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Abstract

Consider an auction in which k identical objects are sold to n > k bidders who each
have a value for one object which can have both private and common components to it.
Private information concerning the common component of the object is not exogenously
given, but rather endogenous and bidders face a cost to becoming informed. If the cost
of information is not prohibitively high, then the equilibrium price in a uniform price
auction will not aggregate private information, in contrast to the costless information
case. Moreover, for a wide class of auctions if the cost of information is not prohibitively
high then the objects can only be allocated in a weakly efficient sense, and then only if
the equilibrium proportion of endogenously informed agents is vanishing as the economy
grows. In spite of these results, it is shown that there is a mechanism for which there
exist equilibria and for which (weak) efficiency is achieved as the economy grows in the
face of endogenous information acquisition.
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1 Introduction

The property of Pareto efficiency is of fundamental importance in the design and evaluation

of markets. As auctions are used to allocate goods and services in a significant number

of markets, ranging from government securities to art and procurement, it is important to

understand the efficiency properties of auctions.

In what follows two types of efficiency of markets are examined. The first type is in-

formational efficiency or the ability of a market to form prices in a way that aggregates

privately held information concerning the value of a good, so that in a large society the price

approximates the true (realized) value of the good.1 This type of efficiency is the centerpiece

of “efficient markets hypotheses”. The second type is allocative efficiency or the ability of

a market to allocate goods to those agents who value them most highly. This second type

of efficiency is essentially Pareto efficiency, although the versions discussed in this paper are

asymptotic and approximate. While the reasons for caring about allocative efficiency are

self-evident, the motivation behind informational efficiency is less transparent, as one might

not care about the informational content of prices, given that goods are efficiently allocated.

However, a case may be made for informational efficiency to the extent that information

obtained from prices in one market can be important in guiding decisions concerning invest-

ment or portfolio holdings in markets of other goods (or possibly future purchases/sales of

goods in the given market).2

Pesendorfer and Swinkels (1997, 2000) have recently shown that uniform price auctions

are approximately informationally and allocatively efficient with large numbers of agents. 3

Pesendorfer and Swinkels (1997) show that if both the number of objects and the number

of bidders minus the number of objects become large, then uniform price auctions are infor-

mational efficient in a common value setting.4 The key insight is that it is under this double

1A weaker requirement is to ask for the price to reflect the expected value of the good conditional on the
join of agents’ information. However, in large societies these two requirements are essentially equivalent as
a law of large numbers applies. This discussion largely presumes a common valuation to the good. In cases
where valuations are heterogeneous, a reasonable requirement would be that the price reflect the valuation
to the marginal consumer, where marginal consumer is defined under an efficient allocation of the goods.

2Some discussion of this appears in Jackson and Peck (1999).
3See also Swinkels (1999) for analysis of discriminatory auctions.
4Milgrom (1979, 1981) identifies a necessary and sufficient condition for informational efficiency in auctions

where a fixed finite number of objects are for sale but with an increasing number of bidders. (See Wilson
(1977) for earlier work under sufficient conditions for such a result.) Pesendorfer and Swinkels (1997) work
with signal structures that fail to satisfy this strong condition and hence the necessity of their double largeness
condition.
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largeness condition that a bidder’s knowledge of being pivotal from a large number of bidders

(and objects) together with knowledge of his or her own signal allows him or her to correctly

estimate the value of the object, even though the single signal may be very noisy. Pesendor-

fer and Swinkels (2000) build on some of the insight concerning informational efficiency to

study allocative efficiency in large uniform price auctions, where bidders may have both

private information about a common component of an object’s value, as well as a separate

private valuation for another component of the object’s value.5 Such a setting presents a

tough hurdle for allocative efficiency as a bidder may have, for instance, a high private value

and a low estimate for the common value, or vice versa. Thus, an auction must sort out

private information concerning the common component of the value from the private values

themselves, in order to allocate goods efficiently.6 The remarkable result demonstrated by

Pesendorfer and Swinkels (2000) in the context of a uniform price (Vickrey style) auction, is

that as the number of bidders and objects grow in a proportional manner (so that the ratio

of objects to bidders is bounded from 0 and 1) then the auction is allocatively efficient in

the limit, despite the two independent sources of private information. The Pesendorfer and

Swinkels result derives from the fact that bidders tend to sort themselves primarily accord-

ing to private values as their own information concerning the common value is swamped by

the information of being pivotal. In the limit the price depends only on bidders with in-

termediate private values. The price then aggregates agents’ private information about the

common value component of the object, and in fact comes to reflect the ex post valuation

of the marginal bidder under the efficient allocation. Moreover, Pesendorfer and Swinkels

show that this allocative efficiency result holds even with costs to acquiring information.

While the efficiency results of Pesendorfer and Swinkels (1997, 2000) seem to reassure us

about both the informational and allocative efficiency of uniform price auctions, there are

5A non-exhaustive list of papers discussing efficiency in auctions (with endowed information) includes
Vickrey (1961), Myerson (1981), Riley and Samuelson (1981), Holmstrom and Myerson (1983), and more
recently Maskin (1992), Dasgupta and Maskin (1998), and Jehiel and Moldovanu (2001). These recent papers
are discussed in the concluding remarks.

6To see the complication in more detail, consider the intuition behind the efficiency of a single unit
English auction, which is allocatively efficient in some cases when types are unidimensional. A bidder can
see the prices at which other agents drop out and from that can infer the relevant content of other agents’
information. With a multi-dimensional type space this sort an inversion is no longer possible. For instance in
a procurement auction, firms bidding on a contract consider both the structure of their costs of production
(which may reflect current capacity constraints or other idiosyncratic features) and their estimate concerning
the materials, labor, etc. necessary to complete the job. A bidder may not be able to infer to what extent
a competitor’s bid is reflective of their current capacity versus their information about the common cost of
the job.
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two critical features that are worrisome.

The first worrisome feature is that the informational efficiency results are only demon-

strated when information is costless. Matthews (1984) has pointed out that informational

efficiency in some auction settings is critically dependent on such an assumption. Matthews

provides an example of a first-price auction with many bidders where the informational

efficiency results of Wilson (1977) and Milgrom (1979) are upset by making information

acquisition costly to the bidders. In the equilibrium, insufficient information is acquired

for the aggregate of agents’ information to reflect the true value of the object, and in fact

the equilibrium price does not even reflect the expected value conditional on the join of the

agents’ information. To some extent, the example has a similar intuition to that underlying

the Grossman-Stiglitz (1981) paradox: if information were fully reflected in the price, then

no agent should want to pay to acquire information. Thus, there is an important question as

to whether informational efficiency is possible in the face of costs of information acquisition.

The second worrisome feature is that of existence of equilibrium. While Pesendorfer and

Swinkels (2000) showed that a sequence of symmetric equilibria in a Vickrey style auction

(if they exist) will allocate objects efficiently when there is a cost to information, their result

does not provide for existence of equilibrium. This issue of existence of equilibrium is not

simply a detail, as in fact symmetric equilibria may fail to exist. Jackson (1999) shows that

there even in very simple examples symmetric equilibria do not exist in a Vickrey auction

when a private and common component to valuations matter in preferences. The difficulty

stems from the fact that multi-dimensional signals do not sort themselves nicely into bids.

This can result in non-monotonicities and discontinuities in the information inferred from

winning as a function of a bid. These problems can lead to non-existence, as demonstrated

in the aforementioned examples. Thus, to establish that allocative efficiency is possible in

the face of costly information, one needs to establish equilibrium existence in addition to

other properties of equilibrium.

In this paper I examine the informational and allocative efficiency of auctions (and general

mechanisms) with large numbers of bidders and objects in the presence of costly information

acquisition.

To be more precise the paper begins by examining informational efficiency in large com-

mon value uniform price auctions. A very simple proof confirms Matthew’s intuition and

shows that informational efficiency must fail with any cost to information, regardless of the

specifics of the setting.7

7A couple of people have remarked to me that one might expect bidders to be incidentally endowed with
enough private information to result in informational efficiency. However, the fact that there is an industry
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Next, the paper moves on to examine the issue of allocative efficiency in the presence of

costly information. First, it is shown that if the cost of information is not prohibitively high

(costs are low enough so that with positive probability at least one bidder becomes informed),

then a strong type of allocative efficiency where all objects are approximately efficiently

allocated cannot hold in the face of costly information. This holds for a general class of

mechanisms, not just uniform price auctions. To understand this, suppose that every object

were to be approximately efficiently allocated. Then the allocation must depend almost

entirely on the private values of the bidders, and not on any information about the common

value that they may have observed. Through incentive compatibility conditions implied by

the equilibrium, this also implies that a bidder’s expected payment is almost independent of

any acquired information. Bidders thus have no incentive to acquire information given that it

has some positive cost. So no information is acquired. This leads to a contradiction as some

information will be acquired in equilibrium if the cost to information is not prohibitively

high.

This is not the end of the story, however, as one can consider a weaker definition of

allocative efficiency that does not require that every object be approximately efficiently

allocated, but only a proportion approaching one of the objects be approximately efficiently

allocated. Since only a limited number of agents are acquiring information, then there are

still many objects to be allocated to uninformed agents. This however, would require the

proportion of informed agents to go to zero in equilibrium. It is shown that this is a necessary

condition for a weak form of allocative efficiency to hold in any mechanism.

Finally, the last theorem in the paper shows that a weak form of allocative efficiency is

attained by an equilibrium of a specific type of auction mechanism. While the mechanism

discussed here is less standard than a Vickrey auction studied by Pesendorfer and Swinkels

(2000), it is still quite simple and more importantly it provides for existence of equilibria

for all admissible preferences and so it establishes that weak allocative efficiency is generally

possible. The efficiency comes from the fact that a dwindling proportion of bidders have an

incentive to gather information and the auction almost becomes one of entirely uninformed

agents. Objects may be misallocated to informed bidders, but that is negligible in the limit.

of analysts who are paid to acquire information on various securities (including government securities sold
through auctions) is inconsistent with informational efficiency holding, since if one expects the price to be
informationally efficient in a uniform price auction, then one is better off not acquiring any costly information.
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2 Definitions

A finite number, k, of indivisible objects are to be sold to n individuals. Each individual

wishes to buy at most one object.

Preferences

Each agent i has a utility for the object which is described by u(ti, q), where ti ∈ [0, 1]

is a private component and q ∈ [0, 1] is a common component. It is assumed u is (jointly)

continuous and nondecreasing in (ti, q) and that it is strictly increasing in at least one of

these two parameters. Utility is normalized so that u(0, 0) = 0 and u(1, 1) = 1. The agent’s

utility for obtaining the object and paying a price p is u(ti, q)− p.

Effectively, the parameters ti can be thought of as introducing heterogeneity in prefer-

ences.

Uncertainty

Individuals’ private parameters are random. Agent i’s private parameter is described

by the random variable Ti. The Ti’s are independently and identically distributed with

distribution function F (·). Assume that F has a continuous density function f that is

positive on all of [0, 1]. Each agent knows his or her own realized value of Ti, denoted ti, but

only the distribution over the Tj’s for j 6= i.

The value of the common parameter q is random as well, and described by the random

variable Q, which is independent of the Ti’s and described by the distribution function G(·).
The distribution is non-degenerate so that var(Q) > 0.

Information Acquisition

Individuals have costly access to information concerning the realization of Q. For a cost

0 < c < 1, an agent may observe the realization of a random signal Si which provides

information about the value of Q. The Si’s take values in [0,1] and are independently and

identically distributed conditional on Q according to the distributions G(·|Q = q).

Represent an agent’s interim information by (ti, si) ∈ [0, 1]× ([0, 1] ∪ {∅}), where si = ∅
indicates that i has not observed a signal.

The choice to acquire information to be made at an ex-ante stage before agent i has

observed ti. Largely, the results contained here will not be affected if instead information

is acquired at an interim stage after agents observe their private type. I discuss this in the

concluding remarks.
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It is also assumed that the act of acquiring information is private. That is, when bidding

in the auction agents will not have observed whether other agents have acquired information

or not. Equilibrium implicitly provides a player with beliefs concerning the other agents’

strategies to acquire information. Again, allowing for observation of who acquired infor-

mation will not substantively change the results, and I discuss this in more detail in the

concluding remarks.

Sealed Bid Auctions

Let X = {x ∈ {0, 1}n | k ≥ ∑
i xi}. Thus, xi = 1 is interpreted as giving an object to i.

Let ∆ denote the set of Borel probability distributions on X × [−1, 1]n.

A sealed bid auction is a function Y : [0, 1]n → ∆, that provides a (possibly random)

allocation of the objects and payment of each bidder as a function of the submitted bids.

b = (b1, . . . , bn).

Uniform Price Auctions

A uniform price auction is a sealed bid auction in which all agents who obtain an object

pay the same price, and no agent pays more than their bid (regardless of whether they get

an object).

Formally, Y is such that for each b ∈ [0, 1]n there is a set Zb ⊂ X × [−1, 1]n such that

Y (b) places probability 1 on Z and such that z = (x,w) ∈ Zb satisfies: (i) xi = xj = 1

implies wi = wj and (ii) xi = 1 implies bi ≥ wi.

In the above definition, (i) says that if two bidders are both allocated a good then they

pay the same price and (ii) says that the price cannot exceed a player’s bid. This is a very

broad definition of uniform price auction and leaves wide open how the objects are allocated

or how the price is selected. For most of the results, it is not necessary to be more specific.

Strategies

A strategy in the information acquisition stage is simply a probability mi ∈ [0, 1] that

bidder i becomes informed.

Second stage (behavioral) strategies for the auction are functions bi : [0, 1]× ([0, 1]∪∅) →
[0, 1]. So, bi(ti, si) is i’s bid in the auction as a function of i’s private type ti and observed

signal si (where si = ∅ indicates that no information was acquired).

Note that the strategies in the second stage of the game are pure strategies as a function

of i’s information set. The randomness in ti provides sufficient mixing so that defining

mixed strategies can be avoided in what follows. Mixed strategies can be defined in the
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obvious way following Milgrom and Weber’s (1985) definition of distributional strategies. As

mixed strategies would add nothing to the analysis which follows I avoid the complication

in notation.

Equilibrium

Equilibrium refers to a sequential equilibrium of the two stage game.

3 Informational Efficiency in Common Value Uniform

Price Auctions

In this section, let us specialize to the case of common values where u(ti, q) depends only

on q, which will be written as u(q). This provides the cleanest definition for informational

efficiency, the best chance for it to be satisfied, and is allows for the easiest comparison to

the previous literature.

Following Pesendorfer and Swinkels (1997), index a sequence of economies by r. Each

economy in the sequence has a number kr of objects to be sold and a number nr of agents.

Informational Efficiency

A sequence {r} of economies and uniform price auctions with corresponding equilibrium

prices {P r}, is informationally efficient if for all ε there exists r′ such that for all r ≥ r′

Prob(|u(Q)− P r| > ε) < ε.

Pesendorfer and Swinkels (1997) show that if both kr and nr − kr go to infinity, then

a Vickrey auction (with costless signals) is informationally efficient. The converse holds if

signals are not too informative. Milgrom (1981) shows that if kr is bounded and nr → ∞,

then a necessary and sufficient condition for informational efficiency (with costless signals) is

to have value distinction which roughly says that there are signals that are arbitrarily more

likely under a higher value of Q compared to a lower value of Q (for each such higher and

lower values).

What I show here is that regardless of the structure of information, informational effi-

ciency cannot be achieved if there is any cost to information. Thus, it was critical to the

previous literature that information was costlessly endowed, and informational efficiency

results are not robust to even small information costs.

The theorem refutes informational efficiency by showing that there is a minimum prob-

ability that the price and value of the object differ by more than a fixed amount.
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Theorem 1 For any k and n and in any equilibrium of a uniform price auction, if some

agent chooses to become informed (with positive probability), then

Prob(|u(Q)− P | > c

2
) ≥ c

2− c
.

The intuition behind the theorem is direct, and is closely related to the idea behind the

Grossman-Stiglitz paradox: if an agent is willing to incur a cost to acquire information, then

the price cannot already accurately approximate the value of an object. So there must be

a minimum amount of noise in the equilibrium in order to sustain information aggregation.

An important difference here is that Theorem 1 holds even for small economies and holds for

a wide variety of price setting mechanisms, whereas Grossman and Stiglitz (1980) assume

price taking behavior. This is an important distinction as discussed in Milgrom (1981). The

formal proof is short and proceeds as follows.

Proof of Theorem 1: Let i be an agent who in equilibrium places positive probability

on becoming informed. Let E(ui) denote i’s equilibrium expected continuation utility con-

ditional on i acquiring information and before i observes the realization of Si. Note that i

can bid 0 and guarantee a non-positive expected payment and thus a non-negative expected

utility, and so since i is acquiring information with positive probability in equilibrium it

follows that E(ui) ≥ 0.

An absolute bound on i’s expected utility is to suppose that i obtains an object whenever

u(Q) ≥ P and does not whenever u(Q) < P . Thus

E[max(u(Q)− P, 0)]− c ≥ E(ui).

Note that

Prob(|u(Q)− P | > c

2
) + (1− Prob(|u(Q)− P | > c

2
))

c

2
− c ≥ E[max(u(Q)− P, 0)]− c.

Since E(ui) ≥ 0, it follows from the inequality above that

Prob(|u(Q)− P | > c

2
)(

2− c

2
)− c

2
≥ 0,

which simplifies to the stated conclusion.

Given that var(Q) > 0, informational efficiency requires a sequence of equilibria in which

some agents are informed. However, Theorem 1 shows that informational efficiency is in-

compatible with information acquisition. Thus, we have the following corollary.
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Corollary 1 If c > 0, then no sequence of economies and corresponding equilibria where the

second stage is a uniform price auction satisfies informational efficiency.

Although Theorem 1 and its corollary have a very simple intuition and proof, its impli-

cations are that information aggregation in auctions is sensitive to the introduction of any

cost of information. Thus, the intuition of Matthews (1984) is confirmed. It is clear that

the results also extend to allow for heterogeneity in costs, provided there is a lower bound

on costs for all but a fixed number of bidders.

As a final remark on informational efficiency, note that the results above do not preclude

weak versions of the efficient markets hypothesis. The price is not precluded from revealing

information. For instance, Milgrom (1981) examined costly information acquisition in k-

object Vickrey auction, and showed an example where it is possible to have fully revealing

“prices” in spite of costly information acquisition. There the price that a bidder faces is

the k-th highest bid of the other agents which reveals a sufficient statistic for the relevant

information of a bidder’s opponents. This, however, does not imply informational efficiency,

nor could it given Theorem 1 above. To understand the difference, note that Milgrom’s

result does not imply that enough information is gathered to accurately reflect the value

of the good - and in fact Theorem 1 here implies that there must be a limit on how many

bidders collect information and that the price could never come to approximate the value of

the good.

4 Allocative Efficiency in Direct Mechanisms

Next, let us examine the possibility of allocative efficiency in large economies. While the

intuition behind the results on informational efficiency is quite simple and consistent with

that in the earlier literature, the issues behind allocative efficiency are more subtle.

For the remainder of the paper maintain the assumption that u(ti, q) is strictly increasing

in each variable. This guarantees that the allocation problem is non-trivial as both ti and

q matter in agents’ valuations. Also, for simplicity, in this section assume that Q has a

finite support and that GSi
(·|Q = q) has the same finite support S ⊂ [0, 1] for each q in the

support of the distribution of Q.

I work with the general class of direct mechanisms, so that any auction or market design

is admitted.

Direct Mechanisms
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Any auction procedure and equilibrium can be identified with a direct mechanism that

corresponds to the interim stage (after agents have observed any acquired information). A

direct mechanism cannot be explicitly dependent on who is informed or uninformed except

through their reported types. The definitions below can be extended to the case where the

act of acquiring information is publicly observed, with the obvious modifications.

A direct mechanism is a profile π = (π1, . . . , πn), φ = (φ1, . . . , φn) of functions where

πi : ([0, 1]× ([0, 1] ∪ {∅}))n → [0, 1] and φi : ([0, 1]× ([0, 1] ∪ {∅}))n → [−1, 1]. So, given

an announced profile of information (t, s) = (t1, . . . , tn, s1, . . . , sn), πi(t, s) is the probability

that i gets an object and φi(t, s) is the expected payment of i.

The definition of direct mechanisms does not need to allow for correlation between alloca-

tions of the objects or payments, given the risk neutrality of the agents. Also, no restrictions

are put on how many objects are allocated as these are handled explicitly in the theorems

that follow.

Interim Incentive Compatibility

Let

Vi(ti, si, t̂i, ŝi,m−i) = E[ui(ti, Q)πi(T−i, S−i, t̂i, ŝi)− φi(T−i, S−i, t̂i, ŝi) | ti, si,m−i].

Vi represents i’s expected utility conditional on knowing his or her own type ti, the informa-

tion acquisition strategy m−i, observing si, and reporting t̂i and ŝi. This does not account

for costs of information, which are handled separately below. This also takes other bid-

ders’ announcements to be truthful which is implied (as usual) by incentive compatibility,

equilibrium, and the revelation principle as discussed below.

A direct mechanism (π, φ) is interim incentive compatible with respect to m if for all i,

almost every (t, s) (given m)

Vi(ti, si, ti, si,m−i) ≥ Vi(ti, si, t̂i, ŝi,m−i)

for any (t̂i, ŝi) ∈ [0, 1]× (S ∪ {∅}).
Information Incentive Compatibility

A direct mechanism (π, φ) is information incentive compatible if there exists an equilib-

rium (of the corresponding two stage mechanism with information acquisition) for which the

direct mechanism is interim incentive compatible with respect to the equilibrium information

choices m in the first stage.

The Revelation Principle
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The revelation principle applies at the interim stage after information is observed, so that

considering any equilibrium of the two stage (information acquisition game) with respect to

a given auction, there is a corresponding direct mechanism that is information incentive

compatible.

Allocative Efficiency

Consider a sequence of direct mechanisms {(πr, φr)}, on economies {(kr, nr)}, with cor-

responding information equilibria. Let tr denote the lowest ti of any i obtaining an object

and t
r

denote the highest ti of any i not obtaining an object. These are random variables.

A sequence of information incentive compatible mechanisms {(πr, φr)}, with correspond-

ing information equilibria and (tr, t
r
), is allocatively efficient if

E[|tr − t
r|] → 0.

Allocative efficiency is a strong condition because it requires that in the limit, not even

a single object that is sold is grossly misallocated.

Given a mechanism (π, φ), let

πi(ti, si, ŝi,m−i) = E[πi(T−i, S−i, ti, ŝi)| si,m−i].

and

φi(ti, si, ŝi,m−i) = E[φi(T−i, S−i, ti, ŝi)| si,m−i].

These represent i’s expected probability of getting an object and expected payment when

announcing ti, ŝi, conditional on si and m−i.
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Theorem 2 Let {kr, nr} be a sequence of economies such that nr →∞ and kr

nr → a ∈ (0, 1).

Consider a sequence of information incentive compatible direct mechanisms, {(πr, φr)}, with

corresponding information equilibria, such that
∑

i π
r
i = kr almost surely and φ

r

i (ti, si, ŝi,m
r
−i)

is nondecreasing in ŝi ∈ S for each i and almost every ti, si.
8 If there is a non-vanishing

probability that at least one agent acquires information,9 then the sequence is not allocatively

efficient.

As the statement of the theorem above requires all kr objects to be sold, it implicitly

prohibits reserve prices that are non-trivially binding. However, the result is extendible to

situations where the number of objects awarded is bounded below in probabilistic terms.

This can be handled as the definition of allocative efficiency does not require that all the

objects be allocated, only that the ones that are allocated be efficiently allocated.

The proof of Theorem 2 appears in the appendix. The intuition behind Theorem 2 is

as follows. In the limit, applying an appropriate version of a strong law of large numbers,

allocative efficiency implies that for an arbitrarily large proportion of the types (ti’s) above

the critical level of t∗ = F−1(1 − a), the probability of obtaining an object approaches 1,

regardless of a bidder’s information (or lack thereof), and similarly for types below t∗ the

probability goes to zero, regardless of their information (or lack thereof). Then incentive

compatibility implies that a bidder’s expected payment must converge to be approximately

independent of the signal and only dependent on ti, in which case the bidder has no incentive

to gather information. This implies that no bidders acquire information.

Thus, another way to see the theorem is to say that the only way in which allocative

efficiency is possible is to have nobody acquire information in equilibrium. However, there

cannot be an equilibrium which is allocatively efficient and has nobody acquiring information

if costs are not prohibitively high. Thus, we find the following corollary.

Say that signals are nontrivially informative if Prob{E[u(ti, Q)|Si] 6= E[u(ti, Q)]} > 0 for

a positive measure set of ti.

Corollary 2 Let {kr, nr} be a sequence of economies such that nr → ∞, kr

nr → a ∈ (0, 1),

and signals are nontrivially informative. Let {(πr, φr)} be a sequence of information incentive

compatible direct mechanisms with corresponding information equilibria such that
∑

i π
r
i = kr

8Note that the requirement is only that φ be non-decreasing at ŝi ∈ S and does not say anything about
ŝi = ∅.

9If nr
I is the equilibrium number of informed agents (which may be random), then the requirement is

simply that there exists b > 0 such that Prob{nr
I ≥ 1} > b infinitely often on the sequence.

12



almost surely and φ
r

i (ti, si, ŝi,m
r
−i) is nondecreasing in ŝi ∈ S for each i and almost every

ti, si. There exists c > 0 such that if 0 < c < c, then the sequence is not allocatively efficient.

To understand the corollary, note that from Theorem 2 we know that in such a sequence

if allocative efficiency is satisfied, then the probability of having any information acquired

is going to zero. Thus, with probability approaching 1 every agent reports ti, ∅. Also,

allocative efficiency implies that πi is going to 0 for arbitrary proportions of ti < t∗ and to

1 for ti > t∗. Thus, incentive compatibility implies that φ
r

i (ti, ∅, ∅,mr
−i)− φ

r

i (t
′
i, ∅, ∅,mr

−i) is

approximately E[u(t∗, Q)] for an arbitrarily large proportion of the ti > t∗ and t′i < t∗. Thus,

any sequence of allocatively efficient mechanisms must converge to effectively be a mechanism

where agents simply have an option to buy at a fixed price of E[u(t∗, Q)], and where agents

are not choosing to become informed. However, for such a mechanism an informed agent has

a higher expected utility than an uninformed agent.10 So, if c is not prohibitively high, any

sequence of equilibria must have the probability of information acquisition bounded below by

a positive number and so allocative efficiency cannot be attained. If costs are prohibitively

high, the it is possible to achieve allocative efficiency, as no bidder will acquire information

and hence the auction is essentially of pure private values as information about Q plays no

role.

The Role of Non-decreasing Payments

A sufficient condition for φ to be non-decreasing in ŝi is that φ(t, s) be non-decreasing

in si. This applies to standard auctions, provided agents bid as non-decreasing functions of

their information, which at least for some auctions follows naturally under the conditon that

Si satisfies the monotone likelihood ratio property relative to Q.11

Nevertheless, there are mechanisms which violate this condition and achieve allocative

efficiency. Thus, the condition is important to theorem 2 and the corollary above. To see this

most easily, consider an example where signals are perfectly informative, so that informed

agents observe Q. Consider the following mechanism. Each agent announces ti, si. Let n∗

be the smallest integer greater than or equal to
√

n. If #{i : si 6= ∅} 6= n∗, then no

objects are allocated and no payments are made. Similarly, if there exists i and j such

that ∅ 6= si 6= sj 6= ∅ then no objects are allocated. We are left with the case where

#{i : si 6= ∅} = n∗ and there is some q such that si 6= ∅ implies si = q. In this case

10An informed agent can purchase whenever E[u(ti, Q)|si] > E[u(t∗, Q)], which given the non-trivial
information structure is a superior decision rule to purchasing whenever E[(ti, Q)] > E[u(t∗, Q)].

11See Pesendorfer and Swinkels (2000) for a proof that bidding functions are non-decreasing in symmetric
equilibria of Vickrey Auctions.
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objects are allocated to the k agents who announced the k highest ti’s (with ties broken

by any method). Those agents pay u(tk+1, q) where tk+1 is the k + 1-st highest announced

ti. Provided that information is not too costly, there is an equilibrium to this mechanism

where exactly n∗ agents acquire information and every agent announces truthfully. This

mechanism is allocatively efficient.12 Here φi is not monotone in signals, illustrating the role

of the condition in the theorem.

While this example keys off of the perfect signals, it is easily adaptable to work as long

as signals are correlated with Q. Using methods similar to those in Crémer and McLean

(1985), one can structure the payments of the n∗ agents so that truthful announcement of si

outweighs any potential gain in manipulating the price, and that those agents have incentives

to become informed (rather than announce a guessed si).
13 This requires payments schemes

that are not monotonic.

Weak Allocative Efficiency

Allocative efficiency is a strong condition in that it requires all allocated objects to be

approximately efficiently allocated. Instead we may consider a definition which only requires

a proportion approaching 1 of the allocated objects to be efficiently allocated. This turns

out to be an important distinction.

Let ui(ti, s) = E[ui(ti, Q)|Ti = ti, (S1 . . . , Sn) = s].14 Thus, ui(ti, s) denotes i’s expected

utility given private type ti and the complete vector of signals s.

Given a mechanism (π, φ), let

T (t, s) =
∑

i

πi(t, s)u(ti, s)

and

T (t, s) = max
π′:k≥

∑
i
π′

i(t,s)∀(t,s)

∑
i

π′i(t, s)u(ti, s).

T and T are thus random variables (as they are functions of t, s), and the ratio T/T gives a

measure of how well an auction allocates objects.

12This mechanism fails miserably when it comes to the multiplicity of equilibrium. However, given that it
simply points out the importance of nondecreasing expected payments in Theorem 2, multiplicity is not an
issue.

13The idea is that using the announced s−i, one obtains information about Q. This leads to information
about the distribution on si, which is different from the unconditional distribution. Payments are made
to be higher conditional on si’s that should be more likely given what others have announced, and lower
conditional on si’s that are less likely given what others have announced. This may require payments that
exceed the maximum value of the object.

14This is a version of the conditional expectation, and so it is defined even for vectors s that would not be
possible in equilibrium.
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A sequence of direct mechanisms, {(πr, φr),mr}, and corresponding information equilibria15

is weakly allocatively efficient if for each ε there exists r such that for r > r

Prob{T r

T
r < 1− ε} < ε.

Theorem 3 Let {kr, nr} be a sequence of economies such that nr →∞ and kr

nr → a ∈ (0, 1).

Consider a sequence of information incentive compatible direct mechanisms {(πr, φr)} with

corresponding information equilibria such that kr ≥ ∑
i πi almost surely and πr

i (ti, si, ŝi,m
r
−i)

is nondecreasing in ŝi ∈ S for each i and almost every ti, si. If the sequence is weakly

allocatively efficient, then the expected proportion of informed agents must tend to zero (i.e.,

E[
nr

I

nr ] → 0).

The proof of Theorem 3 appears in the appendix. The ideas are very similar to those

behind the proof of Theorem 2. In order for an agent to pay to become informed, it must be

that for a significant portion of private types, he or she expects to have some variation in the

probability of getting an object as a function of the observed signal (as otherwise, by incentive

compatibility, the expected utility would be roughly constant in announced signal which is

inconsistent with information acquisition). So, if a non-trivial portion of the population is

paying to become informed, then there is a positive probability that a non-trivial portion

of the objects will be misallocated by a significant amount, which is inconsistent with weak

allocative efficiency.

5 A Weakly Allocatively Efficient Mechanism

Theorem 3 leads one to doubt whether there exist sequences of auctions which satisfy weak

allocative efficiency in the face of costly information acquisition. We know from Theorem

3 that satisfying weak allocative efficiency requires the equilibrium proportion of informed

agents to vanish. I now show that there exists a simple mechanism for which there always ex-

ists a symmetric equilibrium and for which sequences of such equilibria in growing economies

satisfy weak allocative efficiency.

In this section assume that there is a finite set S ⊂ [0, 1] such that G(Si|Q = q) has

support in S for each q. This is weaker than the assumption maintained in the previous

section as the support need not be the same for different q’s nor are any assumptions placed

on the distribution of Q.

15Note that mr is important in determining the distribution over s, and thus the distribution of T/T .
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Given an economy k, n, consider the following mechanism. Agents announce si and either

yes or no. Objects are awarded among the agents announcing yes. If more than k agents

announce yes, then the k objects are randomly assigned (with equal probability) among the

agents announcing yes. If k or fewer agents announce yes, then each receives an object and

the remaining objects are not sold. If agent i is assigned an object, then he or she pays

E[u(t∗, Q)|S−i = s−i], where t∗ is some fixed level.

Theorem 4 Let {kr, nr} be a sequence of economies such that nr → ∞, kr

nr → a ∈ (0, 1).

For any c ≥ 0, there exists a sequence of symmetric equilibria of the mechanism described

above (setting t∗ = F−1(1− a)) such that the sequence is weakly allocatively efficient.

Note that in addition to proving weak allocative efficiency, Theorem 4 also provides

for the existence of equilibria for any sequence of admissible economies. The existence is

not merely a footnote, but an important issue in this setting. Pesendorfer and Swinkels

(2001) have shown that a sequence of symmetric equilibria (if they exist) in a Vickrey style

auction will satisfy a version of weak allocative efficiency with costs to acquiring information.

However, that result’s implications are then only interesting if we are sure that there exist

(symmetric) equilibria to the Vickrey auction. Existence of equilibria to the Vickrey auction

when individuals have a private and common signal turns out to be problematic. In fact,

Jackson (1999) shows that existence can fail in the Vickrey auction even in very simple

examples with nice monotonicity properties in each dimension of signal. The difficulty comes

from the fact that high (or intermediate) bids of other bidders might indicate high private

value rather than high common value. This can lead to discontinuities in the information

learned as a function of winning conditional on a bid. Such discontinuities can lead to non-

existence of equilibria. The extent to which existence is a problem for the Vickrey auction

with multiple dimensions of signals is an open issue, with the only examples currently being of

non-existence.16 The mechanism defined here overcomes the existence problem as it greatly

simplifies the decisions that players must make, as they cannot influence the price they face

and must only declare whether they desire an object or not.

16Existence of equilibrium can be established if one augments the bidding space to allow for announcements
of signals as well as bids, as shown by Jackson, Simon, Swinkels, and Zame (2001). However, those equilibria
might not have the properties required in the Pesendorfer and Swinkels (2000) analysis. One possibility is
to use the Jackson, Simon, Swinkels, and Zame result to demonstrate existence of equilibria with the larger
strategy space, and then to show that under some conditions that the extra announcement of signals is not
needed (which is shown to work in a private values setting in Jackson and Swinkels (1999)). It is not clear
how well that approach will work outside of a private values setting, given the non-existence example in
Jackson (1999).
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The proof of Theorem 4 appears in the appendix. The ideas behind it are fairly straight-

forward. As the announced si does not affect an agent’s payoff, it is a best response for each

agent to announce si truthfully. An uninformed agent can then simply say yes if ti ≥ t∗ and

no if ti < t∗, as there is nothing they useful they can learn that is not already incorporated

in the price they face. Informed agents use their knowledge of si in deciding whether or not

to say yes or no, as it gives them information not reflected in the price that they face. They

still, however, have a reasonably easily described strategy for saying yes which is monotone

in ti. After establishing existence, it is shown that weak allocative efficiency holds. Given the

strategies of the uninformed, it is enough to show that the proportion of informed goes to 0.

In fact, it is shown that either the number of informed is bounded (which happens whenever

there is a positive cost to information), or else the strategies of the informed approximate

saying yes when ti > t∗ and no if ti < t∗, in which case they would be better off not acquiring

information. This follows from the fact that if there are a growing number of informed, then

si provides little information that is not already in the price that i faces.

6 Concluding Remarks

The definitions of efficiency in this paper have ignored the costs of information acquisition.

However, adding those costs explicitly into efficiency definitions makes no difference to the

results, since the results imply that to achieve either type of allocative efficiency the number

(or proportion) of agents acquiring information must go to zero. So, the proportion of

society’s resources wasted on information acquisition must go to zero if (weak) allocative

efficiency is to be attained.

The treatment of information acquisition in this paper has focused on the case of ex-ante

acquisition and non-observability of acquisition. All of the results can easily be extended to

the case where information acquisition is publicly observed, with some modifications to the

proofs. Whether an agent knows exactly how many others have acquired information, or only

has an estimate, does not significantly change behavior and the intuition goes through. A

change to interim information acquisition, however, does introduce some new aspects to the

analysis, as incentives to acquire information will depend on an agent’s realized private type.

Theorems 1 and 3 and Theorem 4 will go through based on the same logic, again with some

modifications to the proofs. However, Theorem 2 concerning the strong form of allocative

efficiency must be weakened to claim that a vanishing proportion (rather than number) of

agents must acquire information. The agents who choose to acquire information can be the

marginal types (ti’s increasingly near t∗) and this can be consistent with allocative efficiency.
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In fact, the mechanism in Theorem 4 would have this feature in the interim information

acquisition case.

Throughout the paper it has been assumed that information concerning private values

is free and only the common aspect is costly. The motivation for this is that information

on private type (e.g., personal circumstances, capacity, etc.) is likely to be incidental or

a by-product of other activities, while information on a common component is more likely

to involve active research. Bergemann and Välimäki (1999) examine efficient allocations in

settings where all information is costly.17 They show that there are interesting differences

in the possibility of reaching efficiency in private versus non-private value settings, with the

former setting allowing for efficiency, but not always the latter. Interestingly, the costly

information in the setting explored here concerns the common aspect, and yet approximate

efficiency is still achievable. This suggests that more study is needed to see where the divide

between costly aspects of information and costless aspects needs to fall in order to be able

to reach efficient allocations, and also how much the consideration of approximate efficiency

rather than exact efficiency makes a difference.

It also appears that part of the reason that the model examined here leads to efficiency (at

least approximately) is that interdependencies in valuations arise only through the common

Q. If interdependencies take other forms, efficiency can be impossible to achieve even with

costless information. Examples of this can be found in Maskin (1992) and Dasgupta and

Maskin (1997), and a general result showing problems in reaching efficient allocations with

multi-dimensional signals can be found in Jehiel and Moldovanu (2001). The extent to which

such difficulties in achieving (exactly) efficient allocations arise is well-outlined by Jehiel and

Moldovanu. It may be interesting to explore in more detail what sorts of informational

settings allow for versions of approximate efficiency studied here in large economies.

17In situations where both components are costly, the problem also begins to look more like (but not
exactly like) auctions with an entry cost where many questions concerning efficiency are still open. See Gal,
Landsberger, and Nemirovski (2001) for a recent examination of auctions with entry costs that could serve
as a interesting basis for a further analysis of efficiency properties.
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Appendix

Proof of Theorem 2: Considering a subsequence if necessary, let Prob{nr
I ≥ 1} > b for

any r. Let t∗ satisfy F (t∗) = 1 − a. Let tr be the kr-th out of a sample of nr draws. By

a strong law of large numbers for order statistics (e.g., the Glivenko-Cantelli theorem - see

Billingsley (1968)),

Prob ({tr → t∗}) = 1.

Under the assumptions of Theorem 2, suppose that the sequence is asymptotically efficient,

so that

E[|tr − t
r|] → 0.

It follows from Chebyshev’s inequality that for any ε > 0 there exists r′ such that for all

r > r′,

Prob ({|tr − t
r| > ε}) < ε.

Noting that max(tr, t
r
) ≥ tr ≥ min(tr, t

r
), it follows that for any ε there exists rε such that

for all r > rε

Prob ({|tr − t∗| > ε}) < ε, (1)

and

Prob ({|tr − t∗| > ε}) < ε. (2)

Let Air
ε denote the event that either ti > t∗ + ε and i does not get an object or ti < t∗ − ε

and i does get an object. Let Bir denote the event that i is informed. (1) and (2) imply that

Prob
(
∪i[A

ir
ε ∩Bir] | ∪i Bir

)
<

2ε

b
.

This implies that there is at least one i in any economy r > rε such that mr
i > 0 and

Prob
(
Air

ε | Bir
)

<
2ε

b
. (3)

Consider i, ti, such that mi > 0 and there exists δ such that

min
si,ŝi∈S2

πr
i (ti, si, ŝi,m

r
−i) > 1− δ. (4)

Let si be the smallest si ∈ S. Incentive compatibility and the fact that φ is nondecreasing

and (4) imply that

φ
r

i (ti, si, si,m
r
−i)− φ

r

i (ti, si, si,m
r
−i) < δ, (5)
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for any si ∈ S. (4) and (5) then imply that

|V r
i (ti, si, ti, si,m

r
−i)− V

r
i (ti, si, ti, si,m

r
−i)| < 2δ (6)

for all si,∈ S. Similarly, (6) holds for any i, ti, and δ such that

max
si,ŝi∈S2

πr
i (ti, si, ŝi,m

r
−i) < δ. (7)

Consider any i such that mi > 0. It is easily checked that for i to be willing to purchase

information

Prob({ti : max
si∈S

|V r
i (ti, si, ti, si,m

r
−i)− V

r
i (ti, si, ti, si,m

r
−i)| > 2δ}) ≥ c− 2δ

3− 2δ
,

for any c
2

> δ > 0 (noting that 3 is the maximum swing in utility from announcing si

correctly versus simply announcing si). Thus, from (4), (7), and (6) it follows that for i to

be willing to purchase information

Prob({ti : min
si,ŝi∈S2

πr
i (ti, si, ŝi,m

r
−i) < 1− δ and max

si,ŝi∈S
πr

i (ti, si, ŝi,m
r
−i) > δ}) ≥ c

3
, (8)

for any c
2

> δ > 0. Given the same finite support on Si for each q, it follows from (8) that

for i to be willing to purchase information

Prob({ti : min
si∈S

πr
i (ti, si, si,m

r
−i) < 1− αδ and max

si∈S
πr

i (ti, si, si,m
r
−i) > αδ}) ≥ c

3
, (9)

where 1 ≥ α > 0 is a constant depending only on the underlying distributions of Si and Q.

To see this set α′ = minq,s′i,s
′′
i

Prob(Q=q|Si=s′i)
Prob(Q=q|Si=s′′i )

. Then Prob(S−i|Si = ŝi) ≥ ∑
q Prob(S−i|Q =

q)α′Prob(Q = q|si), and so the fact that πr
i (ti, ŝi, ŝi,m

r
−i) > α′πr

i (ti, si, ŝi,m
r
−i) follows. A

similar argument gives the other inequality for an α′′ and take α to be the min of these two.

Finally, set δ = c
4

and then for a small enough ε, (3) and (9) lead to a contradiction. So our

supposition was wrong and the theorem is established.

Proof of Theorem 3: As in the proof of Theorem 2, it follows that (9) holds for any i with

mr
i > 0 and any 0 < δ < c

2
.

Suppose that nr
I/n

r does not converge to 0, and take a subsequence such that nr
I/n

r → d > 0.

By a similar argument to that in the proof of Theorem 2, weak allocative efficiency then im-

plies that for any ε and large enough r there are informed agents for whom Prob{Air
ε | Bir} <

kε, where k is a constant depending on d. Again, set δ = c
4

and then for small enough ε we

reach a contradiction.
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Proof of Theorem 4: Let us first establish that there exists an equilibrium to the mecha-

nism.

Fix any information strategy m. I show there exists an equilibrium in the subgame that

follows. First, as si does not affect the probability that i is awarded an object, nor the price

that i pays, it is a best response to announce si truthfully. Next, it is a best response for an

uninformed i to say yes if ti ≥ t∗, and no otherwise. So we need only describe equilibrium

strategies conditional on being informed.

Consider an informed i. Suppose that each other j 6= i’s strategy conditional on being

informed and of type tj, sj can be described by saying yes if tj > τj(sj) and no otherwise,

for some τj : S → [0, 1]. I first show that i’s best response can then be characterized by such

a function τi. It is a best response for agent i to say yes if

E[(u(ti, Q)− E[u(t∗, Q)|S−i])Zi(S−i, τ−i)|si,m−i] > 0, (10)

and no otherwise, where Zi is the probability of i getting an object conditional on saying

yes when S−i is observed by the other agents who are following strategy τ−i, and where

Sj = ∅ when j is not informed. Note that the left hand side of inequality (10) is continuous

and strictly increasing in ti, and so i’s best response may be characterized by setting τi(si)

to be the ti that equates the left hand side to 0, setting τi(si) = 0 if the left hand side is

positive for all ti and τi(si) = 1 if the left hand side is negative for all ti. Thus, we have a

well defined τi as a function of each τ−i and m−i, and we can write τi = ψi(τ−i,m−i). Note

that each τi may then be thought of as a #S dimensional vector, and that ψi is single valued

and continuous in τ−i,m−i. Moreover, write ψi as a function of only a single pair τj,mj,

under the restriction that each j 6= i plays the same strategy. Next, let νi(τj,mj) be the

correspondence that takes value {1} if the following expression is greater than 0, [0, 1] if the

following expression equals 0, and the value {0} if the following expression is less than 0:

E[ITi>τi(Si)E[(u(Ti, Q)− E(u(t∗, Q)|S−i))Zi(S−i, τ−i)|Si,m−i]

−ITi>t∗E[(u(Ti, Q)− E(u(t∗, Q)|S−i))Zi(S−i, τ−i)|m−i]]− c,

where t−i and m−i are the symmetric strategies where each j 6= i plays τj and mj, τi =

ψi(τj,mj), and I is the indicator function. This expression is the ex-ante difference in ex-

pected payoffs from playing the second stage informed versus uninformed, and so νi represents

the best response in information choices given τj and mj. This correspondence is compact

and convex valued. Also, as this expression is continuous in τj,mj, it follows that νi is upper

hemi-continuous. So we can apply Kakutani’s fixed point theorem to the pair ψi, νi to find

a fixed point which then constitutes a symmetric equilibrium.
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To complete the proof, let us verify that a sequence of such equilibria is weakly allocatively

efficient for any c ≥ 0. If E[nr
I/n

r] → 0, then by Markov’s inequality it follows that that

for any ε > 0, Prob(nr
I/n

r ≥ ε) → 0. Then weak allocative efficiency follows from the

strategies of the uninformed (and the fact that the potential number of bidders saying yes

over the number of objects kr is going to one (again by the Glivenko-Cantelli Theorem)). So,

divide the sequence of enconomies into those for which E[nr
I ] ≥

√
nr, and those for which

E[nr
I ] <

√
nr.18 Along the second subsequence, we know that weak allocative efficiency

holds.

So consider the first subsequence, where E[nr
I ] ≥

√
nr. It follows from the martingale

convergence theorem that for any ε there exists Nε such that for N ≥ Nε and any i

Prob{|E[u(t∗, Q)|SN
−i]− E[u(t∗, Q)|SN ]| > ε} < ε. (11)

where SN is a vector of N observations of (informed) signals Sj. Fixing any γ > 0, again by

Markov’s inequality there exists rγ such that if r > rγ, then for any i

Prob(nr
I ≥ Nε | mr

−i) > 1− γ.

Thus, for any γ, setting ε = γ in (11) implies that there exists rγ such that if r > rγ then

for any i

Prob{|E[u(t∗, Q)|Sr
−i]− E[u(t∗, Q)|Sr]| > γ | mr

−i} < 2γ. (12)

Let ν = minsi
Prob{Si = si}. It then follows from (12) that for r > rγ and any i and si

Prob{|E[u(t∗, Q)|Sr
−i]− E[u(t∗, Q)|Sr]| > γ | Si = si,m

r
−i} <

2γ

ν
. (13)

(13) then implies that

E[(u(ti, Q)− E[u(t∗, Q)|Sr
−i])Z

r
i (S

r
−i, τ

r
−i)|Si = si,m

r
−i]

≥ E[(u(ti, Q)− E[u(t∗, Q)|Sr])Zr
i (S

r
−i, τ

r
−i)|Si = si,m

r
−i]− γ − 2γ

ν
.

This implies that

E[(u(ti, Q)− E[u(t∗, Q)|Sr
−i])Z

r
i (S

r
−i, τ

r
−i)|Si = si,m

r
−i]

≥ E[(E[u(ti, Q)|S]− E[u(t∗, Q)|Sr])Zr
i (S

r
−i, τ

r
−i)|Si = si,m

r
−i]− γ − 2γ

ν
,

18As for the claim made following theorem 4 that the number of informed is bounded if c > 0, in the place
of
√

nr we could use any Nr such that Nr →∞ and Nr

nr → 0 and the following arguments would still hold.
These imply that the informed strategies converge to the uninformed strategies regardless of cost, and so it
cannot be that nr

I →∞ if information is costly.
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which in turn implies that

E[(u(ti, Q)− E[u(t∗, Q)|S−i])Z
r
i (S

r
−i, τ

r
−i)|Si = si,m

r
−i]

≥ E[E[u(ti, Q)− u(t∗, Q)|Sr]Zr
i (S

r
−i, τ

r
−i)|Si = si,m

r
−i]− γ − 2γ

ν
. (14)

So, fix any ti > t∗ and let w = minq[u(ti, q)− u(t∗, q)], noting that w > 0 by the continuity

and monotonicity of u. Find γ so that γ + 2γ
ν

< wa
2

. It follows from (14) that for r > rγ and

any i

E[(u(ti, Q)− E[u(t∗, Q)|S−i])Zi(S−i, τ
r
−i)|si,m

r
−i] > 0.

For any ti > t∗, there exists r such that for all r > r and any i, τ r
i < ti. A similar argument

holds for t′i < t∗. Thus, fixing any ε there exists rε such that for all r > rε and any i,

t∗ − ε < τ r
i < t∗ + ε for all i. Thus, on the selected subsequence we can conclude that weak

allocative efficiency holds. As it also holds on the other subsequence, the conclusion of the

theorem follows.
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