devoted to inspections should lower the expected number of oil spill 

incidents. That is, the model would imply that USCG policy with regard to differential 

inspections and differential (and low) penalties for vessels in the two states should be effective in 

lowering the number of oil spills. Furthermore, since USCG budget constraints do not allow an 

unlimited number of inspections, oil spills should be negatively related to resource hours devoted 

to inspections in a cross-section of vessels. This is the first hypothesis we empirically examine.  

An insightful view of this hypothesis is through the theoretical lens of the Harrington 

model. The USCG would like to achieve the twin objectives of minimizing the number of 

inspections (resource cost) and maximizing the rate of compliance. It is not possible to optimize 

both simultaneously. While it would like to achieve complete compliance, that is not possible 

with its available budget (and the implicit limit on penalties). Thus, the USCG maximizes the 
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rate of compliance given its budget constraint on inspections resources. Since the constraint is 

binding, at the margin an additional hour of inspection resources would be effective in further 

lowering oil spills. We state this as our working hypothesis H1. 

 

H1: The number of oil spills is negatively related to the resources devoted to vessel inspections.  

 

Inspections will reveal violations and infractions aboard vessels. Based on this “state” 

information, vessels are targeted and placed in group G1 or group G2. With the appropriate 

targeting, in a repeated game, there should either be no relationship or a negative relationship 

between the number of infractions and violations found during inspections and pollution 

occurrences. This is the “enforcement leverage” hypothesis from Harrington’s model. The 

incentives are such that vessels placed in G2 are motivated to keep a cleaner record in order to 

move to G1. Hence, those vessels that are likely to pollute more often (G2-vessels) should show 

fewer violations upon inspection. Of course, once these vessels move to group G1, they have an 

incentive to reduce compliance and thus spill. In sum, the two influences should either cancel out 

or the first one should dominate since, at any point in time, there are more high-risk vessels in 

G2 than in G1 and inspections are more frequent for G2 vessels. We state this as our next 

working hypothesis. 

 

H2: The number of violations or deficiencies found during inspections is either negatively 

related to pollution occurrences, or bears no relationship to them. 

 

 Finally, the constraint on the size of penalties is real. Any relaxation of this constraint 

should lower the number of pollution incidents. We state this as the last working hypothesis.  

 

H3: Stiffer penalties reduce pollution occurrences. 
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 This hypothesis can be tested with data pertaining to the number of legal cases initiated by the 

USCG inspectors on vessel owners.  

 

4.  Data and Econometric Model 

Data 

A panel of 4,896 U.S. deep-draft (over 100 gross tons of displacement) tank barges over 

the period 1986-1998 was extracted from the Marine Safety Management System (MSMS) 

database of the USCG. The fairly comprehensive MSMS database contains hours devoted to 

various types of inspections, vessel characteristics, and pollution incidents aboard these vessels. 

Count data on pollution incidents for each vessel were created from the pollution module of the 

MSMS database, and aggregating spills for vessels by year. Nearly 490 types of oil were 

recorded as being spilled into the waterways during this period.8  

The sample has 48,524 observations and is organized as a panel of vessels for each year. 

Since there is some entry of new barges and exit of old ones, the panel is unbalanced. There were 

a total of 7,821 pollution incidents and 474 large spills involving tank barges. The highest 

number of pollution cases for any single tank barge was 22. Over 80% of the tank barges were 

involved in at least one spill during this period, and 8.12% were involved in at least one large 

spill.  

Table 1 indicates that the mean number of incidents was 0.161 (sd=0.425) in the sample. 

Conditional on the occurrence of pollution, the sample mean is 1.134 spills per tank barge. A 

significant portion of the variation in the number of pollution incidents may be the result of 

unobserved heterogeneity across vessels. The experience of the captain, the training and salary of 

the crew, the extent to which alcohol consumption is common, and the financial state of the 
                                                           
8 In order of number of occurrences over the sample period (in parentheses), the most frequently spilled 
pollutants aboard tank barges were: Fuel Oil No. 6 (738), Diesel Oil (599), Automotive Gasoline (538), 
Crude Oil (499), Fuel Oil No. 2-D (303), Fuel Oil No. 2 (272), Misc. Oil Lubricating (216), Asphalt 
(111), Other Oil (105), Cracked Gas Oil (77), Jet fuel: JP-4 (70), Solvent Naphtha (70), Oil, 
Waste/Lubricants - possible contaminant (64), Benzene (54), Jet fuel: JP-5 (52), Diesel Oil (45), Fuel Oil 
No. 4 (41), Toluene (41), Motor Oil (39), Styrene (39), Kerosene (37), Fuel Oil No. 1-D (34), Misc. Oil 
Lubricating (33).  
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vessel operator are some examples of unobserved variables that result in the unobserved 

heterogeneity. 

Table 1 shows that the average age of tank barges is 21 years. Approximately 20% of all 

barges primarily ply ocean routes, while the rest sail on inland waterways. About 48% are 

double-sided and 45% are double-bottomed. These are sturdier designs than single-bottom and 

single-sided vessels. 

Inspection variables were based on the most recent routine inspection. Routine 

inspections are those that involve a certification inspection (COI) and/or a hull inspection. The 

average inspection lasts approximately 14 hours. Hull inspections last on average about 30 hours 

and a basic certification inspection lasts about 8 hours. The average hull inspection resulted in 

1.5 deficiencies, while the average certification inspection only resulted in 0.5 deficiencies. The 

use of legal action is rare, and only 0.2% of all inspections led to a legal case. Table 1 indicates 

that inspection hours are scaled by the size of the vessel (in thousand gross tons). This prevents 

spurious scale effects since large vessels require greater resources to inspect. The variable 

ln(InpsectionHours) is the log of the scaled inspection hours plus 1 (so when no inspection 

occurs, this variables takes the value zero). Deficiencies are defined as the number of infractions 

and safety violations found during inspections. ln(Deficiencies) is the log of one plus 

Deficiencies. 

Ship characteristics were based on the information from 1998. Where such information 

was missing, we assumed a negative answer in order to compute the data.9 For each vessel, barge 

characteristics data was merged with inspections data for the year preceding the year of the 

pollution incident if no inspections were performed in the year of the incident (i.e. inspections 

data were lagged by a year). If inspections were performed in the same year as an incident, then 

the inspections data from the same year was used. 

                                                           
9 For example, if the question was whether a vessel was double-sided and the question was left blank, we 
could assume with some certainty that it was left blank because the answer was “no.”   
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 Unfortunately, penalty data from before 1992 cannot be matched to vessels.10 Rather than 

lose a significant part of the sample, we decided to use the full 1986-1998 sample without the 

penalty data. We do use available information for whether the USCG initiated a legal case 

against the vessel.  

 

Econometric Model 

We model the number of pollution incidents using a count data econometric model. Count data 

models explain the variation in the count of incidents by variation in covariates, here the 

inspection hours and vessel characteristics. The count of events for observation i in the panel 

data set (i = 1, 2,…, n) is denoted yi>0. Letting xi indicate the vector of covariates for each i, with 

an associated vector of coefficients β. The conditional probability density function ( )β,xyf ii  

for the Poisson distribution is 
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i e= .   (2) 

 

The exponential specification for the mean λ is popular for the ease of interpretation of the 

parameter vector β. For any observation (suppressing the i),
j

j x∂
λ∂

λ
=β

1 , or the percent change 

in the mean due to a one-unit change in the exogenous variable xj.  

A concern about the Poisson distribution is that it presumes “equidispersion” (see e.g. 

Cameron and Trivedi 1998). Specifically, the (conditional) mean equals the (conditional) 

variance, [ ] [ ]iiii xyVxyE || = = exp )( 'βix . It is often the case that in the data the conditional 

variance is greater than the conditional mean; that is, there is generally overdispersion.  

The more general Negative Binomial (NB) model corrects for overdispersion. 

Specifically, the conditional variance function takes the form 

 

                                                           
10 The MSMS database was integrated with the penalty database only in 1992. Previously, it existed 
separately and did not identify the penalized vessel.  
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V[yi | xi] = λi + αλi         (3) 

 

where α is a dispersion parameter. The Poisson model is the special case of the NB model where 

α = 0. Among NB models, the most tractable are the NB Type I and NB Type II models, so 

called because of the difference in their variance specifications (Type I has a linear variance 

structure, and Type II has a quadratic variance structure; see Gurmu and Trivedi 1996).  

A second problem (Gurmu and Trivedi 1996) occurs if there are multiple observations on 

the same unit, which causes temporal dependence of the data because the same unit (here a 

vessel) is being observed. The problem of temporal dependence will appear as unobserved 

heterogeneity in cross-sectional data, and a source of overdispersion. In panel count data, the 

heterogeneity associated with error that is correlated across time can be captured using a random-

effects NB model (see, e.g., Woolridge, 2002, for a discussion of random effects estimation in 

general). The NB likelihood function captures the heterogeneity from both the unobserved and 

the temporal error.11 

Before proceeding to the model results, it is instructive to look at the data distribution. 

Figures 2.1 and 2.2 depict the frequency distributions of all pollution occurrences and large 

pollution occurrences aboard tank barges over the sample period. The mode count is 1 for all 

pollution occurrences and 0 for large pollution occurrences, where “large” pollution occurrences 

                                                           
11   The likelihood function is 
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i e= . This is the Type II NB model, where r indexes the unit of observation with errors that 
are temporally correlated, ur is the error term on rth unit-specific effect, b(ur) is the density function of ur, 
and Γ is the gamma distribution. Characteristics of the group or unit are unobservable in the data.  The 
error term, ur is normally distributed with mean zero and variance σu.  Using this specification allows the 
error term to be numerically integrated out (we use the Gaussian quadrature method) and σu to be 
estimated together with other model parameters. The integration is computationally intensive, with the 
result that each tank barge model took about 5 hours to estimate on a 1.5 Ghz Pentium. 
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were defined as incidents involving spills over 500 gallons. While arbitrary, this cutoff is useful 

in indicating the difference in the frequency distributions of potential serious incidents and 

pollution incidents generally. We note that these incidents are self-reported or detected by the 

USCG. Many pollution occurrences probably go unreported and are not in the data, thus 

understating the actual number of pollution occurrences. In the econometric analysis we take the 

data as representing the actual amount of pollution occurrences, and do not model unreported 

incidents. Figure 2.2 indicates that relatively fewer vessels were involved in large pollution 

incidents: 398 tank barges were involved in 474 large spills. Thus, the count data for large spills 

and spills generally are quite different, with the sample of large spills comprising many zeros. 

Our choice of the Negative Binomial model is appropriate given the large number of zeros and 

the potential for overdispersion in the data.12 

 

5.  Results and Discussion 

 Table 2.1 presents NB random effects estimates from the tank barge sample consisting of 

48,524 observations over the 12-year sample period. Estimates from six models appear in the 

table. The first three models are for count data on all pollution cases while the last three models 

are for count data on large pollution cases. Consider Model 1, a baseline model in which only 

vessel characteristics and the region in which they sailed are included as explanatory variables. 

This model indicates that older vessels have more spills (this is barely statistically significant), 

tank barges that ply ocean routes have more spills, tank barges with double-sided design have 

fewer spills, and the relatively few tank barges that sail in the west region have fewer spills than 

those that sail in the east or central regions. 

The dispersion parameter α suggests that overdispersion in the dependent variable makes 

the Poisson model too restrictive. The statistical significance of α is indicative of unobserved 

                                                           
12 The descriptive statistics in Table 1 actually indicate that the sample mean for pollution counts (0.161 
for all incidents and 0.010 for large spills) are close to their variances in the sample.  It would appear that 
the Poisson distribution would thus fit.  We conducted tests of models and chose the NB model based on 
formal model comparisons of the NB versus the Poisson model. 
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heterogeneity due to unmeasurable explanatory variables (e.g., weather conditions, crew 

experience, and the general policy of owners of the vessel regarding expenditures on 

maintenance). The statistical significance of σu (see fn 11) indicates a one-year temporal 

dependence of pollution incidents for any vessel. This result suggests that there may be multiple 

risk classes for ships and that if the USCG can identify high-risk ships, based on oil spills (that 

is, targeting based on outcomes as opposed to targeting based on safety violations), then more 

effort on those ships could be elicited, increasing performance. 

Model 2 introduces USCG interventions, measured by the logged hours of inspections on 

each vessel, the logged deficiency count found in the last inspection, and the number of legal 

actions generated during the last inspection. By presuming that inspection hours are exogenous, 

we are taking Harrington’s model quite literally. In Harrington’s model inspections occur 

randomly. The probability of inspections is endogenous, as is the targeting of vessels into groups 

G1 or G2 and the resulting penalties.13 If Harrington’s model is correct then model 2.1 indicates 

that inspection hours are very effective in reducing pollution incidents aboard tank barges. The 

coefficients of –0.112 indicate that, all else being constant, a 10% increase in inspection hours 

decreases the expected number of pollution incidents by 1.12%. This is a strong affirmation of 

Hypothesis H1, and therefore a validation of Harrington’s model. With low penalties, an 

excessive burden is placed on inspection resources, and with budget constraints the “shadow 

price” of an additional inspection hour on the margin is the reduction in pollution incidents 

foregone.  

The positive coefficient on ln(Deficiencies) is a troubling indicator that the deficiencies 

found aboard vessels are good predictors of pollution incidents. If targeting of vessels into the 

two groups is done based on deficiencies, then we should not find a positive estimate over the 

long run on ln(Deficiencies). We not only find this in this model, but it persists across all models 

                                                           
13 Recall that the agency’s decision variables are (i) the probability of inspection of a firm being in each 
state, (ii) the penalty that agency will apply to firms in each state, and (iii) the probability with which a 
compliant G2 firm is reclassified as a G1 firm.  Inspection resources are not a decision variable, and are 
fixed exogenously.   
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in Table 2.1 Thus, hypothesis H2 is not validated empirically. This reveals that targeting as in 

Harrington’s model is incompletely done and is not effective; in the presence of incomplete 

targeting, penalties for violations and spills are inadequate. Done effectively, targeting should 

lead to no particular relationship between deficiencies and pollution incidents, especially in the 

repeated game setting that the long panel captures. The number of legal actions brought against 

repeat violators is not statistically significantly different from 0 in Model 2. We will see that 

legal action is quite effective in deterring large spills, and probably used for that reason rather 

than for deterring pollution incidents generally. 

 Model 3 introduces two other variables. Those variables are the logged number of years 

since the last inspection and its square. The coefficients on these two variables indicate a U-

shaped relationship of pollution counts with this variable, with the minimum occurring at 1.75 

years. That is, if the last inspection occurred more than 1.75 years ago, the expected number of 

pollution incidents increases at an increasing rate. Since the mean for ln(LastInspection) is 1.5 

years (the exponential of 0.391, the mean of ln(LastInspection) in Table 1) and a standard 

deviation of 1.625 years, quite a large number of vessels are inspected at long intervals. For 

these, the expected number of spills is higher and increases as more time passes without an 

inspection. Working just from the data, it is difficult to determine if the vessels that are inspected 

over longer intervals are Harrington’s type G1 vessels. If this is so, then this result is quite 

consistent with Harrington’s model: the incentives are present for G1 vessels to pollute. 

The last three models in Table 2.1 model large pollution incidents. Strikingly, a number 

of results about pollution incidents remain valid for large pollution incidents. Model 5 shows that 

inspection hours continue to deter large pollution incidents, if, as in Harrington’s model, we 

presume inspection hours to be exogenous. The coefficient of –0.169 indicates that a 10% 

increase in inspection hours lowers the expected number of pollution incidents by 1.69%. A 

simple cost-benefit analysis shows that if the marginal hour deters sizable spills, it is worth 

increasing the number of inspection hours to deter them. The sample mean for 

ln(InspectionHours) is 13 hours. A 10% increase (1.3 hours) lowers the expected number of 
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pollution incidents by approximately 0.0037 spills with a 95% probability (1.69% of 

0.01+2×.0.102). Since 1.3 hours cost approximately $65, if a spill costs $10 per gallon to clean 

up (this varies considerably depending on the type of ecology, environment and shoreline 

impacted), it is worth expending the marginal hour if a large spill is defined as being over 1,756 

gallons.  

Less easily explained is the large positive coefficient of 0.241 on ln(Deficiencies). USCG 

inspectors do an admirable job of discovering the number of deficiencies in “high-risk” vessels 

that are likely to be involved in large pollution cases. In fact, for every 10% increase in the 

number of deficiencies, the expected number of large spills increases by 2.4%. The number of 

deficiencies discovered aboard a vessel are an excellent predictor of large spills. What is 

surprising is that they appear to be good predictors in the panel data. If targeting as in 

Harrington’s model is done effectively, then we should not see such a result. High-risk vessels 

placed in Group 2 should have the incentives to show few violations in order to move to Group 

1, not more violations as the results show. Thus, targeting seems to be incomplete, or penalties 

(including legal cases) are so low that effective targeting is difficult to accomplish because 

accepting the penalties is cheaper than incurring the costs to remedy violations. In sum, this 

result leads to a strong rejection of hypothesis H2. 

A new result in Models 5 and 6 is that legal actions deter large pollution incidents, in line 

with hypothesis H3. In terms of the theory, the binding constraint on monetary penalties is 

relaxed by introducing a new kind of penalty, and this should do precisely what the results 

indicate. The coefficient of –5.221 in Model 5 indicates that as legal actions increase by 10% 

large pollution incidents decrease by 52%. As Table 1 indicates, legal actions are rarely used, 

probably because they are expensive for the USCG to see through to the end. The results indicate 

that they are selectively used to elicit the greatest effect, as predicted in hypothesis H3. Whether 

the lack of stiff penalties should be made up by more legal actions requires a cost-benefit 

analysis for which we do not have the cost data.  
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Other than cost considerations, from a public management point of view the U.S Coast 

Guard resorts to legal actions only as a last resort. The Coast Guard governance style mixes 

hierarchical governance, where inspectors enforce laws using incentives such as penalties, and 

horizontal governance where gentle suasion and networking with vessel owners, operators, and 

crew are used to improve performance.  

While inspection hours are exogenous in Harrington’s model, it may not necessarily be 

true in the data. That is, USCG inspection hours may “chase” the number of pollution incidents. 

If inspection hours increase in response to past pollution incidents, and pollution incidents are 

temporarily correlated for each vessel, then inspection hours are not exogenous in the data. In 

Table 2.2, we thus instrument inspection hours using, in addition to all other exogenous variables 

in the model, these inspection-specific instruments: Certification, Hull, Trend, and WDCOI. The 

first two are dummy variables for whether hours were spent on a COI (certification) inspection 

or a hull inspection. The trend is simply the year of inspection, and WDCOI is a dummy for 

whether the vessel’s COI was withdrawn after the inspection.  

The first stage regressions in Table A1 indicate that the instruments perform admirably. 

Hours certainly vary according to the type of inspection; the trend takes care of the fact that there 

may be increases or decreases to USCG budget. WDCOI is borderline significant.  

The effect of instrumenting inspection hours on the model results is dramatic. Table 2.2 

indicates that in all models the signs for ln(InspectionHours) have reversed. Inspection hours are 

not effective in deterring either large pollution cases or pollution cases generally. Even though in 

Model 5′ the instrumented inspection hours are statistically insignificant, Model 6′ is preferred 

over this model in terms of any formal model comparison criteria. Thus hypothesis H1 is rejected 

by the data. Effectively, when ln(InspectionHours) is endogenous, USCG resources devoted to 

detecting violations does not deter large spills or spills generally. This corroborates a similar 

finding by Cohen (1987) using data from 15-20 years earlier. Thus, it appears that there are 

aspects of USCG enforcement that have remained unchanged over the years. 
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The first-stage estimates in Table A1 indicate two possible reasons why this is so. The 

first is that since the number of deficiencies is strongly positively correlated with the number of 

hours, and also highly positively correlated with the number of pollution incidents, the 

instrumented ln(InspectionHours) is positively correlated with the number of incidents. The 

second is that the large standardized estimates (not reported) on Hull indicate that the majority of 

hours (even after scaling by gross tonnage) are spent on labor-intensive hull inspections. If hull 

inspections do not deter large or small pollution incidents, then we will get the observed result. It 

would be hard to convince the USCG to lower the number of resources devoted to hull hours. In 

our interviews with several USCG personnel, they have indicated that hull inspections deserve 

greater intensity, since damage to the hull during transit will almost surely result in an extremely 

large spill, possibly an event of national significance. Their risk-aversion to extremely large 

spills makes USCG inspectors reluctant to decrease the amount of resources spent on hull 

inspections.  

We sum up as follows. As Viladrich-Grau and Groves (1997) document, the USCG 

follows a two-tiered targeting strategy. But while they find that this works aboard tank ships and 

tank barges, we find that targeting is incomplete. Even if hours are held to be exogenous as in 

Harrington’s model, there remains the troubling finding that deficiencies are positively correlated 

with spills. This should not be the case if targeting is done effectively in a repeated game setting. 

Thus, hypothesis H2 is overwhelmingly rejected by the data. If hours are endogenous, this 

violates Harrington’s model assumption. Now, inspection hours are used to target vessels, rather 

than violations found in random inspections. Thus violations predict spills well, and so do 

inspection hours. This is similar to the original finding of Epple and Visscher. But hours and 

violations are good predictors of spills; appropriate actions should be taken to prevent those 

spills. We speculate that, as stated in hypothesis H3, if fines were stiffer, they would provide the 

required deterrence. Perhaps then we would not find the positive coefficients on 

ln(InspectionHours) and ln(Deficiencies). We actually find that legal cases can be used 

effectively to deter large spills, thus providing empirical support for hypothesis H3. A case for 



 25 

stiffer fines is made in Weber and Crew (2000) who find the small size of fines wanting. They 

also find that stiffer fines, without being unduly harsh, could lower spills aboard barges. 

According to their results, a 10-day improvement in the speed with which penalties are assessed 

should reduce the volume of oil spillage by 0.6%. Of course, increases in the severity of 

punishment can reduce spillage even further. 

 The difference between our results and those of Viladrich-Grau and Groves may be due 

to data differences as well as model differences. Our panel data captures elements of a repeated 

game. Our data is from the post-OPA90 period, when a regime change may have occurred, while 

Viladrich-Grau and Groves use data from the 1980s. Finally, we introduce the number of 

deficiencies in our econometric model, which is missing from Viladrich-Grau and Groves’ study. 

Furthermore, they find that penalties do not matter on the margin, whereas our results (about 

legal cases) and those of Weber and Crew (2000) find that they do. The application of Viladrich-

Grau and Groves’ method to the panel data would certainly be revealing, and we leave that as an 

open research issue. 

 

6. Public Management Issues 

Lynn, Heinrich, and Hill (2001) define public sector governance broadly as “regimes of 

laws, rules, judicial decisions, and administrative practices that constrain, prescribe, and enable 

the provision of publicly supported goods and services through formal and informal relationships 

with agents in the public and private sectors.” Governance thus involves any constitutionally 

legitimate means, both vertical and horizontal, for achieving direction, control, and coordination 

of individuals or organizations (Hill and Lynn, 2004).  

This is very much a model of hierarchical (vertical) governance, in which the principal-

agent relationship between the USCG as a law enforcement agency is solved using high-powered 

incentives (penalties). The motivation for using this model is succinctly stated by Hill and Lynn 

(2004):  
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“the causal logic of governance is complex and difficult to study, yet that 

is the intellectual challenge facing the governance research community: producing 

the kind of ‛strong causal insights’ that have a plausible claim to validity in 

various contexts.”  

 

The hierarchical model we use, due to Harrington (1988), delivers causal insights and 

produces testable hypotheses that are valid in a variety of law enforcement contexts. In the real-

world environment of limited penalties and budget constraints, state-dependent targeting is used 

in order to economize on both the use of high-powered incentives as well as resources devoted to 

monitoring and inspections.  

However, this approach neglects other types of horizontal governance methods that the 

USCG may well use in combination with hierarchical methods in order to improve performance 

(i.e., reduce pollution occurrences). Kettl (2002) notes that transformations in governance have 

“made government both horizontal – in search of service coordination and integration with 

nongovernmental partners in service provision – and vertical – through both traditional, 

hierarchical bureaucracies and multi-layered federalism.” Scholz (1991) advances the notion of 

cooperative regulatory enforcement as a way to increase performance, a message that has been 

echoed in the context of environmental regulation by Fiorino (1999, 2001) Potoski and Prakash 

(2004), and Steinzor (1998). 

Indeed, the USCG may be employing a more cooperative approach in terms of the actual 

interactions their inspectors have with vessel owners and operators. For example, while 

examining safety violations, experienced inspectors may tutor and exemplify the “right” way to 

maintain safety. A more cooperative approach may send the signal that even though they are 

ultimately law enforcers and it is their job to inspect and correct violations, they are willing to 

forgive violations if they are not repeated with regularity. Thus, penalties are forgiven. In turn, 

vessel owners respond by their own signals about having done the best they can to remedy 

violations but only to the extent that is financially feasible for them. In this way, a horizontal 
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system of governance co-exists with a vertical one. While in this example one does not 

necessarily enhance the other, a deeper examination of horizontal governance as practiced by the 

USCG is relevant and would be revealing. In closing, we outline a research program along these 

lines.  

The theory for such a program should borrow from the game theory literature on the 

evolution of cooperation. Applications to networking in the field of industrial organization are 

plentiful. The methodology for such a program would require an internal survey of USCG 

personnel with experience in inspections of vessels at various port safety offices, so as to capture 

the heterogeneity of their experiences.  

A survey instrument would also shed light on the major question of how public 

management affects governance. The effect of public management on governance subsumes the 

previous question about whether governance is comprised of horizontal networks as well as 

hierarchical relationships. In their meta analysis of governance studies, Hill and Lynn (2004) 

indicate three elements of public management that influence governance. These elemental 

sources of performance improvements or declines are Administrative Structures, Tools, and 

Values and Strategies (Hill and Lynn, Table 6).  

The 1990s, during which, in response to the newly passed Oil Pollution Act on the heels 

of the Exxon Valdez incident, the USCG drastically changed its policies to respond to the new 

laws and initiatives, provides a natural experiment. This regime change can be used to assess not 

only the source of changes in governance, but also its differential impact on performance. It is 

clear that since OPA90 there have been far fewer spills than in earlier periods. It has been 15 

years since a large spill like the Valdez incident took place is US waters. USCG’s organizational 

change in terms of these three elements of their management should be measured, and their 

effectiveness sourced to them.  
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7.  Conclusion 

This paper constructs an organization-level database on monitoring and pollution 

incidents for the U.S Coast Guard (USCG). The database informs a theory-based investigation of 

the effectiveness of law enforcement when the use of high-powered incentives such as penalties 

is very limited. The theoretical context in which USCG enforcement is placed is Harrington’s 

model of targeting. In this model, vessels are put into two groups for which there is differential 

monitoring and (limited) penalties. If USCG enforcement is in line with the theory, then data on 

inspections and performance can be used to test three hypotheses generated from the theory. The 

first hypothesis is that USCG resources spent on inspections are effective in curtailing pollution 

occurrences. The second is that there should be no relationship between infractions and safety 

violations detected during inspection and pollution occurrences. Third, if the limit on the 

penalties is relaxed, or complementary penalties can be imposed, these will deter pollution 

occurrences. 

We assemble a panel data set for about 4,500 tank barges over the period 1986-1998. A 

Negative Binomial panel econometric model is used to explain count data on the number of 

pollution occurrences aboard these vessels using variables that measure USCG enforcement 

effort and vessel characteristics. The findings about the hypotheses are mixed. We reject the first 

and second hypotheses and fail to reject the third. It appears that U.S Coast Guard inspections do 

not target completely in accordance with Harrington’s model. Thus, noncompliance by vessels is 

not fully deterred in the presence of limited penalties.  

On the other hand, the model we have investigated is a hierarchical command-and-

control model of governance. In the public administration literature there have been calls for 

mixing hierarchically-based governance together with an approach that emphasizes networking 

and two-sided cooperation, termed horizontal governance. A future line of research inquiry 

should conduct a theory-based investigation into whether these two modes of governance in 

combination are more effective than they are alone.  
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Figure 1: Distribution of USCG-imposed harm-based Penalties
N=3050 penalties for spills between 1986-98
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Table 1:  Variable description and descriptive statistics 
  Mean sd 
#Pollution Count of pollution cases per year.  0.161 0.425 
#LargePollution Count of large pollution cases (>500 gallons/pounds) per year.  0.010 0.102 

ln(InspectionHours) Natural log of (total inspection hours from last inspection divided 
by (registered gross tonnage divide by 1000)). 2.245 0.850 

ln(LastInspection) Natural log of the number years since the last inspection. 0.391 0.486 
ln(Deficiencies) Natural log of the deficiency count of the last inspection 0.247 0.535 
#LegalAction Count of legal actions generated during last inspection. 0.002 0.040 
Age (Calendar year of ship minus build year ) divided by 100.  0.216 0.119 
OceanRoute Dummy variable, 1 = vessel's primary route is ocean. 0.081 0.273 
DoubleSided Dummy variable, 1 = vessel is double-sided.  0.542 0.498 
DoubleBottomed Dummy variable, 1 = vessel is double-bottomed. 0.507 0.500 
East Dummy variable, 1 = last inspection occurred in eastern U.S. 0.411 0.492 
West Dummy variable, 1 = last inspection occurred in western U.S. 0.047 0.211 
Central Dummy variable, 1 = last inspection occurred in central U.S. 0.518 0.500 

NonSiteSpecific Dummy variable, 1 = last inspection by non-site specific USCG 
group or outside US 0.024 0.153 

Tonnage Registered gross tonnage of barge. 1355.5 1878.5 
Certification The inspection was for a certificate of inspection. 0.561 0.557 
Hull The inspection was for a hull inspection. 0.226 0.437 
Trend Observation year minus 1986 (beginning observation year) 6.839 3.332 
WDCOI USCG withdrew the vessel's Certificate of inspection. 0.001 0.029 
Notes: 
1. All variables are constructed from the US Coast Guard MSMS database over the 1986-1998 period. 
2. Data pertain to Tank barges. Sample has 48524 observations and 4896 Tank barges. 

 



 
 
 
 
 

Figure 2.1: Frequency distribution for Number of Pollution Occurrences 

 
 
 
 

Figure 2.2: Frequency distribution of Number of Large Pollution Occurrences 
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Table 2.1: Random Effects Estimates from Negative Binomial model 
Harrington Model: Inspection Hours Exogenous 

 
 

 All pollution cases Large Pollution Cases 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

−1.835*** −1.595*** −1.542*** −4.869*** −4.502*** −4.380*** Intercept (−47.87) (−31.26) (−29.34) (−29.91) (−20.91) (−20.46) 
−0.112*** −0.108*** −0.169*** −0.167*** ln(InspectionHours) − (−7.497) (−7.214) − (−2.950) (−2.876) 

−0.382*** −0.253 ln(LastInspection) − − (−7.603) − − (−0.623) 
0.340*** −0.492 [ln(LastInspection)]2 − − (11.57) − − (−1.097) 

0.043** 0.035 0.241*** 0.252*** ln(Deficiencies) − (1.968) (1.599) − (3.169) (3.331) 
0.193** 0.216 −5.221*** −4.368*** #LegalAction − (0.763) (0.854) − (−23.75) (−20.14) 

0.197* 0.223* −0.037 −0.675* −0.632 −0.087 Age (1.824) (1.929) (−0.302) (−1.650) (−1.510) (−0.204) 
0.492*** 0.426*** 0.434*** 1.101*** 0.913*** 0.889*** OceanRoute (9.668) (9.372) (9.292) (8.389) (6.777) (6.640) 
−0.218*** −0.234*** −0.231*** −0.320 −0.343 −0.345 DoubleSided (−4.342) (−4.267) (−4.128) (−1.514) (−1.631) (−1.640) 
−0.062 −0.058 −0.063 −0.651*** −0.632*** −0.620*** Double-bottomed (−1.235) (−1.048) (−1.121) (−2.999) (−2.936) (−2.877) 
0.014 0.028 0.021 0.261** 0.261** 0.272*** East (0.512) (1.092) (0.799) (2.456) (2.458) (2.577) 

−0.245*** −0.230*** −0.221*** −0.498** −0.484** −0.463** West (−3.936) (−3.589) (−3.390) (−2.134) (−2.082) (−2.017) 
0.312*** 0.316*** 0.254*** 1.176** 1.268** 1.365** α (NB dispersion 

parameter) (7.318) (6.693) (6.126) (1.986) (2.082) (2.118) 
0.358*** 0.343*** 0.387*** 1.031*** 0.974*** 0.920*** σu (random-effects  

parameter) (13.30) (19.01) (22.21) (11.41) (10.25) (9.252) 
N 48,524 48,524 48,524 48,524 48,524 48,524 
# parameters 9 12 14 9 12 14 
Log-Likelihood −22409.9  −22380.0  −22306.1  −2543.0  −2533.7  −2511.9  
Notes: 

1. Numbers in parentheses are heteroscedastic-consistent t-statistics 
2. *, **, and *** denote significance at the 10, 5, and 1 percent levels, respectively (two-tailed test). 

 



 
 
 
 

Table 2.2: Random Effects Estimates from Negative Binomial model 
Inspection Hours Endogenous and Instrumented 

 
 

 All pollution cases Large Pollution Cases 
Variable Model 2′ Model 3′ Model 5′ Model 6′ 

−2.469*** −2.496*** −5.005*** −5.945*** Intercept (−18.70) (−19.82) (−9.217) (−13.16) 
0.290*** 0.333*** 0.039 0.533*** ln(InspectionHours) (5.c138) (6.086) (0.161) (2.740) 

−0.190*** 0.047 ln(LastInspection) − (−3.188) − (0.110) 
−0.013 −1.050** [ln(LastInspection)]2 − (−0.194) − (−2.088) 

0.002 0.125*** 0.224*** 0.395*** ln(Deficiencies) (0.086) (4.470) (2.778) (4.102) 
0.128 0.151 −0.755*** −0.904*** #LegalAction (0.533) (0.615) (−3.521) (−4.260) 
0.088 −0.170 −0.638 −0.284 Age (0.805) (−1.432) (−1.532) (−0.669) 

0.611*** 0.637*** 1.022*** 1.231*** OceanRoute (10.55) (11.07) (5.79) (7.85) 
−0.174*** −0.165*** −0.334 −0.229 DoubleSided (−3.441) (−3.192) (−1.539) (−1.072) 
−0.071 −0.077 −0.617*** −0.655*** Double-bottomed (−1.445) (−1.526) (−2.811) (−3.019) 
−0.032 −0.045 0.238** 0.168 East (−1.157) (−1.590) (2.144) (1.552) 

−0.294*** −0.290*** −0.515** −0.599** West (−4.700) (−4.568) (−2.165) (−2.530) 
0.314*** 0.251*** 1.181** 0.964* α (NB dispersion  

parameter) (6.799) (6.128) (2.207) (1.821) 
0.354*** 0.395*** 1.016*** 0.977*** σu (random-effects  

parameter) (12.90) (15.60) (11.07) (10.47) 
N 48,524 48,524 48,524 48,524 
# parameters 12 14 12 14 
Log-Likelihood −22396.1 −22313.3 −2538.2 −2512.6 

 
   See Notes to Table 2.1 



 
 

Table A1: First Stage (OLS) Estimates  
Dependent Variable:  ln(InspectionHours) 

 
Variable Model 1 Model 2 

2.055*** 1.657*** Intercept 
(145.422) (70.407) 
0.110*** 0.104*** ln(Deficiencies) 
(15.46) (14.64) 

0.829*** ln(LastInspection) − 
(20.80) 

−0.300*** [ln(LastInspection)]2 − 
(−18.02) 

0.091 0.111 #LegalAction 
(0.978) (1.203) 

0.353*** 0.300*** Age (10.31) (8.641) 
−0.540*** −0.537*** OceanRoute (−35.84) (−35.82) 
−0.144*** −0.143*** DoubleSided (−9.183) (−9.205) 

0.030* 0.031** DoubleBottomed (1.912) (2.021) 
0.164*** 0.166*** East (21.32) (21.66) 
0.139*** 0.145*** West (7.304) (7.675) 
−0.110*** 0.262*** Certification 
(−15.56) (13.92) 
0.468*** 0.468*** Hull 
(51.93) (52.19) 

0.010*** 0.009*** Trend 
(9.089) (8.151) 

0.398*** 0.230* WDCOI (3.094) (1.798) 
N 48524  48524  
# Parameters 13 15 
R2 0.096 0.087 
Adjusted R2 0.095 0.087 

 
 




