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1. Introduction and Overview

An issue of continuing interest in the macroeconomics literature is the comparison of information in

forecasts from econometric models. Fair and Shiller (1990) examine this issue by comparing forecasts

for real GNP growth rates for different pairs of models using a regression of actual values on predicted

values from the two models and find that the Fair (1976) model does very well relative to a variety of

other models. Fair and Shiller also point out that information beyondt-h (wheret is the time index andh

is the forecast horizon) may have been used in the revisions of data for periodst-h and back, so that their

forecasts are not trulyex ante(or real-time), in the sense that future information may creep into forecasts

of current variables. In a real-time analysis of forecasts of industrial production (IP), Diebold and Rude-

busch (1991) use preliminary and partially revised data (henceforth simply called "partially revised"

data) on the composite leading index (CLI), which is constructed using data that were available only at

t-h and back. In the context of linear forecasting models, they find that the performance of partially

revised CLI data deteriorates substantially relative to revised data when used to predict IP.

In this paper, we use linear models as well as a novel class of adaptive models capable of capturing

nonlinearity called "artificial neural networks" to model 9 different macroeconomic series. We use only

unrevised or "first reported" data, allowing construction of real-time forecasts. One advantage of this stra-

tegy is that we can compare our forecasts with forecasts from the Survey of Professional Forecasters

(SPF: see Croushore (1993)), which are also made in real time. Most previous comparisons of profession-

ally made forecasts with econometric models differ from ours in at least two respects: (1) Econometric

models are generally constructed using "fully revised" data, which are available at the time that the

models are constructed. This does not guard against future information creeping into the econometric

specification, and thus forecasts. Two important examples are revised seasonal factors and revised

benchmark figures. (2) Many forecasting models are linear and non-adaptive, in the sense that the same

variables and lags are always used. By also estimating a class of neural network models we are able to

answer the following question, "Given an array of nonadaptive linear and adaptive, possibly nonlinear,
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models for forecasting 9 macroeconomic variables, is there evidence that adaptive methods are useful?"

If so, we have direct evidence of the usefulness of adaptive models for forecasting macroeconomic vari-

ables in a real-time setting. Swanson and White (1995) find that such models can be useful when the

variable of interest is the spot-forward interest rate differential. We extend those results by considering a

wider array of variables, financial and other.

We consider a number of different out-of-sample model selection criteria. In particular, for a 45

quarter out-of-sample evaluation period we calculate mean squared error, mean absolute deviation, mean

absolute percentage error, and 2×2 contingency tables, among others. To allow for the possibility that the

economy is evolving over time, we use fixed-length rolling windows of 42, 58, and 76 quarters of data to

estimate our models, calculating 1-quarter and 1-year ahead forecasts. This allows us to evaluate the sta-

bility of our econometric models throughout the sample period 1960 to 1993.

The model selection approach taken here is different from the more traditional hypothesis testing

approach. As in Swanson and White (1995), we adopt this approach for a number of reasons: (1) Model

selection allows us to focus directly on the issue at hand: out-of-sample forecasting performance; (2)

Model selection does not require the specification of a correct model for its valid application, as does the

traditional hypothesis testing approach; (3) Finally, if properly designed, the probability of selecting the

truly best model approaches one as the sample size increases, in contrast to the traditional hypothesis

testing approach (see Swanson and White (1995)). To be sure, it can sometimes be difficult to assess the

Type I error associated with testing the implicit model selection hypothesis that two models under con-

sideration truly perform equally well based on observed differences in realized model selection criteria.

Nevertheless, this is a defect of the same order of magnitude as using a traditional test whose size is

known only asymptotically. Also, in certain cases, such as when an in-sample model selection criterion

(the Schwarz Information Criterion (SIC)) is used to distinguish correctly specified models, the distinc-

tion between the model selection approach and the traditional hypothesis testing approaches is blurred,

and the two approaches can be interpreted as different versions of the same technique.
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By adopting this model selection approach in a real-time forecasting scenario, we believe that we

contribute not only to the discussion of the usefulness of econometric models for predicting

macroeconomic variables, but also to the methodology of comparing econometric forecasts with profes-

sional forecasts. One dimension of this contribution is that we construct a real-time economic data-set

which has the characteristic that data available at timet do not contain any information which has been

allowed to "leak" in from future time periods, as often happens with fully revised macroeconomic data.

Further, we consider a variety of model selection criteria including the SIC, various forecast error meas-

ures, and forecast direction accuracy. Contributions are also attempted in a number of other related

interesting directions. Specifically, we examine the usefulness for macroeconomic forecasting of a class

of adaptive prediction models called artificial neural networks, and we examine the issue of "stability" by

estimating our prediction models using fixed-length rolling windows of data.

The rest of the paper is organized as follows. Section 2 discusses the data, while Section 3 outlines

the prediction models considered in this study. Section 4 describes our estimation strategies, and outlines

the model selection criteria used. Section 5 discusses the results for the statistical performance measures,

and Section 6 provides a summary and concluding remarks.

2. The Data

For the period 1960:1 to 1993:3 we have collected "first available" (which we call "unrevised") U.S.

data for unemployment, interest rates, industrial production, nominal gross national product, corporate

profits, real gross national product, personal consumption expenditures, the change in business inven-

tories, and net exports of goods and services. Table 1 expands on the series definitions. The choice of

variables was dictated somewhat by the availability of "professional" forecasts (see below) which we

compare with forecasts made using various linear and nonlinear econometric models. The data are all

quarterly, and are published monthly in the Survey of Current Business (SCB). In order to collect the

data, each monthly issue of the SCB from 1960 to 1993 was examined. Each time a "new", or first avail-
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able, observation for any of the series was reported, we added one more observation to our data set.

Our data collection strategy allows us to formulate and estimate econometric models at time period

t-1, for instance, using only data which were available prior to periodt. This allows us to guard against

future information creeping into our econometric specifications, and thus our forecasts. Specifically, we

avoid using data available after periodt-h, whereh is the horizon of our forecasts. We thus address the

data revision problem pointed out by Fair and Shiller (1990) and are able to construct trulyex antefore-

casts.

As one measure of the usefulness of our real-time econometric forecasts, we compare our forecasts

to professional forecasts of the variables in Table 1. The professional forecasts were provided by Dean

Croushore, and are collected in the Survey of Professional Forecasters (SPF) data set. In the SPF (form-

erly known as the American Statistical Association/National Bureau of Economic Research Economic

Outlook Survey) a number of professional forecasters from business, Wall Street, and certain universities

are surveyed once each quarter. They are asked to provide forecasts for each of the series listed in Table

1 (among others, see Croushore (1993)). We have simplified the available SPF panel by constructing a

data set that consists of median 1-quarter and 4-quarter ahead forecasts for the period 1982:3-1993:3.

Zarnowitz and Braun (1992) provide a comprehensive study of the SPF. One of their findings is that

taking the mean or median provides a consensus forecast with lower average errors than most individual

forecasts. It should be pointed out, though, that using only median forecasts rather than the entire panel

is a simplification that may lead to testing bias in certain cases. For instance, Keane and Runkle (1990)

avoid aggregation bias by using the full panel of the SPF when testing the rationality of price forecasts,

and find results different than when only mean forecasts are used. Because forecasts fort are collected at

periodt-h, h=1,4, the SPF data are also trueex anteforecasts. Thus, it is natural to ask whether our real-

time forecasts based on adaptive, possibly nonlinear, econometric models compare favorably to forecasts

based on non-adaptive linear econometric models as well to SPF forecasts over a similar period.
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Any comparison of forecast accuracy depends on the timing of the forecasts. While our comparison

of adaptive and non-adaptive models is not affected by this issue, comparisons based in part on the SPF

data set depend crucially on the timing and availability of the data used to construct the competing fore-

casts. The real-time feature of our forecasts makes it relatively easy to pinpoint the timing used in our

analysis. Generally, SPF surveys are mailed around the beginning of the current quarter, say periodt.

Responses are requested by shortly after themiddle of the current quarter and consist of forecasts for

periodst, t +1, ..., t +5. However, since respondents are asked to forecast current quarter valuesduring

the current quarter, their information sets may contain a large amount of thesameinformation that is later

used by the government to construct the actual data for periodt. As might be expected in such a

scenario, current quarter median SPF forecasts are extremely accurate and almost always outperform

econometric models based on information available only during the previous quarter.

Our approach to this issue is to compare SPF forecasts fort +1 andt +4 that are made during period

t with corresponding econometric model forecasts made using data available at timet. (Various other

approaches to this problem are also available, such as basing linear econometric forecasts on information

at periodt −1, rather thant. However, further analysis of this and other approaches is left to future work.)

Because SPF forecasts have the added advantage that they useall available information, while our

econometric models use at most the unrevised and lagged information from at most two other

macroeconomic variables as we discuss below, we feel that we will obtain, if anything, a conservative

comparison. Also note that our econometric models are at a further disadvantage because we use only

first available information; however, at any point in timet, not only are all lagged unrevised observations

available, but all revisions ("partially" revised data) that have taken place prior to timet are also avail-

able. Thus, our unrevised data set is not as rich as the "partially revised" data available to SPF respon-

dents at timet.

Diebold and Rudebusch (1991) and Swanson and White (1995) examine real-time econometric

forecasting models that use all available data (here called partially revised data) at each given point in
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time. To illustrate the amount of data collection necessary in order to conduct real-time experiments

using partially revised data, it is worth noting that Diebold and Rudebusch (1991) use a partially revised

data set for one variable, the composite leading index, for the period 1948:1-1988:11. The data matrix for

this single series contains about 90,000 nontrivial entries. We leave for further research use of partially

revised data in the current context.

3. The Models

3.1 Linear Models

The linear models specified in this paper are all special cases of the following model:

yt +h −1  =   α0  +   
i =1
Σ
K 1

 βi  yt −i   +   
i =1
Σ
K 2

 γi  xt −i   +   
i =1
Σ
K 3

 δi  zt −i   +   ut +h −1, (1)

whereyt is one of the nine macroeconomic variables, andh is the horizon of our forecast, in quarters.

The independent variables,xt andzt , are two other variables chosen from our set of nine macroeconomic

variables (see the discussion in Section 4).

In all, 21 versions of (1) are estimated. The first model corresponds to a random walk, where

α =  0, β1 =  1, βi , i = 2,..., K 1 =  0, and γi  =  δi  =  0, i = 1,...,5. The next five models are AR(K1) processes,

where K1=1,...,5 andγi  =  δi  =  0, for all i. VAR(2) models are also considered, where alternately: (i)

K1=K2=1,...,5 andδi  =  0, i = 1,...,K 2, and (ii) K1=K3=1,...,5 andγi  =  0, i = 1,...,K 3. The final five models

considered are VAR(3) specifications, where K1=K2=K3=1,...,5.

In this study, we consider these models as special cases of a fairly broad array of forecasting

models, while realizing that various other linear models that we don’t examine here are also available.

The random walk model is called a NO CHANGE model, while all other models are referred to by the

ordered triplet (K1,K2,K3), and are called LINEAR VAR MODELS in Tables 2-12. Overall, the models

differ primarily by the number of lags of the dependent and independent variables, and by the number of

independent variables included. As all of the variables are measured in levels, the interpretation of the

VAR models which we consider is of some interest. We leave this to Section 4, which examines
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estimation and model selection procedures.

3.2 Adaptive Models

We examine a class of flexible adaptive models that were first proposed by cognitive scientists.

These so-called "artificial neural network" (ANN) models represent an attempt to emulate certain features

of the way that the brain processes information (see Rumelhart and McClelland (1986) for further discus-

sion). Because of their flexibility and simplicity, and because of demonstrated successes in a variety of

empirical applications (see White (1989) and Kuan and White (1993) for some specifics), ANNs have

become the focus of considerable attention as a possible vehicle for forecasting economic variables, and

in particular, financial variables. A number of recent applications using financial data are contained in

White (1988), Moody and Utans (1991), Dorsey, Johnson and van Boening (1991), and Swanson and

White (1995). Other references containing relevant discussions about neural network models are Granger

(1993) and Granger and Teräsvirta (1993). In this paper we closely follow the modeling strategies used

in Swanson and White (1995), and the reader is referred to that paper for further references.

For present purposes, it suffices to treat these models as a potentially interesting black box, deliver-

ing a specific class of nonlinear regression models. In particular, the ANN regression models considered

here have the form:

f(w,  θ) =  w̃´κ +  
j =1
Σ
q

 G(w̃´ πj ) λj (2)

wherew̃ =  (1,w´)´ is a (column) vector of explanatory variables,

w =  (yt −1, ... , yt −K 1, xt −1, ... , xt −K 2, zt −1, ... , zt −K 3)´,

θ =  (κ´, λ´, π´ )´, λ =  (λ1, . . . ,λq)´, π =  (π´, . . . ,πq
´ )´, q is a given integer, andG is a given nonlinear

function, in our case, the logistic cumulative distribution function (c.d.f.)G(z) =  1/(1+ exp(− z)).

A network interpretation of (2) which is also given in Swanson and White (1995) is as follows.

"Input units" send signalsw0(= 1), w1, . . . ,wr over "connections" that amplify or attenuate the signals by

a factor ("weight")πji , i = 0, . . . ,r, j = 1, . . . , q. The signals arriving at "intermediate" or "hidden" units
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are first summed (resulting inw̃´πj ) and then converted to a "hidden unit activation"G(w̃´πj ) by the

operation of the "hidden unit activation function",G. The next layer operates similarly, with hidden

activations sent over connections to the "output unit." As before, signals are attenuated or amplified by

weightsλj and summed. In addition, signals are sent directly from input to output over connections with

weightsκ. A nonlinear activation transformation at the output is also possible, but we avoid it here for

simplicity.

In network terminology,f (w, θ) is the "network output activation" of a "hidden layer feedforward

network" with "inputs"w and "network weights"θ. The parametersπj are called "input to hidden unit

weights," while the parametersλj are called "hidden to output unit weights." The parametersκ are called

"input to output unit weights."

A number of authors including Hornik, Stinchcombe and White (1989, 1990) (see also Cybenko

(1989), Caroll and Dickinson (1989) and Funahashi (1989)) have shown that functions of the form (2) are

capable of approximating arbitrary functions ofw arbitrarily well givenq sufficiently large and a suitable

choice of θ. This "universal approximation" property is one reason for the successful application of

ANNs. White (1990) establishes that ANN models can be used to perform nonparametric regression, con-

sistently estimating any unknown square integrable conditional expectation function.

Our approach is to apply model (2) to the problem of forecastingyt+h −1 using explanatory variables

w corresponding to the variables considered in the linear forecasting models described above, and with

the number of "hidden units",q =  5. Note that whenλi  =  0, i = 1,...,5, we have the linear VAR(3) models

as a special case. Using this framework, we attempt to determine whether inclusion of the nonlinear

terms,G(w´ πj ), enhances forecasting ability, assuming that overfitting is properly avoided.

The ANN models we use areadaptivein the sense that in each time period and for each forecast

horizon the parameters are re-estimated and the number of hidden units (and thus the appropriate degree

of nonlinearity) is determined anew using the SIC. Further, which lags of the predictor variables are used

is also determined anew from the same set used by the linear models via the SIC. Such models are
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designated ANN MODEL I in Tables 2-12. We also consider a final adaptivelinear model, designated

ANN MODEL II, in which no hidden units are included (ruling out nonlinearity), but for which a new

group of linear regressors is chosen at each point in time, and for each forecast horizen. As in the ANN

MODEL I case, in this final case the regressors are also chosen from among the same set of regressors

used by the linear models.

4. Estimation and Model Selection Procedures

The parameters of the linear models are estimated by the method of least squares. Because all vari-

ables are in levels (and fail to reject the null of I(1) when subjected to augmented Dickey-Fuller tests),

the VAR models that we consider can be interpreted as inefficiently estimated vector error correction

(VEC) equations, as long as the variables considered are cointegrated. In our real-time scenario, this pro-

cedure allows us to avoid re-estimating the rank of any potential cointegration between the variables at

each point in time, while still accounting for any cointegration that may be present, albeit in an inefficient

way. As we are interested only in out-of-sample performance and model selection, we do not conduct

any inference on the regression coefficients from our in-sample estimations, so that even if the distribu-

tion of the estimated coefficients were non-standard, our analysis is not affected in any way. Neverthe-

less, the variables chosen as predictor variables in each of our regression models were chosen by using a

"training" set of data from 1960:1-1982:2 to determine which macroeconomic variables were most

closely related, in-sample, in terms of both cointegrating properties and in-sample fit. As the same set of

predictor variables was used for both our adaptive and non-adaptive models, one interpretation of our

approach is that we consider a very narrow class of econometric models, thereby increasing the probabil-

ity that the SPF forecasts (which are based on the entire information set) will outperform our forecasts, all

else fixed.

Another feature of our approach is that we assume the underlying relation between the economic

variables considered may be evolving through time. Thus, we estimate the parameters of all our models
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using only a finitewindowof past data rather than all previously available data. Window sizes of 40, 68,

and 76 quarters are used for our regressions. Various other studies use "increasing" windows of data

rather than the fixed windows used here (see for example Fair and Shiller (1990), Leitch and Tanner

(1991) and Peseran and Timmerman (1994a)).

To evaluate the nonadaptive regression models and the various window widths, sequences of out-

of-sample 1-quarter and 4-quarter ahead forecast errors are generated by performing the regressions over

a given window terminating at observationt −h, say, and then computing the error in forecastingyt for

h =1,4 using data available at timet − h and the coefficients estimated using data in the window terminat-

ing at timet −h. Each time the window rolls forward one period, a new out-of-sample residual is gen-

erated, simulating true out-of-sample predictions and prediction errors made in real-time by this process.

In particular, because we use only unrevised data, we ensure that our forecasts are trulyex anteas no

future information is allowed to creep into our data (see Section 2 for more details). For our study, the

smallest value fort −h corresponds to the second quarter of 1983 forh =1 (and the third quarter of 1982

for h =4) while the largest corresponds to the second quarter of 1993 for h=1 (and the third quarter of

1992 forh =4). We therefore have a sequence of 45 out-of-sample 1-quarter and 1-year ahead forecast

errors based on forecasts for the period 1983:3-1993:3 with which to evaluate our models. The start date

for this period coincides roughly with the last major shift in Federal Reserve monetary policy in late

1982, and the period includes recessionary as well as expansionary economic phases.

By simulating forecasts in real-time, we obtain measures of forecasting performance analogous to

those recently discussed by Diebold and Rudebusch (1991). However, our procedure differs from theirs in

three respects. First, Diebold and Rudebusch (1991) use a growing data window with fixed first observa-

tion, as they are not concerned with tracking a possibly evolving system. Second, Diebold and Rude-

busch (1991) focus on the effects of using "partially revised" composite leading indicators (CPI) and

"fully" revised industrial production (IP) data in real-time simulations, for predicting economic upturns

and downturns. We also focus on macroeconomic data, but use strictly unrevised data, and consider fore-
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casts of 9 different macroeconomic variables. Lastly, we focus on issues related to forecast model selec-

tion and evaluation, while Diebold and Rudebusch (1991) focus primarily on prediction, using squared

error loss and absolute error loss to determine the usefulness of the CPI for predicting future IP.

We now turn to the issue of estimating our ANN models. As discussed in Swanson and White

(1995), when the ANN I models are estimated it is inappropriate to simply fit the network parameters

with (say)q =  5 hidden units by least squares, as the resulting network typically will have more parame-

ters than observations, achieving a perfect or nearly perfect fit in-sample, with disastrous performance

out-of-sample. To enforce a parsimonious fit, the ANN models were estimated by a process of forward

stepwise (nonlinear) least squares regression, using an in-sample complexity penalized model selection

criterion, the SIC (see below), to determine included regressors and the appropriate value forq.

Specifically, a forward stepwise linear regression is performed first, with regressors added one at a time

until no additional regressor can be added to improve the SIC. The linear regression coefficients are

thereafter fixed. Next, a single hidden unit is added (i.e.q is set to 1), and regressors are selected one by

one for connection to the first hidden unit, until the SIC can no longer be improved. Then a second hidden

unit is added and the process repeated, until five hidden units have been tried, or the SIC forq hidden

units exceeds that forq−1 hidden units. This ANN model selection procedure is begun anew each time

the data window moves forward one period. A different set of regressors and a different number of hidden

units connected to different inputs may therefore be chosen at each point in time. For example, an ANN

model with no hidden units may be "chosen" based on data available at timet −1, while an ANN model

with 5 hidden units may be chosen at timet. Thus, in our ANN estimation strategy we allow for the

eventuality that no hidden units may be preferable at any given point in time, suggesting that the SIC-

best model may be linear for some periods, and perhaps nonlinear for others. In Tables 2-12 we report the

frequency of SIC-best models which included hidden units in the ANN estimations. We thus simulate a

fairly sophisticated real-time ANN forecasting implementation. On average, we should expect the ANN

models to have SIC values superior to (i.e smaller than) those of the linear models, as the ANN model
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can choose any of the linear models as a special case. The ANN II models were fit in an analogous way,

except that the process was terminated withq=0, enforcing linearity in the predictor variables.

Interestingly, in Swanson and White (1995) even this fairly conservative procedure did not entirely

eliminate the tendency for the neural network model to overfit, as evidenced there by occasional totally

wild 1-step forecasts of interest rate differentials from network models that fit very nicely in-sample. In

forecasting the 9 macroeconomic series, however, we have come across no cases where resulting fore-

casts are unreasonable, so that the "insanity filter" placed on the network forecasts in Swanson and White

(1995) is not used in our current analysis, and we thus have some evidence that the network models have

not been overfit.

In order to compare the various models, five measures of out-of-sample model/window performance

are computed. The first is theforecast mean squared error(MSE) of the 45 forecast errors for each

model and window, and for each horizon,h =  1,4. Using this measure, we can precisely address the

question "Which model/window combination performs best in real-time macroeconomic forecasting

based on an out-of-sample forecast error comparison?" Thus we have direct and specific evidence of the

value of the various forecasting models.

As pointed out by Leitch and Tanner (1991) as well as Diebold and Mariano (1994), squared (or

any other particular) error loss measures may not be closely related to some chosen profit measure. For

this reason, Swanson and White (1995) also consider the ability of various models to predict the direction

of change in interest rates. They also consider the "profitability" of the competing models when used to

trade forward contracts based on interest rate variability. Here we examine a number of other model

selection and performance measures, some of which are closely related to the MSE criterion, and some of

which are not (see below).

Using the MSE, we also calculate the out-of-sample forecastR2, where

R2 =  1 − MSE /Sy
2, (3)

andSy
2 is the sample variance of the dependent variable in the out-of-sample period. Of note is that (3)
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can take negative values because the MSE can exceedSy
2, out-of-sample.

The second and third measures of forecast performance are closely related to the MSE. We calcu-

late the mean absolute deviation (MAD) and the mean absolute percentage error (MAPE) of the 45

forecast errors for each model and window, and for each horizon,h =  1,4. For further discussion of these

and other measures the reader is referred to Stekler (1991). In order to compare the MSE, MAD and

MAPE statistics which derive from our adaptive and nonadaptive econometric models with those from

the SPF forecasts over the same period, we use the asymptotic loss differential test proposed in Diebold

and Mariano (1994). Their test considers a sample path {dt} t =1
T of a loss differential series, and points out

that

S1   =    d
_
 / [ T−12π f̂d(0) ]   ∼   N(0,1)

where 2πfd(0) can be easily estimated in the usual way as a two-sided weighted sum of available sample

autocovariances. Following Diebold and Mariano’s (1994) suggestion, we use a uniform lag window,

and assume (h−1) dependence for ourh-step ahead forecasts in order to choose the truncation lag. We

define our loss differential series as

dt   =   ûSPF,t
f

 − ûECO,t
f

, for the MSE test;

dt   =   |ûSPF,t
f

|  − |ûECO,t
f

| , for the MAD test; and

dt   =   | (ŷSPF,t
f

/ yt) − 1 |  − | (ŷECO,t
f

/ yt) − 1 | , for the MAPE test,

whereû
f

is the prediction error,ŷ
f

is the predicted value,yt is the actual value, SPF denotes forecasts

from the Survey of Professional Forecasters, ECO denotes forecasts made using our adaptive or nonadap-

tive econometric models, and the index,t, runs fromt =1 to 45, in accord with our ex ante forecast period.

Other similar tests of forecasting accuracy are also available, but are not examined here, partly because

the Diebold-Mariano test is elegant, easy to construct, and assumes only that the loss differential series is

covariance stationary and short memory. One such test, discussed in Granger and Newbold (1977)

makes use of the fact thatεt
1 =  ûSPF,t

f
 − ûECO,t

f
is contemporaneously uncorrelated with

εt
2 =  ûSPF,t

f
 +  ûECO,t

f
so that the null hypothesis of equal forecast accuracy is the same as zero correlation
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betweenεt
1 andεt

2. Meese and Rogoff (1988) modify the Granger-Newbold test by allowing for serial

correlation, while Mizrach (1991) further relaxes a Gaussianity assumption used in the Granger-Newbold

and Meese-Rogoff tests.

Our fourth measure of forecast performance is how well a given forecasting procedure identifies the

direction of change in the level of the variable being forecast, regardless of whether thevalue of the

change is closely approximated. To examine this aspect of forecast performance, we calculate the "confu-

sion matrix" of the model/window combination. A hypothetical confusion matrix is given as

  
predicted

  
  
  

  

down
up
  
  

  

H
I 12
23  7

3J
K

  
up  down

actual

(4)

The columns in (4) correspond toactual moves, up or down, while the rows correspond topredicted

moves. In this way, the diagonal cells correspond to correct directional predictions, while off-diagonal

cells correspond to incorrect predictions. We measure overall performance in terms of the model’s "con-

fusion rate," the sum of the off-diagonal elements, divided by the sum of all elements. As (4) is simply a

2×2 contingency table, the hypothesis that a given model/window combination is of no value in forecast-

ing the direction of spot rate changes can be expressed as the hypothesis of independence between the

actual and predicted directions (as discussed in Peseran and Timmerman (1994b) and Stekler (1994)).

Methods for testing the independence hypothesis in the context of forecasting the direction of asset

price movements have been given by Henriksson and Merton (HM, 1981). Based on the hypergeometric

distribution, thep-values delivered by HM’s method require for their validity the independence of the

directional forecast from the magnitude of the asset price change. Peseran and Timmerman (1994) show

that the test proposed by HM is asymptotically equivalent to the standardχ2-test of independence in a

2×2 contingency table, when the column and row sums are nota priori fixed (as in our case). When the

column and row sums are fixed, Peseran and Timmerman (1994) further show that the HM-test of market

timing is better interpreted as an exact test of independence within the framework of a 2×2 contingency
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table. We present confusion matrices, confusion rates, and both the HMp-values and the standardχ2-test

of independencep-values. As a final measure of independence (noting that the value of ourχ2 statistic is

directly proportional to the sample size,T=45 in our case), we also report the standardφ coefficient,

whereφ =  √M M M Mχ2/ T . For our contingency tables, in which the number of rows and columns are each two,φ

ranges from 0 when the variables are independent to 1 when the variables are perfectly related. Using

confusion matrices should allow us to answer the question "Are the least confused models also the

models which we would choose as best based on other out-of-sample forecast performance measures

such as the MSE and MAD, in the context of real-time forecasting?" Also, a finding that a model rejects

the null hypothesis of independence is direct evidence that the model is useful as a predictor of the sign

of change in a particular macroeconomic variable.

Our fifth and final in-sample model/window performance measure is Theil’s U statistic. This statis-

tic is well known, and can be viewed as the root MSE of a forecast divided by the root MSE of a naive no

change forecast. The statistic takes the value 0 when the prediction is perfect, and takes the value unity

when the MSE of the predicted change equals the MSE of the no change prediction.

A drawback of the use of out-of-sample based model selection procedures is that they can be quite

computationally intensive. Much less demanding procedures that use only in-sample information can be

based on a variety of complexity-penalized likelihood measures. Among those most commonly used are

the Akaike Information Criterion (AIC) (Akaike 1973, 1974) and the Schwarz Information Criterion

(SIC) (Schwarz 1978, Sawa 1978). These information criteria add a complexitypenaltyto the usual sam-

ple log-likelihood, and the model that optimizes thispenalizedlog-likelihood is preferred. Because the

SIC delivers the most conservative models (i.e. least complex), because more parsimonious models often

outperform more complicated models when used to forecast macroeconomic variables, and because the

SIC has been found to perform well in selecting forecasting models in other contexts (for example, see

Engle and Brown (1986)), we examine its behavior in the present context as a final measure of forecast

performance. Two questions are of interest: First, what sort of guide is the in-sample SIC to out-of-
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sample performance? Second, are our SIC-selected adaptive ANN models comparable to our nonadap-

tive linear forecasting models with respect to their performance based on various out-of-sample perfor-

mance measures? The first question is of interest, for if the relatively straightforward SIC reliably

identifies the model that performs best according to one of our out-of-sample criteria, then we may use

SIC as a welcome computational shortcut. The second question concerns the estimation of ANN models.

The use of the SIC for choosing ANN models is very straightforward computationally, and if ANN

models based on the SIC perform well based on out-of-sample performance measures, then our simple

procedure for ANN estimation will be useful for the construction of further macroeconomic forecasting

models.

For a model withp parameters estimated on a window of sizen, the SIC is

SIC =  log s2 +  p(log n)/n , (6)

where s2 is the regression mean-squared-error. The first term is a goodness of fit measure, and the

second is the complexity penalty. We report themeanof the 45 values for the SIC, called MSIC, for

given model/window combinations.
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5. The Results For Statistical Performance Measures

To aid in the discussion of the results, a list of the acronyms used is given.
_______________________________________________________________________________________________

SPF Survey of Professional Forecasters.
NO CHANGE No change or random walk model.
LINEAR VAR MODEL Linear model: AR, VAR(2), or VAR(3)
ANN MODEL I Adaptive Artificial Neural Network Model with up to 5 hidden units.
ANN MODEL II Adaptive Linear Model.
SIC Schwarz Information Criterion:SIC = log s2 + p(log n)/n, n=window size.
MSIC Mean Schwarz Information Criterion.
MSE Forecast Mean Squared Error: Average of 45 1 or 4-quarter forecast errors.
R2 Out-of-sample measure:R2 = 1 − MSE/Sy

2.
MAD The Mean Absolute Deviation: Average of 45 1 or 4-quarter ahead forecast errors.
MAPE The Mean Absolute Percentage Error: Average of 45 1 or 4-quarter ahead forecast errors.
Confusion Matrix 2×2 Contingency Table.
Confusion Rate Sum of off diagonal elements of the Confusion Matrix divided by the sum of all elements.
HM p-Value p-Value for Henriksson-Merton Market Timing Test.
χ2 p-Value p-Value fromχ2-test of independence.
φ Coefficient φ = √M M M Mχ2/ T , T=45.
Theil’s U The root MSE of the forecast divided by the root MSE of a naive no change forecast.
dep The dependent variable for a particular forecasting model.
ind The independent variables(s) (besides lags of the dependent variable)

for a particular forecasting model.
_______________________________________________________________________________________________

The results for the 9 macroeconomic variables are contained in Tables 2-12. Because of space considera-

tions, we include results for the best adaptive and nonadaptive models and window sizes, as well as

results for the no change model for each variable, and for forecast horizons of 1-quarter (h=1) and 1-year

(h=4). As discussed above, the best nonadaptive models are chosen based on a training set of observa-

tions from 1960:1-1982:2 (for h=1) and 1960:1-1981:3 (for h=4), while the best adaptive models are

chosen based on in-sample SIC. Complete results for all models and all cases are available upon request

from the authors. Table 1 contains variable acronyms which are used throughout.

A number of fairly clear-cut conclusions emerge. First, it appears that the various models are all

variously preferred, based on MSE, MAD, and MAPE measures. Using the Diebold-Mariano test for

h=1, the SPF forecasts MSE-dominate all other models for IP and Net X, and MSE-dominate the no

change model for R, NGNP,Π, and RGNP. Alternately, both the adaptive and nonadaptive models

MSE-dominate the SPF forecasts for NGNP and PCE. Interestingly, comparisons using the MAD and

MAPE statistics differ somewhat. Based on either MAD, MAPE, or both, the nonadaptive linear model

dominates the SPF for U, R, IP, and PCE; the no change model dominates the SPF for U, R, PCE, and Net
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X; and the adaptive models dominate for U, RGNP, and PCE. Thus, based on these three related model

selection criteria, the results are mixed. This supports the well known observation that the choice of par-

ticular model selection criteria plays an important role in the final specification of forecasting models.

Also, model selection varies depending on which macro variable is being forecast. Overall, it seems

clear theall models have something to offer, depending on the context. With respect to our adaptive net-

work models, forecasts of various series are seen to improve when flexibly adaptive models are fitted to

the data. Thus, we have obtained some evidence for the usefulness of forecasting macroeconomic series

with such models. Note, however, that explicit nonlinearity plays quite aminor role in these improve-

ments; adaptivity without nonlinearity suffices, for the most part. With respect to window size, forh =1

the preferred window is 76 quarters, although windows of 58 quarters are also preferred for a small

number of variables. Because the largest window widths are usually preferred to shorter ones, we have

evidence of relative time stability for the variables. Results forh =4 are less straightforward. The SPF

seems to dominate for R and IP, while the SPF loses for PCE. Based on MSE, MAD, and MAPE it is

difficult to say more at this stage, since most of the models cannot be distinguished from one another

using the Diebold-Mariano test.

In order to examine the MSE, MAD, and MAPE results of Tables 2-10 from a different perspective,

two summary measures have been calculated. The first, shown in Table 11 is a simple sum of the number

of times that each model dominates all other models based on model selection criteria point estimates and

for each of our six model selection statistics. Forh =1, the results show that the SPF "wins" based on

confusion rate in 5 of 9 cases, but "loses" in all nine cases based on any of the other model selection cri-

teria! Overall, the adaptive and nonadaptive models seem to dominate about equally. However, as

expected, the adaptive models "win" in all 9 cases based in MSIC. A surprising result in Table 11 is for

the forecast horizon,h =4, where the adaptive models dominate all other models combined, for all selec-

tion criteria. Thus, while the Diebold-Mariano test suggests that there may be little to choose between

the models when forecasting 1-year ahead, the point estimates overall suggest that the adaptive models
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hold some promise.

The second summary measure is less crude than the first. Overall performance results are compared

using the sign test (see for instance Bickel and Doksum (1977)). We consider the following version of the

sign test. Assume that we wish to compare the performance of the SPF forecasts to each alternative

econometric model. We assume that we have 9 independent pairs (i.e one pair is the MSE for the SPF

model and the MSE for the NO CHANGE model for a single variable over the entire forecast period).

Then we construct the difference between our "control" (the SPF values), and our "treated" model selec-

tion criterion (the "treated" model may be the adaptive, nonadaptive, or NO CHANGE model). The

hypothesis of no "treatment effect" corresponds to the assertion that the differences are symmetrically dis-

tributed about 0. The sign statistic,S, is simply the number of differences that are positive, and has a

binomial distribution,B(9, ⁄1
2), under the null hypothesis. This statistic is somewhat different from our

other,individual variablemodel selection criteria, as it measures theoverall performance of each model

relative to the SPF model. Table 12 lists the results of the sign test for the MSE, MAD, and MAPE cri-

teria. Forh =1, the adaptive and nonadaptive models both appear to outperform the SFP model, using a

significance level of 5%. Interestingly, forh =4, only the adaptive models outperform the SFP model,

and this only for the MSE criterion at a 10% level of significance. Thus, while the adaptive and nonadap-

tive models are overall winners forh =1, it is much harder to choose among the competing models at the

1-year forecast horizon, with the adaptive models being marginally preferred.

Our fourth model selection criterion is the confusion rate. Not surprisingly, the MSE, MAD, and

MAPE-best models arenot generally the least confused (based on the HM andχ2 p-values), as forecast

errors for individual observations can simultaneously be small in magnitude and associated with a predic-

tion of the wrong sign. This is especially likely in prediction of small changes. For U,Π, RGNP, PCE,

∆BI, and Net X, one or more of the models are not confused, based on rejections of the null hypothesis of

independence at a 10% level of significance (10% LOS), using either the HM or theχ2 p-values. Based

on the same p-values and a 10% LOS we conclude: (i) the SPF model is least confused forPCE (h =1)
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and Net X (h =1); (ii) the nonadaptive models are least confused for U (h =1) andΠ (h =4); (iii) the adap-

tive models are least confused for U (h =4), RGNP (h =4), and Net X (h =4); (iv) None of the models are

confused for∆BI (h =1,4). Thus, using a 10% LOS, each of the three competitors is seen to win twice,

with the exception of the adaptive models which win 3 times. Perhaps not surprisingly, we conclude that

while the adaptive model "wins" more often, the least confused models change on a case by case basis.

Interestingly, based on point estimates alone, the least confused models are adaptive models in 6 of 9

cases forh =4, and in 3 of 9 cases forh =1.

Our final out-of-sample measure is Theil’s U statistic. In passing, we note that based on Theil’s U,

the no change model beats all other models for R (h =1,4), Π (h =1), and Net X (h =1,4). In all other

cases, the evidence is mixed. For instance, adaptive models win in 2 of 9 cases forh =1 and 5 of 9 cases

for h =4. Of course, since Theil’s U values are based on each variables’ root MSE (which varies by

model), and no change root sum squared error (which is constant by model), then Theil’s U statistic

values yield exactly the same information as the MSE point estimates.

As our in-sample statistical performance measure, we consider the relation between the models

identified asbest in Tables 2-10 using the various ex ante model selection criteria with the MSIC-best

models. As should be expected, the MSIC-best model is in each case ANN MODEL I, as these models

are arrived at by minimizing the SIC in each window. However, the adaptive models deliver best out-of-

sample MSE performance in 2 of 9 cases forh =1 and 5 of 9 cases forh =4 (see Table 11). Furthermore,

as mentioned above, the adaptive models deliver least confused directional prediction 50% of the time.

The adaptive models also correspond to the MAD and MAPE-best models around 50% of the time (when

point estimates are compared). This is interesting, as it suggests that (at least in the present

macroeconomic forecasting context) the MSIC cannot always be used as a reliable shortcut to identifying

models that will perform optimally out-of-sample. However, it remains an open question whether or not

the MSIC performs better than other in-sample measures, such as a meanR2 statistic, for example. In

network jargon, the MSIC-best model is not necessarily the model that "generalizes" best when presented
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with data not included in the "training set". Instead, it is necessary to do the appropriate out-of-sample

analysis to find the best model, when using adaptive methods. This result is similar to that found by

Swanson and White (1995), who predict the spot differential in the interest rate at various forecast hor-

izons.
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6. Summary and Concluding Remarks

We have used a model selection approach to compare real-time forecasts of 9 macroeconomic vari-

ables using various adaptive and nonadaptive models, linear and potentially nonlinear, and the Survey of

Professional Forecasters (SPF) forecasts. We offer the following conclusions. First, even when we con-

strain our econometric models to include information available only on a real-time basis, our predictions

still outperform SPF predictions for many of the variables, based on mean squared forecast error, mean

absolute forecast error, and mean absolute deviation measures. However, when comparing 1-quarter

ahead forecasts, SPF predictions of the direction of change outperform both linear and nonlinear models

two thirds of the time. At a 1-year forecast horizon, though, this result is reversed, and adaptive models

dominate two-thirds of the time. Overall, our results, which include Diebold-Mariano loss differential

tests,χ2 tests of independence, and sign tests, indicate that model selection should proceed on a case by

case basis, with adaptive, nonadaptive, and SPF prediction models alternately dominating depending on

which variable is being examined. Second, windows of observations less than the maximal size rarely

appear in prediction-best models, suggesting relative stability in the relationships of interest. Third, the

in-sample Schwarz Information Criterion does not appear to offer a convenient shortcut to true out-of-

sample performance measures for selecting models, and for configuring adaptive network models, when

forecasting macroeconomic variables. Fourth, the use of unrevised data in real-time forecasting appears

to offer a valid guide for comparing real-time professionally available forecasts with econometric predic-

tions. This is contrary to the common practice of using the latest fully revised data, which often uses

future data to help revise earlier data (such as when revised seasonal factors and revised benchmark

figures are used). Finally, adaptive models appear to be promising for use in this context although we

find little evidence that explicit nonlinearity is helpful in the present context. Further refinement and

application of adaptive methods for modeling macroeconomic variables thus appears warranted, particu-

larly in the context of trulyex anteor real-time forecasts.



- 24 -

The work here is meant as a starting point. From both a theoretical and an empirical perspective, a

wide variety of further questions present themselves for subsequent research. On the theoretical side, it is

of interest to establish the statistical properties of the model selection procedures followed here. On the

empirical side, it is of interest to construct more refined prediction models using "partially revised" data

rather than the unrevised data used here. Also, issues of timing and data availability when comparing

competing predictions from different sources are of interest. Finally, while the in-sample SIC does not

provide a convenient shortcut to out-of-sample predictive performance, other in-sample statistics may be

more useful, and deserve examination in the current context. These and related issues are left to future

work.
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Table 1: Variable Definitions and Mnemonics1

______________________________________________________________________________________________________________________________________________
Variable Description_______________________________________________________________________

U Civilian Unemployment Rate: SA, %, Averaged from monthly.

R Aaa Corporate Bond Yield: Moody’s, %, Averaged from monthly.

IP Industrial Production Index: SA, index, 1987=100, Averaged from monthly.

NGNP Gross National Product: SA, $billions, Quarterly.

Π Corporate Profits After Taxes: SA, $billions, Quarterly.

RGNP Gross National Product: SA, $billions 1987, Quarterly.

PCE Personal Consumption Expenditures: SA, $billions 1987, Quarterly.

∆BI Change in Business Inventories: SA, $billions 1987, Quarterly.

Net X Net Exports of Goods and Services: SA, $billions 1987, Quarterly.
_______________________________________________________________________

1 All data are collected from various issues of the Survey of Current Business. SA stands for seasonally adjusted. The full sample is 1960:1-
1993:3. All ex-post model selection uses the sample 1982:3-1993:3. Linear and adaptive network models are compared to median forecasts
from the Survey of Professional Forecasters (SPF). In 1992:1 participants in the SPF were asked to switch from forecasting GNP to GDP. In
order to continue the ex-post sample through 1993:3, GDP median forecasts from the SPF for 1992:1-1993:3 were modified by adding the
actualas they became available in the Survey of Current Business, so that the GDP forecasts wereroughly transformed to GNP forecasts.
All real data are in 1987 dollars, and the IP index has 1987=100. When necessary, data were re-based using a simple calculation based on a
comparison of overlapping quarters of data in the two different base years.
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Table 2: Unemployment: Best Linear, SPF, and Neural Net Models by Selection Criterion1

dept +h −1  =   α  +   
i= 1
Σ
K 1

 βi  dept −i   +   
i= 1
Σ
K 2

 δi  ind1t −i   +   
i= 1
Σ
K 3

 γi  ind2t −i   +   ut+h −1

__________________________________________________________________________________________________________________________________________________________________________________
Table 2a:h =1, dep =U,  ind1=PCE,  ind2=R_________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(2,0,2) Hidden Units in 2% No Hidden Units

β1=1, α=0 Window=76 Window=Variable Window=Variable_________________________________________________________________________________________
MSIC - -1.531 -1.857 -2.225 -2.224
MSE 0.133 0.102 0.072 0.095 0.095
(R2) 0.931 0.947 0.963 0.951 0.951
MAD 0.287 0.241* 0.210** 0.238 0.238
MAPE 4.083 3.323** 2.999** 3.348* 3.341*

Confusion 10 14 - 10 9 10 11 10 11
Matrix 6 12 7 17 7 15 7 15

Conf. Rate 0.476 - 0.372 0.419 0.419
(HM p−Value) 0.411 - 0.106 0.228 0.228
(χ2p−Value) 0.818 - 0.212 0.455 0.455
φ Coefficient 0.035 - 0.191 0.114 0.114

Theil’s U 1.142 1.000 0.841 0.963 0.963__________________________________________________________________________________________________________________________________________________________________________________
Table 2b: h =4, dep =U,  ind1=PCE,  ind2=R_________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(1,1,1) Hidden Units in 29% No Hidden Units

β1=1, α=0 Window=76 Window=Variable Window=Variable_________________________________________________________________________________________
MSIC - 0.517 -0.255 -1.125 -1.091
MSE 0.974 1.206 1.079 0.619 0.615
(R2) 0.496 0.376 0.442 0.680 0.682
MAD 0.750 0.831 0.873 0.674 0.659
MAPE 10.29 11.39 12.47 9.593 9.510

Confusion 9 8 - 5 9 10 8 10 8
Matrix 7 20 11 19 6 20 6 20

Conf. Rate 0.341 - 0.455 0.318 0.318
(HM p−Value) 0.068 - 0.650 0.030 0.030
(χ2p−Value) 0.136 - 0.783 0.060 0.060
φ Coefficient 0.225 - 0.042 0.284 0.284

Theil’s U 0.899 1.000 0.946 0.716 0.714_________________________________________________________________________________________
1 The regression model which is shown is for the linear models. Values of K1, K2, and K3 are used to differentiate between the various
specifications. SPF stands for Survey of Professional Forecasters. The Artificial Neural Network (ANN) Model is the flexible non-linear form,
which may or may not include hidden units. All statistics are calculated using thetrue ex-post observation period from 1982:3-1993:3. In-
sample models are calculated usingimmediatelyavailable windowsof data. Available window sizes are 40, 58, and 76 quarters of data.
The R2 value is calculated asR2 =  1 − MSE/Sy

2, where MSE is the forecast mean squared error of the 45 out-of-sample, 1(4)-step-ahead
forecasts, andSY

2 is the sample variance of the dependent variable in the out-of-sample period. Similarly, MAD is the mean absolute deviation,
and MAPE is the mean absolute percentage error for the forecast sequence. Theil’s U statistic values are also given. The 2x2 confusion
matrices reported have diagonal cells corresponding to correct directional predictions, while off-diagonal cells correspond to incorrect predic-
tions. The HM (Henriksson and Merton (1981))p-values are based on the null hypothesis that a given model is of no value in predicting the
direction of changes in the dependent variable. Theχ2 p-values have the same null hypothesis, and correspond to the standardχ2-test of
independence in a 2x2 contingency table. Theφ coefficient is(χ2/N)1/2, and The Yates correction is applied to theχ2 calculations, andφ =
(χ2/N)1/2, where N=45. Starred entries (**) denote significant difference between SPF and the starred entries at a 95% level of confidence.
Similarly, * corresponds to a 90% level of confidence. Also, ** and * indicate "superior" performance of the econometric models, while @@
indicates "superior performance of the SPF model at a 95% level of confidence. The tests used are discussed above.
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Table 3: Interest Rates: Best Linear, SPF, and Neural Net Models by Selection Criterion1

dept +h −1  =   α  +   
i= 1
Σ
K 1

 βi  dept −i   +   
i= 1
Σ
K 2

 δi  ind1t −i   +   
i= 1
Σ
K 3

 γi  ind2t −i   +   ut+h −1

__________________________________________________________________________________________________________________________________________________________________________________
Table 3a:h =1, dep =R,  ind1=PCE,  ind2=U_________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(1,0,0) Hidden Units in 0% No Hidden Units

β1=1, α=0 Window=76 Window=Variable Window=Variable_________________________________________________________________________________________
MSIC - -1.268 -1.251 -1.366 -1.366
MSE 0.483 0.284@@ 0.321 0.388 0.388
(R2) 0.829 0.900 0.887 0.863 0.863
MAD 0.518 0.396** 0.430** 0.501 0.501
MAPE 5.078 3.919** 4.131** 4.936 4.936

Confusion 8 20 - 13 32 8 20 8 20
Matrix 4 2 0 0 5 11 5 11

Conf. Rate 0.546 - 0.711 0.568 0.568
(HM p−Value) 0.544 - 1.000 0.705 0.705
(χ2p−Value) 0.924 - 0.870 0.877 0.877
φ Coefficient 0.015 - 0.025 0.023 0.023

Theil’s U 1.305 1.000 1.064 1.169 1.169__________________________________________________________________________________________________________________________________________________________________________________
Table 3b: h =4, dep =R,  ind1=PCE,  ind2=U_________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(4,4,4) Hidden Units in 53% No Hidden Units

β1=1, α=0 Window=76 Window=Variable Window=Variable_________________________________________________________________________________________
MSIC - 0.565 0.714 -0.670 -0.105
MSE 2.143 1.809 3.384 3.222 3.128
(R2) 0.244 0.361 <0 <0 <0
MAD 1.171 1.052 1.518@@ 1.416@@ 1.438@@

MAPE 11.88 10.58 15.13@@ 14.22@@ 14.54@@

Confusion 8 21 - 7 15 8 18 5 17
Matrix 5 11 6 17 5 14 8 15

Conf. Rate 0.578 - 0.467 0.511 0.556
(HM p−Value) 0.729 - 0.462 0.506 0.889
(χ2p−Value) 0.933 - 0.422 1.000 0.573
φ Coefficient 0.013 - 0.115 0.001 0.084

Theil’s U 1.088 1.000 1.368 1.335 1.315_________________________________________________________________________________________
1 See notes to Table 2.
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Table 4: Industrial Production: Best Linear, SPF, and Neural Net Models by Selection Criterion1

dept +h −1  =   α  +   
i= 1
Σ
K 1

 βi  dept −i   +   
i= 1
Σ
K 2

 δi  ind1t −i   +   
i= 1
Σ
K 3

 γi  ind2t −i   +   ut+h −1

__________________________________________________________________________________________________________________________________________________________________________________
Table 4a:h =1, dep =IP,  ind1=∆∆BI,  ind2=Net X_________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(2,2,0) Hidden Units in 0% No Hidden Units

β1=1, α=0 Window=76 Window=Variable Window=Variable_________________________________________________________________________________________
MSIC - 1.250 0.967 0.677 0.677
MSE 2.855 2.191@@ 1.544@@ 2.011@@ 2.011@@

(R2) 0.968 0.976 0.983 0.978 0.978
MAD 1.358 1.183 0.987** 1.186 1.186
MAPE 1.417 1.223 1.238** 1.172 1.172

Confusion 28 9 - 23 6 19 4 19 4
Matrix 6 2 11 5 15 7 15 7

Conf. Rate 0.333 - 0.378 0.422 0.422
(HM p−Value) 0.641 - 0.330 0.219 0.219
(χ2p−Value) 0.679 - 0.670 0.436 0.436
φ Coefficient 0.062 - 0.064 0.116 0.116

Theil’s U 1.142 1.000 0.840 0.958 0.958__________________________________________________________________________________________________________________________________________________________________________________
Table 4b: h =4, dep =IP,  ind1=∆∆BI,  ind2=Net X_________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(4,4,4) Hidden Units in 24% No Hidden Units

β1=1, α=0 Window=76 Window=Variable Window=Variable_________________________________________________________________________________________
MSIC - 3.336 3.132 2.456 2.504
MSE 17.97 22.43@@ 28.64 57.37 38.41
(R2) 0.799 0.749 0.680 0.359 0.571
MAD 3.242 3.621 4.112 5.861@@ 5.124@@

MAPE 3.478 3.784 4.284 6.040@@ 5.307@@

Confusion 38 7 - 28 6 23 2 23 2
Matrix 0 0 10 1 15 5 15 5

Conf. Rate 0.156 - 0.356 0.378 0.378
(HM p−Value) 1.000 - 0.356 0.378 0.378
(χ2p−Value) 0.679 - 0.840 0.250 0.250
φ Coefficient 0.031 - 0.030 0.171 0.171

Theil’s U 0.895 1.000 1.130 1.599 1.309_________________________________________________________________________________________
1 See notes to Table 2.
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Table 5: Nominal GNP: Best Linear, SPF, and Neural Net Models by Selection Criterion1

dept +h −1  =   α  +   
i= 1
Σ
K 1

 βi  dept −i   +   
i= 1
Σ
K 2

 δi  ind1t −i   +   
i= 1
Σ
K 3

 γi  ind2t −i   +   ut+h −1

________________________________________________________________________________________________________________________________________________________________________________
Table 5a:h =1, dep =NGNP,  ind1=PCE,  ind2=R________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(4,0,4) Hidden Units in 0% No Hidden Units

β1=1, α=0 Window=76 Window=76 Window=76________________________________________________________________________________________
MSIC - 8.167 6.782 6.543 6.543
MSE 2086 6664@@ 1789** 1652** 1652**

(R2) 0.998 0.993 0.998 0.998 0.998
MAD 37.06 74.44@@ 33.25 30.27 30.27
MAPE 0.814 1.631@@ 0.762 0.685 0.685

Confusion 45 0 - 45 0 45 0 45 0
Matrix 0 0 0 0 0 0 0 0

Conf. Rate 0.000 - 0.000 0.000 0.000
(HM p−Value) 1.000 - 1.000 1.000 1.000
(χ2p−Value) 0.717 - 0.938 0.938 0.938
φ Coefficient 0.054 - 0.011 0.011 0.011

Theil’s U 0.560 1.000 0.518 0.498 0.498________________________________________________________________________________________________________________________________________________________________________________
Table 5b: h =4, dep =NGNP,  ind1=PCE,  ind2=R________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(4,0,4) Hidden Units in 2% No Hidden Units

β1=1, α=0 Window=76 Window=Variable Window=Variable________________________________________________________________________________________
MSIC - 10.76 8.541 8.110 8.104
MSE 10588 90232@@ 12839** 9941 10043
(R2) 0.989 0.904 0.986 0.989 0.989
MAD 78.15 288.9@@ 89.73 79.19 80.49
MAPE 1.731 6.305@@ 2.052 1.766 1.796

Confusion 45 0 - 45 0 45 0 45 0
Matrix 0 0 0 0 0 0 0 0

Conf. Rate 0.000 - 0.000 0.000 0.000
(HM p−Value) 1.000 - 1.000 1.000 1.000
(χ2p−Value) 0.938 - 0.938 0.938 0.938
φ Coefficient 0.011 - 0.011 0.011 0.011

Theil’s U 0.343 1.000 0.377 0.332 0.334________________________________________________________________________________________
1 See notes to Table 2.
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Table 6: Corporate Profits: Best Linear, SPF, and Neural Net Models by Selection Criterion1

dept +h −1  =   α  +   
i= 1
Σ
K 1

 βi  dept −i   +   
i= 1
Σ
K 2

 δi  ind1t −i   +   
i= 1
Σ
K 3

 γi  ind2t −i   +   ut+h −1

________________________________________________________________________________________________________________________________________________________________________________
Table 6a:h =1, dep =ΠΠ, ind1=∆∆BI, ind2=R________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(5,0,5) Hidden Units in 0% No Hidden Units

β1=1, α=0 Window=76 Window=76 Window=76________________________________________________________________________________________
MSIC - 4.446 4.693 4.411 4.411
MSE 170.4 146.6@@ 177.6 149.1 149.1
(R2) 0.889 0.905 0.884 0.903 0.903
MAD 9.774 9.373 10.33 9.154 9.154
MAPE 6.229 5.779 6.572 5.712 5.712

Confusion 21 7 - 23 9 20 11 20 11
Matrix 10 7 8 5 11 3 11 3

Conf. Rate 0.378 - 0.378 0.489 0.489
(HM p−Value) 0.210 - 0.367 0.904 0.904
(χ2p−Value) 0.421 - 0.746 0.552 0.552
φ Coefficient 0.120 - 0.048 0.089 0.089

Theil’s U 1.078 1.000 1.100 1.008 1.008________________________________________________________________________________________________________________________________________________________________________________
Table 6b: h =4, dep =ΠΠ, ind1=∆∆BI, ind2=R________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(4,0,4) Hidden Units in 2% No Hidden Units

β1=1, α=0 Window=76 Window=Variable Window=Variable________________________________________________________________________________________
MSIC - 5.683 5.447 5.164 5.165
MSE 650.1 617.0@@ 488.3 611.3 545.14
(R2) 0.576 0.600 0.682 0.602 0.645
MAD 20.14 18.24 17.73 20.31 19.30
MAPE 13.28 10.32 10.73 12.20 11.74

Confusion 21 16 - 23 11 19 10 19 10
Matrix 5 2 3 7 7 8 7 8

Conf. Rate 0.477 - 0.318 0.386 0.386
(HM p−Value) 0.875 - 0.040 0.189 0.189
(χ2p−Value) 0.760 - 0.078 0.378 0.378
φ Coefficient 0.046 - 0.266 0.133 0.133

Theil’s U 1.026 1.000 0.890 0.995 0.940________________________________________________________________________________________
1 See notes to Table 2.
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Table 7: Real GNP: Best Linear, SPF, and Neural Net Models by Selection Criterion1

dept +h −1  =   α  +   
i= 1
Σ
K 1

 βi  dept −i   +   
i= 1
Σ
K 2

 δi  ind1t −i   +   
i= 1
Σ
K 3

 γi  ind2t −i   +   ut+h −1

__________________________________________________________________________________________________________________________________________________________________________________
Table 7a:h =1, dep =RGNP,  ind1=PCE,  ind2=R_________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(4,0,4) Hidden Units in 20% No Hidden Units

β1=1, α=0 Window=58 Window=Variable Window=Variable_________________________________________________________________________________________
MSIC - 7.831 7.719 7.126 7.139
MSE 1839 2033@@ 1805 1050 994.1
(R2) 0.989 0.988 0.990 0.994 0.994
MAD 35.49 38.04 32.27 26.66** 25.98**

MAPE 0.797 0.857 0.734 0.589** 0.576**

Confusion 32 4 - 35 5 35 4 35 4
Matrix 8 1 5 0 5 1 5 1

Conf. Rate 0.267 - 0.222 0.200 0.200
(HM p−Value) 0.691 - 1.000 0.529 0.529
(χ2p−Value) 0.553 - 0.933 0.816 0.816
φ Coefficient 0.088 - 0.013 0.035 0.035

Theil’s U 0.951 1.000 0.942 0.719 0.699__________________________________________________________________________________________________________________________________________________________________________________
Table 7b: h =4, dep =RGNP,  ind1=PCE,  ind2=R_________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(2,2,0) Hidden Units in 0% No Hidden Units

β1=1, α=0 Window=58 Window=Variable Window=Variable_________________________________________________________________________________________
MSIC - 10.00 8.682 8.464 8.464
MSE 9246 23248@@ 5914 6379 6379
(R2) 0.948 0.868 0.966 0.964 0.964
MAD 79.14 132.5@@ 64.08 64.71 64.71
MAPE 1.786 2.979@@ 1.435 1.421 1.421

Confusion 39 6 - 37 4 38 4 38 4
Matrix 0 0 2 2 1 2 1 2

Conf. Rate 0.133 - 0.133 0.111 0.111
(HM p−Value) 1.000 - 0.080 0.043 0.043
(χ2p−Value) 0.827 - 0.136 0.053 0.053
φ Coefficient 0.033 - 0.222 0.288 0.288

Theil’s U 0.631 1.000 0.504 0.524 0.524_________________________________________________________________________________________
1 See notes to Table 2.
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Table 8: Consumption: Best Linear, SPF, and Neural Net Models by Selection Criterion1

dept +h −1  =   α  +   
i= 1
Σ
K 1

 βi  dept −i   +   
i= 1
Σ
K 2

 δi  ind1t −i   +   
i= 1
Σ
K 3

 γi  ind2t −i   +   ut+h −1

________________________________________________________________________________________________________________________________________________________________________________
Table 8a:h =1, dep =PCE,  ind1=RGNP,  ind2=U________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(1,0,1) Hidden Units in 0% No Hidden Units

β1=1, α=0 Window=58 Window=Variable Window=Variable________________________________________________________________________________________
MSIC - 6.946 6.626 6.453 6.453
MSE 6438 1295** 827.3** 967.8** 967.8**

(R2) 0.923 0.985 0.990 0.989 0.989
MAD 68.14 30.51** 22.71** 24.82** 24.82**

MAPE 2.246 1.019** 0.776** 0.823** 0.823**

Confusion 10 0 - 35 10 35 10 35 10
Matrix 25 10 0 0 0 0 0 0

Conf. Rate 0.556 - 0.222 0.222 0.222
(HM p−Value) 0.058 - 1.000 1.000 1.000
(χ2p−Value) 0.138 - 0.858 0.858 0.858
φ Coefficient 0.221 - 0.027 0.027 0.027

Theil’s U 2.230 1.000 0.799 0.865 0.865________________________________________________________________________________________________________________________________________________________________________________
Table 8b: h =4, dep =PCE,  ind1=RGNP,  ind2=U________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(1,1,1) Hidden Units in 4% No Hidden Units

β1=1, α=0 Window=58 Window=Variable Window=Variable________________________________________________________________________________________
MSIC - 9.063 7.586 7.370 7.386
MSE 9103 3382 2832** 2784** 2819**

(R2) 0.892 0.877 0.966 0.967 0.966
MAD 84.11 89.86 45.80** 44.30** 44.51**

MAPE 2.800 3.042 1.542** 1.468** 1.474**

Confusion 22 1 - 41 4 41 4 41 4
Matrix 19 3 0 0 0 0 0 0

Conf. Rate 0.444 - 0.089 0.089 0.089
(HM p−Value) 0.287 - 1.000 1.000 1.000
(χ2p−Value) 0.569 - 0.793 0.793 0.793
φ Coefficient 0.085 - 0.039 0.039 0.039

Theil’s U 2.941 1.000 0.525 0.520 0.523________________________________________________________________________________________
1 See notes to Table 2.
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Table 9: ∆ Business Inventories: Best Linear, SPF, and Neural Net Models by Selection Criterion1

dept +h −1  =   α  +   
i= 1
Σ
K 1

 βi  dept −i   +   
i= 1
Σ
K 2

 δi  ind1t −i   +   
i= 1
Σ
K 3

 γi  ind2t −i   +   ut+h −1

________________________________________________________________________________________________________________________________________________________________________________
Table 9a:h =1, dep =∆∆BI, ind1=IP,  ind2=R________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(2,2,0) Hidden Units in 0% No Hidden Units

β1=1, α=0 Window=76 Window=Variable Window=Variable________________________________________________________________________________________
MSIC - 6.273 5.869 5.742 5.742
MSE 607.7 649.0 486.9 557.3 557.3
(R2) 0.320 0.276 0.457 0.378 0.378
MAD 19.55 21.24 18.68 19.68 19.68
MAPE 688.7 447.2 322.0 266.1 266.1

Confusion 18 7 - 18 9 15 7 15 7
Matrix 4 16 4 14 9 14 9 14

Conf. Rate 0.244 - 0.289 0.356 0.356
(HM p−Value) 0.001 - 0.004 0.049 0.049
(χ2p−Value) 0.002 - 0.009 0.098 0.098
φ Coefficient 0.472 - 0.390 0.247 0.247

Theil’s U 0.969 1.000 0.866 0.927 0.927________________________________________________________________________________________________________________________________________________________________________________
Table 9b: h =4, dep =∆∆BI, ind1=IP,  ind2=R________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(1,0,1) Hidden Units in 0% No Hidden Units

β1=1, α=0 Window=76 Window=Variable Window=Variable________________________________________________________________________________________
MSIC - 7.046 6.491 6.162 6.162
MSE 983.6 1528@@ 1009 753.2 753.2
(R2) <0 <0 <0 <0 <0
MAD 25.50 29.34 26.12 22.60 22.60
MAPE 1196 976.2 362.3 508.7 508.7

Confusion 20 8 - 13 6 18 6 18 6
Matrix 4 13 11 15 6 15 6 15

Conf. Rate 0.267 - 0.378 0.267 0.267
(HM p−Value) 0.002 - 0.076 0.002 0.002
(χ2p−Value) 0.005 - 0.152 0.005 0.005
φ Coefficient 0.420 - 0.213 0.420 0.420

Theil’s U 0.802 1.000 0.812 0.702 0.702________________________________________________________________________________________
1 See notes to Table 2.
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Table 10:Net Exports: Best Linear, SPF, and Neural Net Models by Selection Criterion1

dept +h −1  =   α  +   
i= 1
Σ
K 1

 βi  dept −i   +   
i= 1
Σ
K 2

 δi  ind1t −i   +   
i= 1
Σ
K 3

 γi  ind2t −i   +   ut+h −1

__________________________________________________________________________________________________________________________________________________________________________________
Table 10a:h =1, dep =Net X,  ind1=∆∆BI, ind2=IP_________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(1,0,0) Hidden Units in 9% No Hidden Units

β1=1, α=0 Window=76 Window=76 Window=76_________________________________________________________________________________________
MSIC - 5.543 5.578 5.520 5.526
MSE 749.3 529.3@@ 557.6@@ 654.7@@ 615.1@@

(R2) 0.839 0.886 0.880 0.860 0.868
MAD 22.42 18.03* 18.73 20.47 19.86
MAPE 91.10 68.81 69.64 72.52 70.51

Confusion 14 19 - 6 13 6 18 6 17
Matrix 1 10 9 16 9 11 9 12

Conf. Rate 0.455 - 0.568 0.614 0.591
(HM p−Value) 0.044 - 0.733 0.957 0.932
(χ2p−Value) 0.098 - 1.000 0.393 0.390
φ Coefficient 0.249 - 0.002 0.162 0.129

Theil’s U 1.190 1.000 1.026 1.112 1.078__________________________________________________________________________________________________________________________________________________________________________________
Table 10b:h =4, dep =Net X,  ind1=∆∆BI, ind2=IP_________________________________________________________________________________________

Selection SPF   NO CHANGE LINEAR VAR MODEL ANN MODEL I ANN MODEL II
Criterion Order=(1,0,0),β1=1 Order=(1,0,0) Hidden Units in 31% No Hidden Units

β1=1, α=0 Window=58 Window=Variable Window=Variable_________________________________________________________________________________________
MSIC - 7.161 7.343 6.667 6.706
MSE 2911 2539@@ 3028 3322 2485
(R2) 0.376 0.456 0.351 0.288 0.467
MAD 44.67 43.79 47.50 41.03 38.70
MAPE 157.1 141.9 124.9 103.8 100.2

Confusion 16 18 - 9 10 16 7 16 8
Matrix 3 8 10 16 3 19 3 18

Conf. Rate 0.467 - 0.444 0.222 0.244
(HM p−Value) 0.212 - 0.385 0.000 0.000
(χ2p−Value) 0.420 - 1.000 0.000 0.001
φ Coefficient 0.120 - 0.001 0.521 0.484

Theil’s U 1.071 1.000 1.092 1.144 0.989_________________________________________________________________________________________
1 See notes to Table 2.
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Table 11:Winners and Losers Among SPF, Nonadaptive Linear, and Adaptive Network Models by Selection Criterion1

Summary of Results by Number of Wins Using Point Estimates:  Tables 2−10__________________________________________________________________________________________________________________________________________________________________________________________________
Table 11a:h =1_________________________________________________________________________________________________

Selection SPF No Change Nonadaptive Linear VAR Models Adaptive Network Models
Criterion_________________________________________________________________________________________________

MSIC - 0 0 9

MSE 0 3 4 2

MAD 0 2 4 3

MAPE 0 2 2 5

Con. Rate 6 - 4 3

Theil’s U 0 3 4 2__________________________________________________________________________________________________________________________________________________________________________________________________
Table 11b:h =4_________________________________________________________________________________________________

Selection SPF No Change Nonadaptive Linear VAR Models Adaptive Network Models
Criterion_________________________________________________________________________________________________

MSIC - 0 0 9

MSE 1 1 2 5

MAD 2 1 2 4

MAPE 2 2 1 4

Con. Rate 3 - 4 6

Theil’s U 1 1 2 5
_________________________________________________________________________________________________
1 The table summarizes the winners and losers for all series by forecast horizon (h), and for the out-of-sample model selection criteria as given.
SPF stands for Survey of Professional Forecasters. The Adaptive Network Model summarizes results from ANN Model I and ANN Model II in
Tables 2-10. All statistics are calculated using thetrue ex-post observation period from 1982:3-1993:3. In the case of ties, each model was
awarded with a "win".



- 36 -

Table 12:Overall Performance Results Using the Sign Test1

Comparison of SPF With Linear and Adaptive Network Models________________________________________________________________________________________________________________________
Table 12a:h =1____________________________________________________________

Selection NO CHANGE NONADAPTIVE ADAPTIVE NETWORK
Criterion LINEAR VAR MODELS MODELS____________________________________________________________

MSE 6 8 9
(0.254) (0.020) (0.002)

MAD 6 8 8
(0.254) (0.020) (0.020)

MAPE 7 8 9
(0.090) (0.020) (0.002)________________________________________________________________________________________________________________________

Table 12b:h =4____________________________________________________________
Selection NO CHANGE NONADAPTIVE ADAPTIVE NETWORK
Criterion LINEAR VAR MODELS MODELS____________________________________________________________

MSE 4 3 7
(0.500) (0.254) (0.090)

MAD 3 3 6
(0.254) (0.254) (0.254)

MAPE 4 5 6
(0.500) (0.500) (0.254)

____________________________________________________________
1 The table summarizes the results of sign tests on the MSEs, MADs and MAPEs listed in Tables 2-10 for each of the variables and for forecast
horizons: h =1 (Table 12a) and h =4( Table 12b). Reported statistics are the number of positive differences,

S =  
i= 1
Σ
9

(MSSSPF(i ) − MSSECO(i )), where ECO corresponds to the no change, linear, and artificial neural network models, MSS is the

value of the particular model selection statistic being examined, and the index, i, runs from 1 to 9, corresponding to the 9 economic variables.
SPF stands for Survey of Professional Forecasters. In this way, the SPF model can be thought of as the "control". Bracketedp-values
correspond to the probability of observing the reported number of positive differences between the SPF model selection criterion values and the
econometric model selection criterion values (from Tables 2-10), under the null that the differences are symmetrically distributed about 0. A
low p-value (when S>4) indicates that the econometric model outperforms the "control" SPF model, across all variables. All statistics are cal-
culated using thetrue ex-post observation period from 1982:3-1993:3. The MSE is the forecast mean squared error of the 45 out-of-sample,
1-step-ahead (h=1) or 4-step ahead (h=4) forecasts. Similarly, MAD is the mean absolute deviation, and MAPE is the mean absolute percen-
tage error. Theil’s U statistic "wins" are also tabulated.
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