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Abstract 

 

Digits in statistical data produced by natural or social processes are often 

distributed in a manner described by “Benford’s law”. Recently, a test against 

this distribution was used to identify fraudulent accounting data. This test is 

based on the supposition that real data follow the Benford distribution while 

fabricated data do not. Is it possible to apply Benford tests to detect fabricated or 

falsified scientific data as well as fraudulent financial data? We approached this 

question in two ways. First, we examined the use of the Benford distribution as a 

standard by checking digit frequencies in published statistical estimates. Second, 

we conducted experiments in which subjects were asked to fabricate statistical 

estimates (regression coefficients). These experimental data were scrutinized for 

possible deviations from the Benford distribution. There were two main 

findings. First, the digits of the published regression coefficients were 

approximately Benford distributed. Second, the experimental results yielded 

new insights into the strengths and weaknesses of Benford tests. At least in the 

case of regression coefficients, there were indications that checks for digit-

preference anomalies should focus less on the first and more on the second and 

higher-digits. 
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I. Introduction 

  

The digits of numerical data produced by a large number of very different 

natural and social processes take the form of a logarithmic distribution described 

by Benford’s law. Given the number and variety of processes that produce 

Benford-distributed data, it is often assumed that many kinds of real data adhere 

to Benford's law. The further assumption that fabricated or falsified data are 

detectable through the deviation of their digits from the Benford distribution has 

been tested recently in several contexts. For example, some studies have 

reported success in identifying fraudulent information with a check of digital 

frequencies in tax or other financial data against the Benford distribution 

(Carslow 1988, Berton 1995, Nigrini 1996, Quick and Wolz 2003). Similar 

results have been reported for fabricated survey interviews (Schraepel and 

Wagner 2003, Schäfer et al. 2004). It may well be that “Benford tests” can also 

be used to identify fraudulent scientific data or results.  

 

In the empirical sciences, publications often report large tables with statistical 

estimates (such as regression coefficients) whose digits might fruitfully be 

compared with the Benford distribution. In this article, we will empirically 

investigate the application of the Benford test to regression coefficients and 

other statistics. Regression coefficients were chosen as an object of study 

because of their ubiquity in the scientific literature, and not only in fields such as 

sociology or psychology. Estimates for regression coefficients are, for example, 

frequently reported in econometrics. Biomedical researchers also use regression 

analysis or related techniques such as logistic regression. 

 

 However, before we can apply Benford tests to these data, it must be 

demonstrated that the digits of regression coefficients or other statistical 

estimates are generally distributed in accordance with Benford’s law. And, even 
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if there is evidence for the use of this standard, employing the Benford test to 

identify fraudulent data means that the deviation of fraudulent data from the 

standard set by Benford’s law must also be demonstrated. Good evidence is 

required for both of these hypotheses before the Benford test can be accepted as 

a valid procedure for detecting anomalies in scientific publications. The first of 

the above hypotheses (that real data are Benford distributed) is tested in Section 

III of this paper. In an effort to learn more about the distributional properties of 

the digits from estimated regression coefficients, we collected a large sample of 

regression coefficients from the published literature. In Section IV, we report on 

the results of three experiments designed to test the second hypothesis (that the 

digits of fraudulent data deviate from the Benford distribution). In these 

experiments, students attending university-level statistics courses were asked to 

construct a table of regression coefficients in support of a certain hypothesis. 

The second hypothesis predicts that the first and second digits of the fabricated 

data will deviate from Benford’s law.  

 

II. Benford’s Law  

 

The logarithmic distribution of the first digit d1 of various naturally occurring 

quantities is described by “Benford’s law” or  the “first digit phenomenon” (Hill 

1998, Raimi 1969, 1976): 

 

P(d1) = log10 (1 + 1/d1).                                                                                       (1) 

 

According to the formula, the probability that a number's first digit is “1” is 

0.301, while a “9” is expected with a much lower probability of 0.046 (see Table 

1). 
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This phenomenon was discovered by Newcomb (1881), who observed that 

tables of logarithms were used more often for smaller digits than for larger ones. 

Half a century later, Benford (1938) happened upon this regularity through the 

same observation (Hill 1995a). However, Benford went further in computing 

frequency distributions for the first digits of a variety of data such as the area of 

riverbeds, figures from newspaper articles, population figures and other data. 

The digits of these data could be closely approximated by the logarithmic 

distribution.  

 

A generalized distribution describes the data's other digits. The joint distribution 

of first and higher-order significant digits takes the form (Hill 1995a): 

 

P(D1 = d1, ..., Dk = dk) = log10 [ 1 + (Σdi 10k-i)-1]                                               (2) 

 

whith d1 = 1, 2, ... ,9 and dj = 0, 1, ... ,9 (j = 2, ..., k). For example, if digits are 

Benford distributed the combination of significant digits 1028 (e.g. 0.001028) is 

expected with probability log10 [1 + 1/1028]. This “general significant-digit law” 

(Hill 1995a) permits the derivation of the marginal distributions of second-order 

and higher-order digits. Table 1 displays the probabilities for the first three 

significant digits. 

 

[ Table 1 ] 

 

It follows from the joint distribution described above that the distribution of 

higher-order digits increasingly approximates the uniform distribution.  

 

Since Benford’s publication, substantial progress has been made in explaining 

the mechanism behind the generation of Benford-distributed digits. Hill (1995a, 

1998) proved a “random samples from random distributions theorem”. If one 
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first chooses a sample of distributions at random and then samples digits from 

those distributions, the resulting distribution will – under certain conditions – 

approximate Benford’s law. Also, Hill (1995a) was able to prove the base and 

scale invariance of Benford’s law rigorously. Hence, if Benford’s law, for 

example, applies to the distribution of the digits of data on the area of lakes in 

units of acres it will (on average) also apply to the same data in units of square 

meters. Moreover, Hill (1995b) has shown that Benford’s logarithmic 

distribution is the only scale-invariant distribution.  

 

III. Digit Distribution of Statistical Estimates 

 

A necessary prerequisite for the application of Benford tests for the accuracy of 

any kind of data is that the real (i.e. not fabricated or falsified) data should be 

Benford distributed. Little information exists on the Benford conformity of raw 

data, and even less exists on whether statistical estimates generally take the form 

of the Benford distribution. To our knowledge, with the exception of Becker’s 

(1982) analysis of failure rates, there have been no published investigations of 

the typical distribution of digits for statistical estimates such as standard 

deviations or regression coefficients. To examine the use of the Benford 

distribution as a standard, we created a dataset of first digits from means, 

standard deviations, correlation coefficients, and standardized and 

unstandardized regression coefficients (including those from ordinary least 

squares and logistic regression models), including about one thousand digits for 

each statistic. These data were collected from tables published in two volumes 

of the “American Journal of Sociology” from January 1996 (Vol. 101) to May 

1997 (Vol. 102).  

 

The relative frequencies of the first digits of unstandardized regression 

coefficients closely approximate the Benford distribution. For example, a “one” 
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has a relative frequency of 0.307 in our sample, while the value predicted by 

Benford’s law is 0.310 (Figure 1). For a significance level of α = 0.05, a 

comparison with the Benford distribution supports the null hypothesis of no 

difference between the predicted and observed distributions (χ2 = 7.115, df = 8, 

p = 0.524). 

 

[ Figure 1 ] 

 

On the other hand, the fit between the distribution of the statistical estimates’ 

first digits and the Benford distribution is much worse for means, standard 

deviations, correlations, and standardized coefficients (results not shown).  

To explore the robustness of the above result and to gather information on the 

Benford conformity of the estimates’ second digits, we inspected an additional 

sample of regression coefficients. The second sample was drawn from the same 

journal as the first and contains 1,457 first and second digits from all the tables 

of (OLS) regression coefficients published in Volume 104, Issues 1-6 (1999) 

and Volume 105, Issues 1-5 (2000) of the same journal.  

 

Although the χ2 test results in the rejection of the null hypothesis that the first 

digits of the  second set of regression coefficients are drawn from a Benford 

distribution (χ2 = 21.072, df = 8, p = 0.007), the approximation is not all that 

poor in descriptive terms. The significant deviation is caused mostly by the 

higher-than-expected occurrence of the digit “5”, which has a relative frequency 

0.101 in the sample of regression coefficients, as compared to an expected 

frequency of 0.079. Moreover, the second digits are distributed largely in 

accordance with the monotonic decline of digit frequencies predicted by 

Benford’s law (Figure 2).  
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The observed distribution of second digits yields a better approximation of the 

Benford-predicted distribution (χ 2 = 7.115, df = 9, p = 0.524). Note that the 

observed values exhibit the typical pattern of a monotonic decline and therefore 

deviate systematically from a uniform distribution. 

 

[ Figure 2 ] 

 

In summary, the largest discrepancy between the predicted and observed digit 

frequencies is 0.022 for a first digit of “5” in this second sample. Further, all of 

the above tests  on regression coefficients reveal the pattern of a monotonic 

decline in the digital frequencies. Hence, the conclusion that the digits of 

regression coefficients closely approximate Benford’s law is justified. 

 

IV. Experiments with Fabricated Regression Coefficients 

 

In three separate experiments, students participating in statistics courses at the 

University of Berne in Switzerland were asked to fabricate regression 

coefficients in accordance with a given hypothesis. Students were mainly from 

the sociology (experiment 1 in January 2001, and experiment 3 in January 2004) 

and economics (experiment 2 in October 2001) departments. Subjects were 

asked to construct “plausible values” of regression coefficients that would 

support a controversial hypothesis from neoclassical economics, and then record 

these values on a form provided by the researchers. The hypothesis was, “The 

higher the unemployment benefits, the longer the duration of unemployment”. 

They were asked to generate four-digit coefficients for the unemployment 

benefit variable and nine other independent variables or “controls”, such as 

education in years, job experience, gender, and so on. In experiments 1 and 2, 

each subject produced the ten coefficients detailed above. The task in 

experiment 3 was the same, except that subjects were asked to fabricate those 
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ten coefficients for ten separate samples, in other words to fabricate 100 four-

digit regression coefficients.  

 

A few students produced data that indicated they had either not understood the 

task or not followed instructions to any meaningful extent; their questionnaires 

were excluded from the analysis. Data from a total of 10 questionnaires were 

used from experiment 1 (n=100 coefficients), 13 questionnaires from experiment 

2 (n = 130), and 14 questionnaires from experiment 3 (n = 882). Only four 

subjects completed the entire experiment 3 questionnaire within the time allotted 

(about 35 minutes), while the other ten filled in the questionnaire at least 

partially. Data were aggregated for analysis across subjects in experiments 1 and 

2, while the large number of fabricated coefficients collected in experiment 3 

allowed for a separate analysis of the data for every individual.  

 

The distribution of first digits produced in both experiments 1 and 2 exhibits a 

pattern similar to the one predicted by Benford’s law. In both experiments, χ 2  

tests for the equivalence of the expected and the observed distributions do not 

permit the rejection of the null hypothesis for α = 0.05 (experiment 1: χ 2 = 

10.644, df = 8, p = 0.223; experiment 2: χ 2 = 15.295, df = 8, p = 0.054), 

although the test statistic for experiment 2 just failed to reach the level of 

statistical significance. More importantly, the shape of the frequency distribution 

mirrors the monotonic decline of the Benford distribution for both experiments. 

Thus, data from these experiments do not support the idea that the first digits of 

fabricated data deviate from Benford’s law. 

 

[ Figure 3] 

 

What about the second digit? In both experiments, the observed distributions of 

the second digits deviate significantly from the Benford distribution (experiment 
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1: χ 2 = 27.000, df = 9, p = 0.001; experiment 2: χ 2 = 23.570, df = 9, p = 0.005). 

The hypothesis that “true” regression coefficients follow Benford’s law while 

fabricated data do not is supported by the analysis of the second digits although 

it was not supported by the analysis of the  first.  

 

Of course, a weakness of the experiments is that they permit only the analysis of 

aggregated data.  Assuming that there is individual variance in the falsification 

patterns, an individual level analysis might be more informative. The third 

experiment was conducted to collect enough data from each subject to permit an 

individual-level analysis. This procedure allows for the separate analysis of 

individual data.  

 

[Table 2] 

 

In principle, the results from the third experiment are very much in line with 

those from aggregate-level experiments. Most subjects exhibit fabrication 

patterns that conform to Benford’s law for the first digit, but not for the second 

or higher-order digits. With the Benford distribution as the null-hypothesis, the 

pattern of the failure to reject the null-hypothesis for the first digit and of the 

rejection of the null-hypothesis for the second and higher-order digits is 

supported by most of the individual-level significance tests conducted for these 

data: Out of 14 tests, three are significant (α = 0.05) for the first digit, while ten 

tests are significant for the second digit, 12  for the third digit, and 13 for the 

fourth digit (Table 2). 

 

It is not the first digit that matters! This result fits well with the finding by  

Mosimann et al. (1995) that the inspection of the higher-order digits of 

fabricated data provides better clues to errors or data fabrication than does the 

inspection of the first digit. Quite interestingly, subjects favour smaller first 
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digits in fabricating regression coefficients, resulting in a Benford-like pattern 

for the distribution of first-digits in fabricated data. So, a test for the fabrication 

of regression coefficients might most fruitfully focus on the second, third or 

higher-order digits. If second and higher-order digits deviate from the Benford 

distribution, this deviation may yield an indication that the data have been 

fabricated. At least for regression coefficients, it appears that using a Benford 

test of first digits for data fabrication would provide misleading results.  
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Table 1: Probabilities Predicted by Benford’s Law for the First and Higher-

Order Digits* 

di P(d1) P(d2) P(d3) P(d4) 
0  0.11968 0.10178 0.10018 
1 0.30103 0.11389 0.10138 0.10014 
2 0.17609 0.10882 0.10097 0.10010 
3 0.12494 0.10433 0.10057 0.10006 
4 0.09691 0.10031 0.10018 0.10002 
5 0.07918 0.09668 0.09979 0.09998 
6 0.06695 0.09337 0.09940 0.09994 
7 0.05799 0.09035 0.09902 0.09990 
8 0.05115 0.08757 0.09864 0.09986 
9 0.04576 0.08500 0.09827 0.09982 

*Figures are adapted from Nigrini 1996. 
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Table 2: Analysis of Fabricated Data for Individual Subjects (Experiment 3) 
 

 1st Digit 2nd Digit 3rd Digit 4th Digit 
       

Subject χ2  p value n χ2  p value n χ2  p value n χ2  p value n
1 18.49 0.018 100 30.11 0.000 100 32.35 0.000 99 28.28 0.001 98
2 14.14 0.078 100 23.88 0.004 100 25.49 0.002 100 19.29 0.023 100
3 9.08 0.336 100 12.58 0.182 100 19.59 0.021 100 33.04 0.000 100
4 7.90 0.443 100 30.15 0.000 99 33.70 0.000 93 35.83 0.000 85
5 5.60 0.692 26 14.75 0.098 26 11.72 0.229 26 12.44 0.190 26
6 9.19 0.326 20 9.44 0.398 20 24.61 0.003 20 18.05 0.035 20
7 3.12 0.926 24 17.16 0.046 24 57.31 0.000 24 22.60 0.007 23
8 34.03 0.000 45 17.09 0.047 45 17.69 0.039 45 38.68 0.000 45
9 7.85 0.448 68 42.69 0.000 68 40.91 0.000 68 25.36 0.003 67

10 6.42 0.601 60 17.26 0.045 60 44.47 0.000 60 103.07 0.000 56
11 9.13 0.331 63 40.88 0.000 63 113.22 0.000 62 162.69 0.000 52
12 13.64 0.092 46 22.91 0.006 46 19.64 0.020 46 40.46 0.000 44
13 19.39 0.013 50 23.79 0.005 49 8.33 0.502 47 29.32 0.001 42
14 5.49 0.705 80 13.40 0.145 80 22.48 0.007 79 27.34 0.001 75

All  12.26 0.140 882 31.83 0.000 880 59.90 0.000 869 112.74 0.000 833
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Unstandardized Regression Coefficients
Distribution of First Digits

0%
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AJS 30.65% 18.00% 12.99% 8.15% 7.56% 7.13% 6.71% 5.01% 3.82%

Benford 30.10% 17.60% 12.50% 9.70% 7.90% 6.70% 5.80% 5.10% 4.60%

1 2 3 4 5 6 7 8 9

 
Figure 1: Relative frequencies of first digits of regression coefficients from 
articles published in the American Journal of Sociology (Sample 1, Volumes 
101 and 102).  
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Unstandarized Regression Coefficients
Distribution of First Digits
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Unstandardized Regression Coefficients
Distribution of Second Digits
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AJS 11.60% 11.70% 10.60% 9.30% 9.50% 10.30% 9.70% 9.20% 8.90% 9.10%

Benford 12.00% 11.40% 10.90% 10.40% 10.00% 9.70% 9.30% 9.00% 8.80% 8.50%

0 1 2 3 4 5 6 7 8 9

 
Figure 2: Relative frequencies of first and second digits of regression 
coefficients from articles published in the American Journal of Sociology 
(Sample 2, Volumes 104 and 105) 
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Figure 3: Relative frequencies of first and second digits of fabricated regression 
coefficients 
 
(a) Experiment 1, n=100 
 

Fabricated Regression Coefficients
Distribution of First Digits
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Fabricated Regression Coefficients
Distribution of Second Digits
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Benford 12.00% 11.40% 10.90% 10.40% 10.00% 9.70% 9.30% 9.00% 8.80% 8.50%

0 1 2 3 4 5 6 7 8 9
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(b) Experiment 2, n=130 
 

Fabricated Regression Coefficients
Distribution of First Digits
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Fabricated 26.15% 19.23% 10.77% 5.38% 12.31% 5.38% 5.38% 10.77% 4.62%
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Benford 11.97% 11.39% 10.88% 10.43% 10.03% 9.67% 9.34% 9.04% 8.76% 8.50%
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Fabricated Regression Coefficients
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Appendix 1: Relative Frequencies of First and Higher Order Digits for 14 Subjects (Experiment 3) 

 19

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9
Digit

Chi2=18.49, n=100
Subject 1

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9
Digit

Chi2=14.14, n=100
Subject 2

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9
Digit

Chi2=9.08, n=100
Subject 3

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9
Digit

Chi2=7.90, n=100
Subject 4

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9
Digit

Chi2=5.60, n=26
Subject 5

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9
Digit

Chi2=9.19, n=20
Subject 6

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9
Digit

Chi2=3.12, n=24
Subject 7

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9
Digit

Chi2=34.03, n=45
Subject 8

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9
Digit

Chi2=7.85, n=68
Subject 9

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9
Digit

Chi2=6.42, n=60
Subject 10

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9
Digit

Chi2=9.13, n=63
Subject 11

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9
Digit

Chi2=13.64, n=46
Subject 12

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9
Digit

Chi2=19.39, n=50
Subject 13

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9
Digit

Chi2=5.49, n=80
Subject 14

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

1 2 3 4 5 6 7 8 9
Digit

Chi2=12.26, n=882
All Subjects

Falsified Regression Coefficients: First Digit

Fabricated Benford

 



0
.1

.2
.3

.4
Fr

eq
ue

nc
y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=30.11, n=100
Subject 1

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=23.88, n=100
Subject 2

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=12.58, n=100
Subject 3

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=30.15, n=99
Subject 4

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=14.75, n=26
Subject 5

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=9.44, n=20
Subject 6

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=17.16, n=24
Subject 7

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=17.09, n=45
Subject 8

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=42.69, n=68
Subject 9

0
.1

.2
.3

.4
Fr

eq
ue

nc
y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=17.26, n=60
Subject 10

0
.1
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0 1 2 3 4 5 6 7 8 9
Digit

Chi2=40.88, n=63
Subject 11

0
.1
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0 1 2 3 4 5 6 7 8 9
Digit

Chi2=22.91, n=46
Subject 12

0
.1
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y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=23.79, n=49
Subject 13
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.1
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.3

.4
Fr

eq
ue

nc
y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=13.40, n=80
Subject 14

0
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y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=31.83, n=880
All Subjects

Falsified Regression Coefficients: Second Digit

Fabricated Benford
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Chi2=32.35, n=99
Subject 1
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Chi2=25.49, n=100
Subject 2
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0 1 2 3 4 5 6 7 8 9
Digit

Chi2=19.59, n=100
Subject 3

0
.1
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y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=33.70, n=93
Subject 4

0
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y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=11.72, n=26
Subject 5

0
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y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=24.61, n=20
Subject 6
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y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=57.31, n=24
Subject 7

0
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y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=17.69, n=45
Subject 8

0
.1
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.3
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y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=40.91, n=68
Subject 9

0
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y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=44.47, n=60
Subject 10
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y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=113.22, n=62
Subject 11
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y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=19.64, n=46
Subject 12

0
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y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=8.33 , n=47
Subject 13

0
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.4
.5
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y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=22.48, n=79
Subject 14

0
.1

.2
.3

.4
.5
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ue
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y

0 1 2 3 4 5 6 7 8 9
Digit

Chi2=59.90, n=869
All Subjects

Falsified Regression Coefficients: Third Digit

Fabricated Benford
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Chi2=28.28, n=98
Subject 1
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Chi2=19.29, n=100
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Chi2=35.83, n=85
Subject 4
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Chi2=12.44, n=26
Subject 5
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Chi2=18.05, n=20
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Chi2=22.60, n=23
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Chi2=38.68, n=45
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0 1 2 3 4 5 6 7 8 9
Digit

Chi2=25.36, n=67
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Chi2=103.07, n=56
Subject 10
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Chi2=162.69, n=52
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Chi2=40.46, n=44
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Chi2=29.32, n=42
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Chi2=27.34, n=75
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Digit

Chi2=112.74, n=833
All Subjects

Falsified Regression Coefficients: Fourth Digit

Fabricated Benford
 



Appendix 2: Questionnaire for the Fabrication Experiments 1 and 2* 
 
Name: 
Major: 
Semester: 
 
 
Your task is to construct a table of (unstandardized) regression coefficients (for a multiple 
linear regression) that support the following hypothesis: 
 
“The higher the unemployment benefits, the longer unemployment will last.” 
The values should be plausible and they should seem to you to have been produced by 
actual data analysis. 
 
A few more things to consider: 
 
1. Keep in mind that a coefficient can be meaningfully interpreted only for a certain scale. If, 

for example, unemployment benefits are measured in Swiss francs, then you will have to 
select different coefficients depending on whether one unit of the unemployment benefits 
variable is equal to 100 francs or 1,000 francs. You should take the units of all the other 
variables into account in a similar way. First select a scale (by placing an x next to the 
option you choose) and then fill in the table with coefficients that you think would 
produce realistic results.  

2. Be sure to put down a standard error as well as a coefficient. As you know, a coefficient 
with a probability of error of alpha = .05 is significant if the value of the coefficient is 
more than twice as large as the value of the standard error. Please denote significant 
coefficients with an asterix. 

3. As you also know, the regression coefficient for a dichtotomous- 0/1 coded- variable 
denotes the amount by which the dependent variable changes when the independent 
variable is equal to 1 versus when it is equal to 0. For example, the coefficient for a 
variable that takes on the values of 1 for a city and 2 for a town or a rural area might be -
3.642. If the length of the unemployment spell is measured in weeks, then the length of 
the unemployment spell in a city is 3.642 weeks shorter in a city than in a town or a rural 
area.  

4. Be sure to note the coefficients and standard errors to four digits, not including the 
zeroes before the first digit. For example, the numbers 0. 001438 or 91.24 would both 
fulfill this condition. 

 
 
 
 
 
 
 
 
 
 
*A slightly modified version of this questionnaire was used in experiment 3. 
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So, let’s get started: 
 
First, select a scale for the length of the unemployment spell: 
 
Days:      ........... 
Weeks:    ........... 
Months:  ........... 
 
 
 
       Table: Determinants of the length of unemployment: Estimates from a multiple 

regression (standard errors in parentheses) 
 
Independent Variables                      Regression Coefficients 

(Standard Errors) 
 

Unemployment benefits 
In units of 
CHF 1       ......                                    

  
CHF 100   ......                                         
CHF 1000 ...... 
 

...... 
(......) 

Years of education 
 

...... 
(......) 

 
Years of job experience ...... 

(......) 
 

Mother’s years of                                              
education                                                           

...... 
(......) 

 
Father’s years of  
education                                                           

...... 
(......) 

 
Sex 
(Female = 1)                                                        

...... 
(......) 

 
Marital status  
(married = 1 , otherwise 0) 
 

...... 
(......) 

 
Last position was in the service sector                
(service sector = 1, otherwise 0) 
 

...... 
(......) 
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Monthly income for the last job held, in units 
of                 
CHF 1       ......                                                     
CHF 100   ...... 
CHF 1000 ...... 
 

...... 
(......) 

 

Distance between residence and place          
of business in units of:                                        
1 km    ......   
10 km  ...... 
 

...... 
(......) 

 

Adjusted multiple R-squared 
 
Number of cases (N) 
 

...... 
 

...... 

 
 
                         
 
 
 
 
 
 
 
 


