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1.  Introduction.

The development of the U.S. computer software industry has

been powerfully influenced by federal government policy during 

the postwar period.  Its importance for the demands of Cold War

defense, especially strategic air defense during the 1950s, meant

that the software industry received considerable support from

federal R&D and procurement funding throughout the postwar

period.  But the very novelty of computer technology and software

meant that a substantial portion of the defense-related spending

in software was allocated to the creation of an infrastructure

for the support of a new area of R&D, training, and technology

development.  Federal support for the creation of this

infrastructure provided important benefits to the commercial U.S.

software industry.  From the earliest years of the postwar era,

private industry has been responsible for a great deal of
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innovation in software; but by the 1960s, these industrial

innovations drew on research and manpower that had been

generously supported by federal government funds.

Because of the complex and changing relationship between

software and hardware technology during this period, much of the

influence of federal government policies on the software industry

was channeled through programs affecting the overall computer

industry.  For example, federal agencies' development and

procurement expenditures for hardware included spending on

software for much of the postwar period.

The structure and effects of federal policy toward the U.S.

software industry have a number of similarities with the history

of federal support in other postwar U.S. high-technology

industries.  As in the cases of airframes (Mowery and Rosenberg

1982), semiconductors (Levin 1982), and computer hardware (Katz

and Phillips 1982; Flamm 1987), defense-related support for both

R&D and procurement accelerated the early development of the

software industry.  As in those other cases, the influence of
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defense-related procurement on the commercial software industry

declined as defense needs diverged from those of a burgeoning

commercial market.  Indeed, throughout the 1980s, Pentagon

policymakers sought ways to tap commercial software applications

and operating systems for military systems.  There are also some

important differences between the software and other high-

technology industries, however, most notably in the nature and

evolution of military-civilian spillovers within software, as

well as in the role of federally funded university research

within the industry's development.

Rosenberg (1992) has argued that the computer is one of the

most significant examples of a large class of scientific

instruments that have been developed in universities and widely

applied in industrial economies.  Rosenberg's observations

concerning the "instrumental" nature of the computer are borne

out by the history of federal policy in software innovation in at

least two ways:  (1) the key role of the university within the

software industry; and (2) the importance of federal support for
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universities' adoption of the mainframe computer, the critical

instrument for software research and innovation. 

In contrast to their stereotypical role as performers of

basic research, university researchers pioneered in the

development of computer technology well in advance of industry in

both the U.S. and Great Britain.  British and U.S. universities

and research institutes affiliated with them were responsible for

important advances during the late 1940s and early 1950s in

computer architecture and hardware, including the stored-program

concepts that were the origins of software.  Much of the federal

government's early postwar efforts to develop computer technology

relied on university researchers.

In both nations, but especially in the U.S., technological

advances and researchers from universities entered the domestic

electronics industry, and industry came to dominate the

development of subsequent generations of hardware.  Universities

remained important, however, in many software advances from the

mid-1950s onward.  The contributions of U.S. universities to
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these developments relied on the growth of a new academic

discipline, computer science.  The creation of this academic

field was aided by federal support during the 1950s and 1960s for

the purchase of the scientific instrument that was indispensable

to computer science research, the mainframe computer.

The software industry, like other postwar high-technology

U.S. industries, drew on defense-related support for applications

development and basic research.  Direct "spillovers," i.e.,

widely adopted civilian versions of software developed initially

for military applications, did appear, but these were

supplemented (Flamm, 1988, p. 26) by a number of advances from

the private sector.  A number of other advances (including

several important programming languages and operating systems)

were developed in universities with federal funding.

Growing concern within the Department of Defense over the

soaring costs, project delays, and unreliability associated with

complex, software-intensive weapons systems (concerns that were

heightened by the Strategic Defense Initiative of the 1980s) led
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to two DoD initiatives during the late 1970s and 1980s--a program

in "software engineering," and (some years before similar efforts

in other "dual-use" technologies) efforts to utilize commercial

software for military applications.  The limited success of the

second of these initiatives thus far suggests that similar

objectives in such technologies as semiconductors or flat-panel

displays will prove difficult to attain.

Throughout the postwar period, the federal government has

accounted for a large share of total U.S. demand for software.

Flamm (1987, pp. 122-123) estimated that the federal government

was the largest single U.S. customer for traded software in 1982.

 More recent data on market trends are not available, but it is

likely that the federal government's share of the U.S. market for

traded software has declined during the past decade.  A great

deal of defense-related software procurement has involved the

purchase of "embedded" software.  There are relatively few

examples of major "standard" operating systems, programming

languages, or applications being developed initially for federal
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agencies.  But the development of custom software and services

for federal purchasers was for much of the 1960s and 1970s a

rapidly growing industry in the Washington D.C. region.

Our discussion of the federal role in the U.S. software

industry focuses primarily on policies that directly affected

this industry; for this reason, and because it is covered in

another chapter of this volume, we omit consideration of

intellectual property protection.  We begin with a description of

the earliest years of federal involvement in the U.S. computer

industry, a period during which software scarcely existed as a

distinguishable technology and focus of development effort.  We

then examine the federal role in supporting the emergence of

computer science as an academic discipline, a discussion that

spans 1955-90.  The role of the Department of Defense during this

period is the subject of the next section.  The penultimate

section briefly discusses the activities of another important

U.S. agency in software development and procurement, the National

Aeronautics and Space Administration (NASA).  The concluding
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section summarizes our argument and suggests some points of

contrast with the experience of other industrial economies.

2.  The early years.

Software technology did not develop in a political or

institutional vacuum; nor was government policy unaffected by

changes in the nature of software technology.  Despite a number

of prewar precursors, the history of computer hardware and

(eventually) software development begins with World War II. 

During the war years, the American military sponsored a number of

projects to develop computers to solve special military problems.

 The ENIAC--generally considered the first fully electronic

digital computer--was funded by Army Ordnance, which was

concerned with the computation of firing tables for guns.  MIT's

Whirlwind computer, which was introduced in 1951, grew (after a

difficult adolescence) out of a project begun in 1943 to create

an analog-computer flight simulator for pilot training.



9

In the earliest days of postwar computer technology,

software was literally indistinguishable from hardware.  Software

was effectively born with the advent of the von Neumann

architecture for computers.  In the summer of 1944, the

mathematician John von Neumann learned by accident of the Army's

ENIAC project.  Developed by J. Presper Eckert and John W.

Mauchly at the Moore School of the University of Pennsylvania,

the ENIAC did not rely on software, but was hard-wired to solve a

particular set of problems.  Von Neumann began advising the

Eckert-Mauchly team, which was working on the development of a

new machine, the EDVAC.

  Out of this collaboration came the concept of the

stored-program computer: instead of being hard-wired, the EDVAC's

instructions were to be stored in memory, facilitating their

modification.  As we would now say, the computer could be

programmed by software rather than hardware.  Von Neumann's

abstract discussion of the concept (von Neumann, 1945) circulated

widely and served as the logical basis for virtually all
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subsequent computers.  But even after the von Neumann scheme

became dominant, which occurred rapidly in the 1950s, software

remained closely bound to hardware.  During the early 1950s, the

organization designing the hardware generally designed the

software as well.  As computer technology developed and the

market for its applications expanded after 1970, however, users,

independent developers and computer service firms began to play

prominent roles in software development (see Chapter 2).

Although military support for the ENIAC and Whirlwind

projects began with narrowly defined goals, these programs

produced general principles and technologies that found much

broader application.  Indeed, in the case of Whirlwind (Redmond

and Smith 1980), the Navy never obtained its hoped-for flight

simulator.  Jay Forrester, who took charge of the project in

1943, became embroiled in a prolonged struggle with the Office of

Naval Research (the primary postwar Navy research funding agency)

over his desire to shift the project to the development of a

general-purpose digital computer rather than a flight simulator.
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 The Whirlwind project, which was by far the most expensive of

the early postwar federal computer programs,2 was spared only

when the U.S. Air Force adopted it as the basis for the SAGE air-

defense program that began in the early 1950s.  In addition to

driving the development of a reliable large computing system and

the communications technologies necessary to link these computers

with radar networks, SAGE was among the earliest programs in

large-scale software development (Tropp, 1983).

The development of a U.S. software industry really began

only when the first stored-program computers begin appearing in

significant numbers.  The first fully operational stored-program

computer in the U. S. was the SEAC, a machine built on a

shoestring by the National Bureau of Standards in 1950 (Flamm,

1988, p. 74). A number of important machines followed.  Among

these, in addition to Whirlwind and ENIAC, were:

*    The IAS computer, 1951, built by von Neumann at the
Institute for Advanced Study and "cloned" at the RAND Corporation
and four national labs.  Funding came from the Army, the Navy,
and RCA, among others.

*    UNIVAC, 1953, built by Remington Rand, which had bought the
rights to the Eckert-Mauchly technology.  Early customers
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included the Census Bureau and other government agencies as well
as private firms.

*    The IBM 701, 1953, developed by IBM and influenced by the
IAS design.  Originally developed as a scientific computer for
the Defense Department, who bought most of the first units.

The most commercially successful machine of the decade, with

sales of 1800 units, was the low-priced IBM 650 (Fisher et al.

1983, p. 17).  The 650, often called the Model T of computing,

thrust IBM into industry leadership (Katz and Phillips 1982, p.

178; Flamm 1988, p. 83).  Even in the case of the 650, however,

government procurement was crucial: the projected sale of 50

machines to the federal government (a substantial portion of the

total forecast sales of 250 machines) influenced IBM's decision

to initiate the project.  The large commercial market for

computers that was created by the 650 provided strong incentives

for industry to develop software for this architecture.

     Programming all of these early machines was a tedious

process that resembled programming a mechanical calculator: the

programmer had to explicitly specify in hardware terms (the

memory addresses) the sequence of steps the computer would
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undertake.  This characteristic tied program development closely

to a particular machine, since programmers had to understand its

hardware architecture.  Since few models of any single machine

were available, programming techniques developed for one machine

had very limited applicability.  This was one reason why the

commercial success of the IBM 650 was crucial to advances in

software and in programming techniques.  As Goldstine (1972, p.

331) points out, the 650 created a generic "platform" for the

development of programs that could run on a large installed

base.3

Perhaps the main bottleneck of this "machine-language

programming," however, was the difficulty of changing a program.

 Inserting new data or instructions into the sequence required

changing most if not all memory references.  In response to this

problem, programming tools--rudimentary languages--appeared.  For

example, researchers at IBM and in the Whirlwind group at MIT

developed symbolic assembly languages in which coded statements

referred to "symbolic" addresses that the computer converted to
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specific hardware locations (Sammet 1969, p. 3; Bashe, et al.

1986, pp.  323-338).

     In general, the direction of technological advance was

toward "higher-level" languages, that is, languages employing

a relatively user-friendly notation that software later

translated into machine language.  These included assemblers,

interpreters, and compilers.  The last is a program that

translates a higher-level "source" code into a machine-language

"object" code that a specific computer can understand.  In this

way a higher-level language can become machine-independent, since

different compilers can translate the same source code into

different machine languages.  The first commercial compiler was

the A-0, developed for the Remington Rand UNIVAC (Bashe, et al.

1986, p. 340) by Grace Murray Hopper, who described it as a means

to support "automatic programming," using the computer to

automate some of the tasks of machine-language coding (Hopper

1954, cited in Bashe, et al. 1968, p. 431; see also Sammet 1969,

p. 13 and Hopper 1981, passim).
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     Much of the early work on automatic programming was

conducted not at universities but at the laboratories of computer

makers or users.  Hopper, a veteran of the wartime military Mark

I project at Harvard, was supported by Remington Rand in

developing the A-0 compiler.  The assembler most widely used on

IBM machines was developed by a user (United Aircraft) and

disseminated through an IBM users' group called SHARE (Bashe et

al. 1986, p. 358).  FORTRAN, the first genuine higher-level

language, also was developed by IBM researchers (Backus 1981). 

And the earliest IBM operating system--the program that

stage-manages the execution of programs and the use of

peripherals--was written at the General Motors Research

Laboratories (Bashe et al. 1986, p. 359).  An important exception

to this general pattern was MIT, where in the early 1950s the

Whirlwind group developed not only a symbolic assembler but also

an operating system and an algebraic compiler that anticipated

some of the capabilities of FORTRAN (Flamm 1988, table A4; Backus

1981).  But its unique architecture and operation solely as a
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research instrument meant that, unlike those for commercial

machines, the automatic-programming techniques developed for

Whirlwind had significantly less influence than their

private-sector counterparts. 

     The federal government influenced the development of early

automatic programming techniques through its support for the

dissemination of information.  From the earliest days of their

support for the development of computer technology, the U.S.

armed forces were surprisingly anxious that technical information

on many aspects of this innovation reach the widest possible

audience, in some contrast to the military in Great Britain or

the Soviet Union.4  The Office of Naval Research organized

seminars on automatic programming in 1951, 1954 and 1956 (Rees

1982, p. 120).  Along with similar conferences sponsored by

computer firms, universities, and the meetings of the fledgling

Association for Computing Machinery (ACM), the ONR conferences

circulated ideas within a developing community of practitioners

who did not yet have journals or other formal channels of
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communication (Hopper 1981).  The ONR also established an

Institute for Numerical Analysis at UCLA (Rees 1982, p. 110-111),

which made important contributions to the overall field of

computer science.

The private sector took some of the first steps to begin

building the discipline of computer science within U.S.

universities.  Computer manufacturers recognized that in addition

to the public-relations benefits of supporting higher education,

they could increase demand for their products by facilitating the

acquisition and use of their hardware at universities (Fisher et

al. 1983, p. 169).  Support of academic computing would attack

the software bottleneck through training more programmers and

"lock in" future users and buyers of computer equipment.5

For example, in addition to offering price discounts on its

machines, Control Data Corporation (CDC) offered research grants,

free computer time, and cash contributions to U.S. universities

(Fisher et al. 1983, p. 170).  In addition to donating computer

time to establish regional computing centers at MIT and UCLA in
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the mid-1950s,6 IBM rented some 50 of its model 650 computers to

universities at reduced rates7 (Galler 1986; Fisher et al. 1983,

pp. 170-172).  For example, the IBM 650 at the Carnegie Institute

of Technology's new Graduate School of Industrial Administration

that was used by Herbert Simon, Allen Newell, and Alan Perlis in

their early work on artificial intelligence was acquired with

funds from private foundations, although Simon and others also

received support as consultants to the Rand Corporation (Bach

1986).

The institution-building efforts of the National Science

Foundation and the Defense Department came to overshadow private-

sector contributions by the late 1950s.  In 1963, about half of

the $97 million spent by universities on computer equipment came

from the federal government, while the universities themselves

paid for 34 per cent and computer makers picked up the remaining

16 per cent (Fisher et al. 1983, p. 169).

The federal government's expanding role in supporting R&D,

much of which was located in U.S. universities, during the 1950s,
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was supplemented by procurement spending on military systems.  In

this area, the government’s needs differed from those of the

commercial sector, with important implications for the

"production technologies" employed in defense and commercial

software.  Defense-related demand for software (outside of

logistics applications) was aimed initially not at general-

purpose automatic programming tools but at special-purpose,

large-scale software for specific defense missions, as in air

defense. 

The most conspicuous early example of defense-related

software development and procurement is the SAGE air-defense

system, the computerized early-warning system developed and

deployed in the 1950s, which involved what was by far the largest

programming effort of the day.  In 1950, the Air Force

established the MIT Lincoln Laboratories to develop air-defense

technology.  This effort absorbed MIT's Whirlwind project and

evolved into SAGE, the Semi-Automatic Ground Environment. 

Although the Whirlwind had long since severed its connection to
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the flight-simulator project, it had been designed for real-time

command-and-control applications rather than for batch

processing, and was one of the first examples of a "mission-

critical" defense computer.  Successful tests of the SAGE system

on Cape Cod led to a full-scale development effort in 1953,

coordinated by Lincoln Labs.  Lincoln Labs chose IBM to produce

operational computers that were based on the Whirlwind model;

AT&T developed the communications system that linked the radar

units; and Burroughs built peripheral equipment.  A division of

the Rand Corporation that soon spun off to become System

Development Corporation (SDC) took up the massive programming

task.8

The RAND group that became SDC started out as a

psychological-testing unit engaged in simulating human-machine

interaction in radar-defense installations.  In addition to its

simulation experience, RAND in 1955 already employed what one

official estimated to be 10 per cent of all the qualified

programmers in the country--about 25 people (Baum 1981, p. 23). 
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By 1959, SDC had more than 800 programmers working on SAGE (Baum,

1981, p. 35).  By 1963, SDC had 4,300 employees (not all of whom

were programmers) and, more significantly, some 6,000 former

employees spread throughout the computer industry (Baum 1981, p.

47).  One of the greatest contributions of SAGE was its training

of a large cadre of educated systems programmers.  Indeed,

because SDC was restricted by Air Force pay scales and because it

sought to play this training role, the company encouraged

turnover, which ran to 20% per year.  (Baum 1981, p. 51).  As one

SAGE veteran noted in the early 1980s, "the chances are

reasonably high that on a large data processing job in the 1970s

you would find at least one person who had worked with the SAGE

system" (Bennington, 1983, p. 351).

SAGE also contributed to the embryonic discipline of

software engineering.  Although many claim that this discipline

was born at a 1968 NATO conference (Naur, Randell, and Buxton,

1976), SDC developed many of the programming and organizational

techniques later associated with software engineering.  These
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included modular design techniques that facilitated task

decomposition and organized the division of labor in large

projects.

     SAGE was the first of many large-scale government

programming projects.  After SAGE, SDC undertook the development

of a command-and-control system for the Strategic Air Command

that required a then-astounding one million lines of code.  SDC

also developed JOVIAL, a higher-level programming language for

command-and-control applications that was widely used in

industry.  By 1960, however, SDC began to face competition from

the vertically integrated software divisions of large firms like

Boeing and TRW and from the more than 2000 firms that had begun

to enter the contract-software business (Cusumano 1986, p. 121).

 SDC abandoned its nonprofit status in 1969 and eventually merged

with Burroughs (later part of Unisys) in 1981. 

The federal government remained a major purchaser of

contract software well into the 1980s.  By one estimate, DoD
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spent some $4 to $8 billion on contract software in 1982 (Flamm

1987, p. 123).

3.  Creating an Academic Discipline:  Computer Science and the
Software Industry

The other chapters in this volume emphasize the role of

universities in the growth of the software industries of Western

Europe, Japan, and Russia.  Universities have been important

sites for applied, as well as basic, research in software, and

have contributed to the development of new hardware.  In

addition, of course, the training by universities of engineers

and scientists active in the software industry has been extremely

important.  By virtue of their relatively "open" research and

operating environment that emphasizes publication, relatively

high levels of turnover among research staff, and the production

of graduates who seek employment elsewhere, universities can

serve as sites for the dissemination and diffusion of innovations

throughout the global software industry. 
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U.S. universities provided important channels for cross-

fertilization and information exchange between industry and

academia, but also between defense and civilian research efforts

in software and in computer science generally.  Hendry (1992)

argues that a lack of interchange between military and civilian

researchers and engineers weakened the early postwar British

computer industry;9 the very different situation in the U.S.

enhanced the competitiveness of this nation's hardware and

software industry complex.  The more modest role of universities

in computer science and software-related research activities in

Japan and the Soviet Union also reduced somewhat the flow of

knowledge among different research sites and hampered the pace of

technological progress in these nations' software industries (See

Chapters 5, 6 and 9).

Federal policy contributed to the central role of U.S.

research universities in the advance of hardware and software

technologies.  As our previous discussion of the earliest years

of the U.S. computer industry suggests, universities were among
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the first developers of computers, supported by wartime and early

postwar R&D contracts from the federal government.  But even

after the rise of a substantial private sector industry dedicated

to the development and manufacture of computer hardware, federal

R&D support aided the creation of the new academic discipline of

computer science.  The creation and legitimation of a new

academic discipline, particularly in the applied and engineering

sciences, within U.S. universities is itself hardly novel. 

Partly because of their decentralized structure and financing,

U.S. universities frequently have responded to the demands of

industry (and, in some cases, the state governments that

supported so many U.S. universities) by developing new academic

departments and disciplines in areas such as chemical

engineering, electrical engineering, and aeronautical engineering

(Rosenberg and Nelson, 1994; Mowery and Rosenberg, 1993). 

Private firms supported the early development of academic

computer science, but their contributions and support soon were
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outweighed by those of the federal government.  Much of this

government financial support was motivated by defense concerns.

Comprehensive data on federal R&D support for academic

research in computer science, let alone in software per se, are

difficult to obtain.  The data in Figure 1 display trends in

total federal support for computer science R&D during fiscal

1959-1971, and reveal the importance of DoD-related sources of

funding throughout this period.  Figure 1 points out the rapid

rise of the Advanced Research Projects Agency (ARPA, long known

as DARPA), established in 1958 to conduct long-range R&D of

interest to all of the uniformed services, in supporting computer

science R&D.  Since its data include federally supported R&D

performed outside of universities, the Figure understates the

importance of NSF as a funder of academic computer science

research.  Nevertheless, according to Yudken and Simons (1988),

defense-related agencies accounted for more than 50% of academic

computer science R&D from fiscal 1977 through the mid-1980s, and
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defense-related support for applied computer science research

grew rapidly after fiscal 1983.

Figure 1 about here.

The foundations for the contributions of U.S. universities

to the growth of the software industry were laid during the 1950s

by two federal agencies:  NSF and ARPA.  The approaches taken by

these agencies to building a new academic discipline complemented

one another, as NSF's support was distributed broadly and that of

ARPA was concentrated on a few leading research universities.

As Aspray and Williams (1993a) note in their survey of the

early NSF programs in computer science, during the early 1950s,

NSF support for computer science was modest and was channelled

through its mathematics research program.  This picture changed

as a result of the 1956 endorsement by the Advisory Panel on

University Computing Facilities (chaired by John von Neumann) of

a specialized NSF program for the support of computer science,
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the 1957 launch of Sputnik, and the passage of the National

Defense Education Act in 1958.  NSF support for computer science

research grew rapidly after 1958, and was especially important in

meeting the critical need of academic researchers for computer

equipment.  Between 1957 and 1972, the National Science

Foundation expended $85 million to support the purchase by more

than 200 universities of computer hardware. 

In an emergent discipline that depended on access to state-

of-the-art equipment to conduct much of its research, these

facilities grants for equipment literally laid the foundations

(and in other cases, provided the equipment that was placed on

those foundations) for many universities' computer science

departments.  According to Norberg and O'Neill (1992), "there

were virtually no formal programs" in computer science in U.S.

universities as of 1959.  By 1965, the Association of Computing

Machinery (ACM) reported that more than 15 universities offered

doctorates in computer science and 17 offered bachelor's degrees

(ACM Curriculum Committee on Computer Science, 1965), and the
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output of degreeholders rapidly expanded.  Facilities grants

peaked in 1967 and began to decline thereafter as a paradoxical

consequence of White House intervention to create an Office of

Computing Activities within NSF, which assigned a higher funding

priority to computer education than to facilities.

The National Science Foundation also supported academic

research in software.  Figure 2 displays the growth of NSF

funding for research in software and related areas during 1956-

80, which cumulatively amounted to more than $250 million (1987

dollars).10  Among the contributions supported in part or

entirely by Foundation grants were the development of PASCAL,

pathbreaking work in principles of software engineering, and

early object-oriented programming languages, such as CLU.

Figure 2 about here.

 

Apart from its facilities program, the support of the

National Science Foundation for computer science research was
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organized along classic "basic research" principles of peer

review and individual support.  Because or in spite of this

structure, NSF support was widely dispersed among U.S.

universities.11  The distribution and consequences of NSF's R&D

programs contrast with those of DARPA computer science funding.12

 Rather than being spread among many universities, ARPA

support was concentrated among leading U.S. research

universities, primarily benefiting Carnegie-Mellon, MIT,

Stanford, and the University of California at Berkeley.13  ARPA

funding was intended to support the long-term development of

institutional and team strengths, and therefore was not allocated

exclusively on the basis of individual performance or promise. 

Although expert panels played an important role in overseeing and

reviewing its research programs, ARPA's support for computer

science research was less tightly controlled by peer review than

that of the National Science Foundation.  This management

approach was associated with high levels of flexibility and

responsiveness to the needs of academic researchers.14
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For much of ARPA's existence, its support for academic

computer science research was channelled through IPTO, whose

budget for fiscal 1965-85 is shown in Figure 3 (IPTO was

disbanded in 1986).  ARPA funding of academic computer science

research contributed a number of important innovations in

software and computer architecture, including computer time-

sharing (based on a project begun at MIT in the early 1960s when

campus demand for computer time began to outpace the available

supply), artificial intelligence architectures and software

(including the LISP program), computer networking and

communications (the ARPANET, forerunner of the NSFNET that

underpins national and international electronic mail, was

undertaken by ARPA as a means of linking researchers at its

scattered "centers of excellence"),15 and important modifications

to the UNIX operating system to improve its performance in

computer networking applications.  As we discuss in more detail

below, during the late 1970s and early 1980s, ARPA also undertook
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a major initiative to improve software development and

maintenance practices.

Figure 3 about here.

In addition to its contributions to software innovations,

ARPA's concentrated research funding made important educational

contributions.  ARPA research support for computer science in

these institutions, major producers of academic researchers, had

a substantial impact on computer science research and education

elsewhere in U.S. universities.  According to Norberg and O'Neill

(1992, pp. 140-141), 26% of the faculty in the 40 leading U.S.

university departments of computer science as of 1990 had

received their computer science Ph.D. degrees from one of the

three major universities supported by ARPA--Stanford, Carnegie-

Mellon, or MIT.  The influence of these three institutions was

even greater among the top 10 U.S. computer science departments,

where 42% of the tenured faculty and 53% of the nontenured
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faculty had received their Ph.D.s from one of these three

universities.16  Other Ph.D. graduates of these universities also

found employment in senior positions in firms such as Silicon

Graphics, Microsoft, and Sun Microsystems.  Many faculty at these

institutions also entered into formal and informal consulting

relationships with private firms, and others were directly

involved in the foundation of such important hardware and

software firms as the Carnegie Group, Ingress, and Thinking

Machines.

The original aims of ARPA support for academic research in

computer science were the creation of a basic research

infrastructure in this new discipline, which was already being

exploited by defense agencies for applications.  This

"infrastructure-building" goal incorporated support for training

of personnel as well as for research.  Its educational goals also

influenced ARPA's academic research programs.  Support for the

development of computer time-sharing, for example, was motivated

by concern over the ability of universities to train significant
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numbers of undergraduate and graduate students in computer

science as much as by direct defense needs. 

After the late 1960s, the mix of IPTO projects and funding

shifted in favor of applications.  This shift was a response to

the growing budget of IPTO, the diminishing tolerance of

Congressional and executive branch policymakers for fundamental

research programs within the defense budget, and demands from the

uniformed services for near-term solutions to such challenges as

software development and maintenance.  The increase of $10.5

million (more than 35%) in the IPTO budget during fiscal 1971-75,

for example, masked an absolute decrease in the most fundamental

research areas and increases in support for more applied

projects.  According to Norberg and O'Neill (1992),

the IPTO budget in FY 1971 represented 60% for basic

research and 40% for exploratory development.  By FY 1975,

the numbers were approximately reversed:  43% for basic

research and 57% for exploratory development. The split
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remained essentially the same for the FY 1980 budget, 42%

and 58%, respectively. (pp. 8-9).

Defense-related support for academic computer science

research continued to shift toward applied research through the

mid-1980s.  The effects of this shift were enhanced by the growth

of defense-related R&D within overall federal computer science

R&D funding.  Expansion in this source of academic R&D funding,

which was more development-oriented than federal R&D funding from

other sources, tilted academic computer science research toward

applications.  Yudken and Simons (1988) argued that

An increasing percentage of the nation's applied computer

science research is being performed in universities and

colleges.  In 1987, academia received about 40% of all

computer science federal obligations, an increase of

approximately 25% since 1982.  Academia's share of federal

funding for applied computer science research has increased

to 33% in 1987, up from 11.8% in 1982.  However, its share
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of federal support for basic computer science research

dropped from 78% to 66%.  (pp. 62-63).

During the 1980s, ARPA began to develop a new "bridging"

institution that was intended to facilitate and accelerate the

movement of academic computer science research results,

especially those relevant to software, into industry.  The

development of the SEI implied some shift in the relationship

between academic research and defense-related software

development.  Support for university research alone no longer

provided the necessary infrastructure for solution of serious

problems in defense-related software management.  Instead, a new

organization was needed to conduct applied research and to

support the dissemination and application within industry of the

results of this and other research.

  The Institute was intended by its sponsors to be sited in

or near a research university, but it would provide a "halfway

house" between academic research and application, supporting and

accelerating the transfer of advances in software engineering and



37

design from computer science research to application in

commercial and defense-related firms.17  The establishment of SEI

appears to have reflected some concern (revealed as well in the

shifting composition of Defense Department computer science R&D

spending) that the returns to the large DoD investment in

research were not being realized to a sufficient extent or with

sufficient speed in defense-related applications.  The 1984

announcement of the formation of the Institute, located at

Carnegie-Mellon University, projected a five-year DoD

contribution to the SEI budget of $103 million.  DoD funding for

the Institute expanded from $5 million in 1985 to an annual

contribution of almost $20 million during the late 1980s; since

1992, the annual DoD contribution has been reduced to roughly $15

million.

In contrast to the SAGE air defense system, a tightly

targeted development project whose management was shifted by MIT

to the semi-autonomous Lincoln Labs, the SEI focused on

development and dissemination of generic tools and techniques for
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software engineering with defense applications.  Its

establishment seems to reflect some divergence between the

mainstream of academic research in computer science and defense-

related requirements for software innovations.  Although U.S.

universities developed a number of key innovations in computer

hardware and software during the 1950s and 1960s, the

establishment of the SEI suggests that the future relationship

between these universities and defense-related software

development may be less close. 

4.  Defense-related programs and the U.S. software industry

Defense-related procurement and R&D programs supported the

growth of a number of postwar U.S. high-technology industries,

including commercial aircraft, semiconductors, and computer

hardware for much of the postwar period.  Although the computer

software industry benefited from large DoD programs for R&D and

procurement, the effects of these programs differed somewhat from

other postwar high-technology industries.  In the semiconductor
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industry, for example, DoD R&D programs produced few of the major

technical advances embodied in commercial (as well as military)

products (Tilton, 1971; Levin, 1982; Mowery and Steinmueller,

1994).  Private firms accounted for numerous advances in

software, but defense-related R&D programs, notably those of

ARPA, supported important advances in fundamental knowledge of

computer architecture, software languages, and design that found

applications in both the civilian and defense sectors of the

emergent industry.

Defense-civilian spillovers nevertheless were important in

software.  One basis for assessing their importance is provided

by Flamm's tabulation of major advances in computer software

during 1950-80 (1988, Table A-4).  Of the 45 advances listed by

Flamm as having originated in the U.S., the development of 18 was

funded by the federal government, and all but one of these

innovations drew on funding from the Pentagon and related

military services.  The prominent role of university-based

research also is apparent from the fact that of these 18
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innovations, 9 were developed in universities (including MIT's

Lincoln Labs, the developer of the SAGE air defense computer

system).  The central place of universities in defense-civilian

spillovers is unique to software among the postwar U.S.

industries characterized by high military R&D and procurement

spending.

The spillovers identified in Flamm's tabulation assume two

forms:  (1) innovations that were first sold to federal agencies;

and (2) innovations that were first sold to private firms.  Most

of the widely remarked defense-civilian technological spillovers

in other industries and technologies fall into the first of these

two categories.  Fourteen of the 18 innovations in Flamm's

tabulation that were developed with federal funds were first sold

to federal agencies, while 4 of them were first applied outside

of the federal government.  Examples of the second category of

defense-civilian spillovers in other postwar U.S. industries are

rare, perhaps reflecting the emphasis of defense-related R&D in

these other industries on specific mission applications.
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A mere count of these spillovers says little or nothing

about their economic significance.  The innovations listed in

Table 1, however, include a number of major advances.  The

compiler that was developed for the MIT Whirlwind, for example,

contributed to the development of higher-order languages such as

FORTRAN.18  COBOL, which was described in 1972 as one of the two

languages (the other being FORTRAN) that "...into the foreseeable

future" would dominate "...most of the world's serious production

programs" (Rosen, 1972, p. 591), is a high-order programming

language developed to specifications formulated by a committee of

industrial and military experts that was sponsored for much of

its life by the Defense Department.  DoD support for the

committee reflected military policymakers' growing concern over

the costs and incompatibility of the rapidly expanding military

investment in software for data-processing applications, as

opposed to the "mission-critical" applications in weapons systems

that inspired the development of the defense programming language

of the 1980s, Ada.19  Still another important spillover from

defense to advances in civilian software technology, noted above,
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was the investment by the Defense Department during the 1950s in

training the programmers who created the software for the SAGE

air defense computer system.
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Table 1:  "Spillovers" in the U.S. Software Industry, 1950-75

Year Innovation Federally 1st Sale Developer 
Funded? to Federal

Agency?

unknown Project Rye Yes Yes Developed by Sperry Rand for 
National Security Agency.

early APT language Yes Yes MIT Whirlwind
1950s

1954 Whirlwind batch Yes Yes MIT Whirlwind
operating system

1957 SAGE time-sharing Yes Yes MIT Lincoln Labs/System
Development Corp.

1959 COBOL language Yes Yes Developed to DoD
specifications.

1959 Jovial Yes Yes Developed by System
Development Corp. for DoD.

1962 MIT time-sharing Yes Yes Developed at MIT with
system DARPA funding.

1963 Q-32 time-sharing Yes Yes Developed by System
system Corp. for DoD.

1963 Multiprocessor Yes Yes Developed by Burroughs
system for D-825 military computer.
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1963 JOSS dedicated Yes Yes Developed at RAND for
time-sharing system DoD.

1964 Culler-Fried time- Yes Yes Developed at TRW for DoD.
sharing system

1966 Project Genie general Yes Yes Developed at U.C. Berkeley
time-sharing system. for Scientific Data Systems with

DoD funding.

1968 MULTICS advanced time- Yes Yes Developed at MIT with DARPA
sharing system funding.
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Table 1 (contd.)

Year Innovation Federally 1st Sale Developer 
Funded? to Federal

Agency?

1972 TENEX time-sharing Yes Yes Developed by BBN with
system DARPA funding.

1953 Algebraic compiler Yes No Developed at Whirlwind at MIT.

1956 SHARE assembly pgm. Yes No Developed at United Aircraft &
distributed through IBM's
SHARE program.

1963 Carnegie Tech. remote Yes No Developed at Carnegie Institute
job entry system. of Technology with DARPA funding.

1964 Basic Yes No Developed by GE and Dartmouth
with NSF funding.

SOURCE:  Flamm (1988), Table A-4.
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The interaction between defense and civilian applications

and technological developments in the emergent U.S. software

industry differed from that seen in other U.S. high-technology

industries in the postwar period for at least two reasons. 

First, the share of defense-related demand within total software

industry revenues remained high for a longer period of time than

was true of such industries as semiconductors.  According to

Fisher (1978), annual DoD software expenditures amounted to $3-

3.5 billion in 1973.  Since total software industry revenues were

no more than $4.2 billion in 1977 (Siwek and Furchtgott-Roth,

1993, p. 15), defense demand accounted for a substantial fraction

of software industry revenues in the early and mid-1970s.  As

late as the early 1980s, some thirty years after the beginnings

of software production, military demand may have accounted for

50% of total software industry revenues.20  By contrast, only ten

years after the commercialization of the integrated circuit in

1958, defense-related demand, which had accounted for 100% of
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industry shipments in 1962, amounted to 37% of the market (Mowery

and Steinmueller, 1994, pp. 211-213). 

Second, defense demand throughout the postwar period has

been dominated by highly specialized custom and embedded

software.  This characteristic of military demand may well have

reduced product-embodied "spillovers" (as opposed to spillovers

based on defense R&D) of the type that were significant in other

sectors.  Since a large share of DoD R&D funding in computer

science during much of the 1950s and 1960s focused on fundamental

R&D, rather than development, many of the military-civilian

spillovers in software assumed a generic, rather than product-

specific, character, and university research was central to their

development.  The divergence between the characteristics of

products demanded by the military and those demanded in the

commercial market that has affected such U.S. industries as

semiconductors and aircraft thus may prove to be less significant

in software, because this divergence has been a central factor

from the industry's earliest days.
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There exists no reliable time series of DoD expenditures on

software procurement that employs a consistent definition of

software, e.g., separating embedded software from custom

applications or operating systems and packaged software, etc. 

The data on software expenditures in Figure 4 are also

inconsistent in their treatment of DoD expenditures on software

maintenance, as opposed to procurement.  Nevertheless, the trends

in these data are dramatic--in constant-dollar terms, DoD

expenditures on software increased more than thirtyfold in just

over 25 years, from 1964-90.  Throughout this period, DoD

software demand was dominated by custom software, and DoD and

federal government demand for custom software accounted for a

substantial share of the total revenues in this segment of the

U.S. software industry.  Much of the rapid growth in custom

software firms during the 1969-80 period that is discussed in

Chapter 2 reflected expansion in federal demand, which in turn

was dominated by DoD demand.21



49

Figure 4 about here.

This rapid growth in DoD software expenditures, coupled with

other developments in DoD programs and in the structure of the

U.S. software industry, gave rise to concern within the Pentagon

over "productivity bottlenecks" in software production.  Software

support and maintenance, i.e., changing programs to adapt to new

mission requirements, eliminate errors, or improve performance,

grew rapidly as a share of total software and hardware costs.  By

1985, software support alone was estimated to account for at

least 50% of the cost of complex defense computer systems, a

significant increase from its original share of less than 10% in

the early 1960s (Defense Systems Management College, 1990, p. 2-

3).  Policymakers also worried about the availability of skilled

software engineers and the ability of any technical staff to

maintain the rapidly growing, aging, and extremely heterogeneous

installed base of software in DoD weapons systems.  The Strategic
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Defense Initiative, with its requirements for large amounts of

highly reliable, error-free software, made all of these problems

more acute and visible.22  These concerns led to a series of

initiatives in the 1980s, including the development of the Ada

high-order language for defense applications, expanded programs

in software engineering that included the STARS (Software

Technology for Adaptable, Reliable Systems) program, and the

Software Engineering Institute.

The complexities of DoD software procurement and maintenance

were exacerbated by the importance of "embedded" software,

contained in instruments or in components of larger weapons

systems.  This type of software accounted for more than 55% of

total DoD software expenditures in 1973,23 and its share of DoD's

total software budget may well have increased since then. 

Embedded software brought with it considerable costs and

benefits.  Software enabled much greater flexibility, and often

much greater speed, in modifying deployed weapons systems for new

missions.  The 1982 Joint Services Task Force on Software



51

Problems estimated that modifying the capabilities of the Air

Force F-111 aircraft through software rather than hardware

enabled a fiftyfold savings in cost and a threefold acceleration

in the deployment of the modified aircraft.24  This "mission-

critical" embedded software also had to meet requirements for

reliability and quality control that were far more demanding than

those associated with conventional data processing operations. 

Perhaps the greatest cost associated with its widespread use

was the fact that most of the embedded software employed in

weapons systems developed before 1982 was specific to a given

weapons system or contractor, and a lack of standards implied a

lack of compatibility.25  Moreover, as several other chapters in

this volume point out, the dominance of custom applications

within military software minimized incentives to create generic

tools or languages:

There has been little incentive for individual projects to

expend the effort and resources necessary to provide

facilities that would be generally useful, especially when
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there are few, if any, other projects using the same

programming language.  This may also account for the lack of

off-the-shelf software...At least 450 general-purpose

programming languages and (incompatible) dialects are used

in DoD embedded computer applications--and none is widely

used. (Fisher, 1978, p. 26).

Maintenance and support of defense software were especially

difficult, since idiosyncratic programs for specific systems or

applications, developed with limited documentation, could remain

in service for years or even decades.

When confronted with a similar problem in 1959, DoD had

supported an industry-led committee that laid out the

requirements and specifications for a higher-order language,

COBOL, that was developed by private firms.  In response to

similar confusion in "mission-critical" software, the Defense

Department launched a major effort to develop an "official"

standard for its software procurement in 1974.  But in 1974, the

project was controlled more tightly by DoD, which appointed the
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committee charged with defining the requirements and evaluating

the suitability of existing languages to meet them.  In the

absence of a satisfactory language, a competition was held to

evaluate competing designs of a new language.  The result,

developed largely by Honeywell-Bull on a DoD contract (another

contrast with the COBOL experience), was the Ada language,

announced in 1981 and required in all major DoD procurement

programs. 

The Ada initiative was an effort by DoD to create a

standardized software environment that would create a "virtuous

cycle" similar to that associated with the growth of a "dominant

design" in the civilian microcomputer market, in which the

diffusion of the IBM PC supported growth in the production of

low-cost packaged software for a huge variety of applications

(See Chapters 2 and 5 in this volume).  In contrast to COBOL, Ada

has not been extensively employed thus far in nondefense systems,

partly because it was developed to meet requirements that had few

civilian counterparts.26
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The Ada initiative was joined in the early 1980s by a

broader effort to enhance the efficiency of defense-related

software development and procurement that led to increased DoD

funding for generic software engineering research and related

activities.  Beginning in the early 1980s, with the report of the

Joint Services Task Force on software development and

procurement, a succession of studies27 reviewed DoD software

policies and agreed on three goals:  (1) the costs of software

procurement and maintenance must be brought under control; (2)

one means to achieve this goal was through greater exploitation

of the resources and products of the civilian software industry

(so-called "COTS"--commercial off-the-shelf software) for many

defense-related software needs;28 and (3) DoD funding for

expanded research on and dissemination of software engineering

techniques provided one means to achieve the first two goals.  In

contrast to the Ada initiative, which defined a defense-specific

set of requirements that produced a "dedicated" DoD high-order

computer language, these efforts of the 1980s attempted to bridge
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the gap between defense and civilian technological developments

and "unify" the civilian and defense industrial base in software.

 Another motive for efforts to link the civilian and defense-

related software industries more closely was growing concern by

IPTO and ARPA managers with the international competitiveness of

the U.S. computer and electronics industry complex.  This concern

motivated large programs in "Strategic Computing," which included

expanded research in software development.

As originally planned, the STARS program and the Software

Engineering Institute had a hardware complement in the Very High

Speed Integrated Circuit (VHSIC) program, which like these

software initiatives sought to exploit civilian technological

capabilities in the semiconductor industry for defense-related

applications (Martin, 1983).  The STARS program was intended to

develop better methods for defining software requirements and

specifications in a flexible manner that would also enhance re-

use of software code.  Among STARS' goals were computer-aided

software engineering tools for developing Ada and other software.
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 In December 1989, ARPA shifted the STARS program to increase the

involvement of commercial software vendors in the development of

techniques that drew more heavily on civilian software products

and could be sold in civilian, as well as military markets.  This

shift in program philosophy was associated with new requirements

that STARS contracts involve commercial software vendors.29

The combined effects of sharp cuts in the SDIO budget and

across-the-board reductions in overall defense spending after

1989 reduced defense-related R&D spending in software, even as

civilian agencies such as the National Science Foundation

increased their computer science research budgets.  The defense

share of federal computer science R&D funding declined from

almost 60% in fiscal 1986 to less than 30% in fiscal 1990

(Clement, 1987, 1989; Clement and Edgar, 1988), and by the early

1990s, defense demand accounted for a declining share of industry

markets.

Although the past development of the U.S. software industry

exhibits a pattern of military-civilian interaction that
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contrasts with that of other U.S. high-technology industries, the

present relationship between civilian and military software

technology appears to resemble that of other industries. 

Defense-related demand accounts for a declining share of industry

output, and technologies developed for civilian applications

appear to promise higher performance at lower cost.  In response,

the Defense Department has attempted to strengthen its links with

the commercial sector of the software industry, just as it now

seeks to do in such products as flat-panel displays (Davis and

Zachary, 1994).

The success of these efforts, however, remains very

uncertain.  One of the most important impediments to the

development of such links, defense contracting policies on the

ownership of code, has scarcely been addressed (Zraket, 1992, pp.

310-311).  The Ada initiative defined a set of requirements and

an entire language that has thus far produced few "spillovers" or

"spin-on" benefits for the civilian software industry, and few

new entrants have been attracted to the military software market.
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 The creation of a separate institution for the development and

dissemination of software engineering techniques for defense-

related applications creates some risk that, despite the

intentions of its sponsors, the Software Engineering Institute

may contribute to further divergence between defense and

nondefense software development techniques and products.

The area of software engineering also reveals divergence

between defense and commercial technologies.  DoD's

conceptualization of the "software bottleneck" problem has until

recently focused on techniques for design and management of the

development of large-scale software systems that require very low

error rates in code in organizations resembling "software

factories" (SAGE was one prototype).  Originally developed by

SAGE contractor SDC, the software factory sought to increase

productivity and reduce errors within the development

organization by systematically reusing parts of code on similar

but not identical large-scale projects.30
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The software factory and related techniques of software

engineering remain relevant to the creation of complex,

customized defense software, especially embedded, "mission-

critical" software that cannot tolerate errors in code.  But

within the commercial software industry, standardization of

platforms and languages, rather than code reuse, has been the key

to great increases in efficiency and profitability.  Many of the

techniques of the software factory are unnecessary for mass-

market, packaged software, early releases of which often are

riddled with errors.  In the commercial sector, where the

problems of sharing code across (proprietary) organizations are

serious, object-oriented programming may provide a way to share

and reuse code in new ways and more effectively (Lavoie et al.,

1992).  But DoD has not pursued object-oriented techniques for

software development.  Ada is not an object-oriented language,31

and its specificity to DoD applications means that it may not

attract private developers' investment and effort in competition
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with far more widely used commercial operating systems and

languages. 

Without a radical shift in DOD's underlying weapons design

and procurement philosophy, from one that emphasizes performance

above all else to one stressing the use of standard hardware

components and platforms, the military efforts to exploit

commercial software are likely to remain ineffective.  The case

of software suggests that the development of closer links between

the defense-related and civilian sectors of high-technology U.S.

industries will be very difficult and will take considerable

time. 

Our discussion of federal policy extends only through 1990,

but developments since that date nonetheless merit a brief

comment.  Since 1992, ARPA has explicitly followed a policy

(which, as we noted above, has been articulated within the agency

since at least 1980, but rarely stated publicly) in which DoD and

other federal agencies will support projects that have both

commercial and defense applications (Alic et al. 1992; Bingaman
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and Inman 1992).  Although ARPA's fundamental R&D support in

software produced important advances in both civilian and defense

application, there are ample gounds for skepticism about the

possibilities for such "spin-on" benefits from development

funding.  As we noted earlier in this chapter, the differences

between defense and commercial requirements and markets in

software remain so great that genuinely dual-use benefits from

technology development spending are likely to be rare.

5.  NASA Software Programs

Another federal agency with significant software-related

activities is the National Aeronautics and Space Administration

(NASA), which required complex flight-operations software (both

on the spacecraft and on the ground) for its manned space

exploration missions and embedded software for its unmanned

planetary satellites.  As Figure 5 (from the Defense Systems

Management College, 1990, p. 7-2) shows, NASA's software

requirements for the Space Shuttle and other manned spaceflight
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missions were more complex (measured in terms of the number of

instructions) than any single U.S. weapons system, including the

B-1 bomber or the AWACS airborne air defense radar system.  These

demanding, mission-specific requirements forced NASA and its

civilian contractors to develop advanced techniques of software

engineering.

Figure 5 about here.

In the manned spaceflight program, NASA's first software

contractor was MIT's Instrumentation Laboratory (later known as

Draper Labs), which was chosen by NASA on the strength of its

performance in developing guidance systems for the Polaris

nuclear missile (Tomayko, 1988).  Although the Apollo software

program was eventually successful, the enormous difficulties

associated with the effort led NASA to seek an on-site contractor

in later programs for the development of flight operations and

ground-based control software.32 
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The demanding space and weight requirements of NASA's manned

and unmanned spaceflight missions meant that most of the on-board

computer hardware and software was unique to these missions.  As

a result, the software developed for on-board applications

yielded relatively few "spillovers" to commercial applications. 

In the case of ground-based computer systems to manage the

extremely complex tasks of launch and communications, however,

"off-the-shelf" hardware was exploited far more extensively. 

Moreover, many of the techniques of software development for

these applications were employed in broader commercial markets by

the primary vendor, IBM's Federal Systems Division (now known as

the Federal Systems Company).33  IBM, which located a large

software development facility near the Johnson Space Center in

Houston, was the major supplier of software for ground control

systems throughout NASA's manned spaceflight program, and later

became the prime contractor for the Space Shuttle's software. 

Beginning with the Mercury program, IBM's development of computer
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systems and software for ground control applications yielded

important commercial spillovers:

For IBM and NASA, the development of the Mercury control

center and the network was highly profitable...Large central

computers with widely scattered terminals, such as airline

reservation systems, have their basis in the distant

communications between Washington and a launch site in

Florida. (Tomayko, 1988, p. 248).

Other important architectural advances spurred by IBM's

experience as the prime contractor for ground-control hardware

and software include the demonstration of the design principles

that underpinned the subsequent innovation of virtual memory, as

well as major improvements in IBM's internal software engineering

practices and guidelines.34  All of these yielded important

commercial spillovers for IBM and for the broader U.S. software

industry. 

Although they were valuable for the development of complex,

custom software programs, the software engineering advances
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supported by IBM's NASA experience nevertheless are less relevant

to the packaged software market that became so important during

the 1980s, as Smith and Cusumano (1993) point out:

The [IBM NASA software development] process is an excellent

fit for the environment:  a dedicated customer, a limited

problem domain, and a situation where cost is important but

less of a consideration than zero defects.  For the wide

range of commercial software developers that do not operate

in this type of environment, the...complete FSC Houston

approach is not feasible, although variations of the process

are clearly possible and used at other IBM sites and other

companies...Drawing upon this success in process improvement

and quality delivery, the IBM Federal Systems Company has

also created a team that now goes out and consults on the

software development process. (Smith and Cusumano, 1993, p.

19).

In spaceflight no less than in defense-related procurement

large government software contracts now appear to yield fewer
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benefits for vendors in the commercial market, underlining the

divergent requirements and strategies associated with these

sectors of the U.S. software industry.  IBM's 1993 divestiture of

its Federal Systems Company seems to underline the limited

relevance of the large-scale software factory for developing

commercial software (which accounted for $11 billion in 1993

corporate revenues, according to the firm's Annual Report).

6.  Conclusion

The federal government's role in the development of the U.S.

software industry is broadly similar to its role in the

development of such other postwar high-technology industries as

semiconductors, computer hardware, and commercial aircraft.  In

all of these cases, federal expenditures on R&D and procurement

were motivated primarily by defense concerns in the context of

the Cold War.  Defense-related expenditures produced important

"spillovers" for commercial applications, which was also the case

in software.  Especially in semiconductors and computer hardware,
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federal procurement also supported significant entry by many

startup firms, as in the software industry.

But the apparent similarities between software and other

postwar "dual-use" industries mask some important differences in

the structure of federal policy toward the software industry. 

For example, throughout the brief history of the software

industry, defense-related demand for (largely custom) software

has accounted for a much larger share of the total market than

was true of semiconductors.  Federal funding of university

research and development activities appear to have been more

important to the evolution of this postwar industry than is true

of semiconductors or aerospace.  In contrast to these industries,

which drew on established academic disciplines even as they

transformed them, the software industry relied on the creation of

a new academic discipline, computer science.  Federal

policymakers in agencies such as ARPA focused their R&D support

on universities because of the need for a new academic

infrastructure of training and research for the development of a
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technology with numerous defense-related applications.  Moreover,

the explicit "targeting" of institutional strength in computer

science, combined with the defense mission of agencies such as

ARPA, meant that this source of academic research support

employed policies and criteria for support that contrasted with

the peer review system more commonly associated with federal

support for fundamental academic research.  The contrasting

postwar histories of the British and U.S. computer industries

appear to stem in part from the very different policies adopted

by each nation's military establishment to the support of

university research and education in computer science.

The National Science Foundation also included support for

infrastructure through its funding of computer purchases by U.S.

universities, and thereby complemented the focused policies of

ARPA.  The important role of universities within the software

industry, and the importance of federal financial support for the

research facilities of these universities, both suggest some

interesting similarities between the U.S. software and
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biotechnology industries.  In the case of biotechnology, of

course, the National Institutes of Health have played an

indispensable role in supporting fundamental research and

equipment acquisition that have yielded major commercial

applications.

Although ARPA's R&D support focused on specific areas of

opportunity in computer science, the overall structure of federal

R&D support in software-related fields was not tightly "targeted"

on specific civilian applications, or even on civilian technology

development.  In contrast to the ambitious programs mounted

within Europe and Japan, U.S. government R&D policy devoted

relatively little attention (until recently) to civilian

applications.  Indeed, the recent federal emphasis on technology

development and civilian applications indicate some shift in

federal policy in the direction of European and Japanese

programs, which have had little success in the software industry.

The history of federal policy in the software industry

supports a strong role for public funds in the creation of a
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research infrastructure, including support for the production of

trained personnel, rather than a policy that attempts to focus

research programs on the development of specific technologies for

civilian applications.  It also suggests the importance of

support for institutions and facilities, in addition to

individual investigators, in order to spur the growth of new

academic disciplines.  In all of these respects, the lessons of

postwar federal policy in the software industry closely resemble

those of federal technology policy in other sectors (See Nelson,

1985; Mowery and Rosenberg, 1989).  Paradoxically, the national

security rationale for much of the DoD and ARPA funding,

especially the ARPA funding of university "centers of

excellence," may have insulated these programs, which did not

operate solely via peer review, from the distributional politics

that otherwise might have forced the use of very different

criteria for allocation.35  The lack of a "civilian

competitiveness" rationale for them may have increased the



71

contribution of these federal R&D programs to the U.S. software

industry's competitiveness.

Although military-civilian spillovers were important in the

software industry, their structure appears to have differed

somewhat from those associated with other postwar dual-use

industries.  In a number of other postwar industries, as we noted

in the introduction to this chapter, government R&D support and

defense-related procurement often yield commercial applications

in the commercial sector during the earliest stages of a

technology's development.  With the maturation of the technology

and the emergence of a commercial industry, however, government

procurement needs diverge from those of the commercial market,

especially if this market becomes large relative to the

government market (See Mowery and Rosenberg, 1989; Cowan and

Foray, 1994).  This development often reduces the spinoffs from

defense-related government spending on R&D and procurement, and

military applications may come to rely more heavily on “spinons”

from the commercial sector.
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This transition seems to have occurred quite early in the

development of the U.S. software industry.  The early

experimental machines at universities, such as Whirlwind or the

IAS computer, yielded a number of generic software concepts and

tools.  But very soon the private sector, notably IBM, began

volume production of standard platforms.  At the same time, the

commercial sector, responding to the resulting growth in the 

market for standard commercial applications, began to provide

generic programming tools and languages.  Private firms also

extended some financial support for computer science and

developed end-user capabilities through user groups.  The mid-

1950s had some interesting similarities with the current

situation in the software industry, with standardized hardware

platforms supporting the growth of commercial production of

software, although independent software vendors now play a much

more prominent role in the commercial sector (see chapter 2).

Rapid growth in defense-related demands for software, and

for science and technology in general, during the 1950s expanded
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government spending on software and computer science.  Government

funding stimulated the creation of a university-based

infrastructure for the development “generic” technology and

abstract principles, many of which were applicable to both

military and commercial software.  Rather than applications of

technologies developed for defense purposes, software-related

spillovers frequently flowed from defense-related support for

fundamental research, and universities were important sources of

such spillovers.  Had private firms retained the primary

responsibility for the "legitimation" of computer science, this

process might well have taken considerably longer and might have

restricted the diffusion of the results of university-based

research.

The divergent nature of military and commercial demand for

software has not been significantly reduced by the development of

Ada, and it is likely to hamper efforts to improve military

utilization of commercial software products.  Indeed, the shift

in defense-related R&D support toward applied research may reduce
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the future "spillovers" to commercial appplications formerly

generated by this research funding.  The establishment of the

Software Engineering Institute, which was intended to supplement

the role of U.S. universities in supporting defense-related

software R&D, suggests that this divergence may also affect the

relationship between DoD R&D programs and academic research in

software and computer science.  The contrasting roles of MIT in

establishing Lincoln Labs to manage the SAGE project and ARPA in

the establishment of the SEI highlights this changing

relationship.

The political and economic circumstances within which these

federal agencies influenced the early development U.S. software

industry were in many respects unique.  Although federal support

for its university infrastructure will remain vital, the software

industry has achieved sufficient scale and economic vitality that

federal R&D policy is likely to exercise less direct influence

over its future technological development.  But the lessons of

federal policy in this industry, at least some of which seem to
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contradict the spirit of current federal policy initiatives in

software and other high-technology industries, remain relevant in

the U.S. economy of the future.



76

Bibliography

Alic, J.A., L.W. Branscomb, H.A. Brooks, and A. Carter, Beyond

Spinoff (Boston:  Harvard Business School Press, 1992).

Arrow, Kenneth J., "Economic Welfare and the Allocation of

Resources to Invention," in Richard R. Nelson, ed., The Rate and

Direction of Inventive Activity: Economic and Social Factors

(Princeton: Princeton University Press, 1962).

Aspray, William, John von Neumann and the Origins of Modern

Computing (Cambridge: MIT Press, 1990).

Aspray, William, and Bernard O. Williams, "Computing in Science

and Engineering Education:  The Programs of the National Science

Foundation," presented at the IEEE Electro/93 conference, Edison,

NJ, April 27-29, 1993a.



77

Aspray, William, and Bernard O. Williams, "The National Science

Foundation's Computer Science Research Program," unpublished MS.,

1993b.

Aspray, William, and Bernard O. Williams, "Arming American

Scientists:  The Role of the National Science Foundation in the

Provision of Scientific Computing Facilities for Colleges and

Universities," forthcoming, Annals of the History of Computing,

1994.

Bach, G.L., "A Computer for Carnegie," Annals of the History of

Computing 8, 1986, 39-41.

Bashe, Charles J., Lyle R. Johnson, John H. Palmer, and

Emerson W. Pugh, IBM's Early Computers (Cambridge: MIT Press,

1986).



78

Baum, Claude, The System Builders : the Story of SDC (Santa

Monica, Calif.: System Development Corp., 1981).

Benington, H.D., "Production of Large Computer Programs," Annals

of the History of Computing 5, 1983, 350-361.

Bingaman, Jeff, and Bobby R Inman, "Broadening Horizons for

Defense R&D," Issues in Science and Technology 9,  Fall 1992, 80-

85.

Boehm, B., and T.A. Standish, "Software Technology in the 1990s:

 Using an Evolutionary Paradigm," IEEE Computer, 1983,

Brosgol, B.M., "Ada," Communications of the ACM 35, November

1992, 41-42.

Burgess, Angela, "DOD Budget Embodies New Acquisition Plan," IEEE

Software 9, May 1992, 99.



79

Clement, J.R.B., "Computer Science and Engineering Support in the

FY 1988 Budget," in Intersociety Working Group, ed., AAAS Report

XII:  Research & Development, FY 1988 (Washington, D.C.: 

American Association for the Advancement of Science, 1987).

Clement, J.R.B., "Computer Science and Engineering Support in the

FY 1990 Budget," in Intersociety Working Group, ed., AAAS Report

XIV:  Research & Development, FY 1990 (Washington, D.C.: 

American Association for the Advancement of Science, 1989).

Clement, J.R.B. and D. Edgar, "Comptuer Science and Engineering

Support in the FY 1989 Budget," in Intersociety Working Group,

ed., AAAS Report XIII:  Research & Development, FY 1989

(Washington, D.C.:  American Association for the Advancement of

Science, 1988).



80

Cowan, R., and D. Foray, "Quandaries in the Economics of Dual

Technologies and Spillovers from Military to Civilian Research

and Development," unpublished MS, 1994.

Cusumano, Michael, Japan's Software Factories: A Challenge to

U.S. Management (Cambridge: MIT Press, 1991).

Davis, B., and G.P. Zachary, "Electronics Firms Get Push from

Clinton to Join Industrial Policy Initiative in Flat-Panel

Displays," Wall Street Journal, 4/28/94, p. A16.

Defense Systems Management College, U.S. Department of Defense

Mission Critical Computer Resources Management Guide (Washington,

D.C.:  U.S. Defense Department, 1990).

Feldman, M.B., "Ada Experience in the Undergraduate Curriculum,"

Communications of the ACM 35, November 1992, 53-67.



81

Fisher, D.A., "DoD's Common Language Programming Effort," IEEE

Computer 11, March 1978, 24-33.

Fisher, Franklin M., James W. McKie, and Richard B. Mancke, IBM

and The U. S. Data Processing Industry (New York: Praeger, 1983).

Flamm, Kenneth, Targeting the Computer (Washington, DC: The

Brookings Institution, 1987).

Flamm, Kenneth, Creating the Computer (Washington, DC: The

Brookings Institution, 1988).

Flamm, Kenneth S., and Gary L. Denman, "Testimony before the

Subcommittee on Defense," Committee on Appropriations, U. S.

House of Representatives, April 13, 1994.



82

Gries, D., R. Miller, R.Ritchie, and P. Young, "Imbalance Between

Growth and Funding in Academic Computer Science:  Two Trends

Colliding," Communications of the ACM 29, 1986, 870-878.

Hendry, J., Innovating for Failure (Cambridge:  MIT Press, 1990).

IBM Corporation, 1993 Annual Report.

Katz, Barbara, and Almarin Phillips, "The Computer Industry," in

Richard R. Nelson, ed., Government and Technical Progress: A

Cross-Industry Analysis (New York: Pergamon Press, 1982).

Knuth, D.E., and L.T. Pardo, "The Early Development of

Programming Languages," in N. Metropolis, J. Howlett, and G.-C.

Rota, eds., A History of Computing in the 20th Century:  A

Collection of Essays (New York:  Academic Press, 1980).

Lavoie, Don, Howard Baetjer, William Tulloh, and Richard



83

Langlois, Component Software:  A Market Perspective on the Coming

Revolution in Software Development,  Special Research Report,

Patricia Seybold Group, Boston, April, 1992.

Leslie, S., The Cold War and American Science (New York: 

Columbia University Press, 1993).

Levin, Richard C., "The Semiconductor Industry," in Richard

R. Nelson, ed., Government and Technical Progress: A

Cross-Industry Analysis (New York: Pergamon Press, 1982).

Levine, Bernard, "Largest Funds Emerge So far for TRP Wins,"

Electronic News, February 28, 1994 p. 1.

Martin, E.W., The Context of STARS," IEEE Computer, November

1983, 14-17.



84

Mowery, David C., and Nathan Rosenberg, "Government Policy and

Innovation in the Commercial Aircraft Industry, 1925-1975," in

Richard R. Nelson, ed., Government and Technical Progress: A

Cross-Industry Analysis (New York: Pergamon Press, 1982).

Mowery, David C., and Nathan Rosenberg, "The U.S. National System

of Innovation," in R.R. Nelson, ed., National Innovation Systems:

 A Comparative Analysis (New York:  Oxford University Press,

1993).

Mowery, David C., and W.E. Steinmueller, "Prospects for Entry by

Developing Countries into the Global Integrated Circuit Industry:

 Lessons from the United States, Japan, and the NIEs, 1955-1990,"

in D.C. Mowery, Science and Technology Policy in Interdependent

Economies (Boston, MA:  Kluwer Academic Publishers, 1994).

National Science Foundation, Office of Computing Activities,

"Director's Program Review:  December 15, 1970," unpublished



85

document, Program Review Office, National Science Foundation,

Washington, D.C., 1970.

Naur, P., B. Randell, and J.B. Buxton, eds., Software Engineering

Concepts and Techniques:  Proceedings of the NATO Conference (New

York:  Petrocelli/Charter, 1976).

Norberg, A.L., and J.E. O'Neill, with contributions by K.J.

Freedman, A History of the Information Processing Techniques

Office of the Defense Advanced Research Projects Agency

(Minneapolis:  Charles Babbage Institute, 1992).

Phillips, C.A., "Reminiscences (Plus a Few Facts)," Annals of the

History of Computing 7, 1985, 304-313.

Redmond, Kent C., and Thomas M. Smith, Project Whirlwind: History

of a Pioneer Computer (Bedford, MA: Digital Press, 1980).



86

Rosenberg, Nathan, Perspectives on Technology (New York:

Cambridge University Press, 1976).

Rosenberg, N., "Scientific Instrumentation and University

Research," Research Policy 21, 1992, 381-390.

Rosenberg, N., and R.R. Nelson, "American Universities and

Technical Advance in Industry," Research Policy 23, 1994, 323-

348.

Sammet, J.E., "Brief Summary of the Early History of COBOL,"

Annals of the History of Computing 7, 1985, 288-303.

Sapolsky, H., Science and the Navy (Princeton, NJ:  Princeton

University Press, 1990).

Siwek, S.E., and H.W. Furchtgott-Roth, International Trade in

Computer Software (Westport, CT:  Quorum Books, 1993).



87

Smith, S.A., and M.A. Cusumano, "Beyond the Software Factory:  A

Comparison of 'Classic' and PC Software Developers," Sloan School

of Management working paper #96-93, 1993.

Stix, Gary, "Objective Data: DARPA Nudges Development of Object-

Oriented Data Bases," Scientific American 266, March 1992, 108.

Tilton, J.E., The International Diffusion of Technology: The Case

of Semiconductors (Washington, D.C.: The Brookings Institution,

1971).

Tomayko, J.E., Computers in Spaceflight (Washington, D.C.: 

National Aeronautics and Space Administration, 1988).

Tropp, H.S., ed., "A Perspective on SAGE:  A Discussion," Annals

of the History of Computing 5, 1983, 375-398.



88

U.S. Congress, Office of Technology Assessment, SDI:  Technology,

Survivability, and Software (Washington, D.C.:  U.S. Government

Printing Office, 1988).

U.S. Department of Commerce, A Competitive Assessment of the

United States Software Industry (Washington, D.C.:  U.S.

Government Printing Office, 1984).

U.S. Department of Defense, Joint Service Task Force on Software

Problems, Report of the DOD Joint Service Task Force on Software

Problems (Washington, D.C.:  U.S. Department of Defense, 1982).

U.S. House of Representatives, Commitee on Science, Space, and

Technology, Bugs in the Program:  Problems in Federal Government

Computer Software Development and Regulation (U.S. Government

Printing Office, 1989).



89

von Neumann, John, "First Draft of a Report on the EDVAC," 1945;

reprinted in William Aspray and Arthur Burks, eds., Papers of

John von Neumann on Computing and Computer Theory (Cambridge: MIT

Press, 1987).

Wildes, Karl L., and Nilo A. Lindgren, A Century of Electrical

Engineering and Computer Science at MIT, 1882-1982 (Cambridge:

MIT Press, 1985).

Yudken, J.S., and B. Simons, "Computer Science Research Funding:

 Issues and Trends," Abacus, 1988, 60-66.

Zraket, Charles A., "Software: Productivity Puzzles, Policy

Challenges," in John A. Alic, et al., eds., Beyond Spinoff

(Cambridge: Harvard Business School Press, 1992), pp. 283-313.



NOTES

1.  We are grateful to Jay Adams, William Aspray, Bruce Bruemmer,

Randy Katz, Larry Druffel, Bonnie Chen, George Mazuzan, Scott

Wallace, and Andrew Goldstein for invaluable assistance in the

preparation of this chapter.  Support for the second author's

research for this chapter was provided by the U.S.-Japan Industrial

Technology Management Program, sponsored by the Air Force Office of

Scientific Research; by the Center for Research in Management of

the Haas School of Business; and by the Alfred P. Sloan Foundation.

2. The Whirwind's cost of $3 million substantially exceeded the

average cost of $650,000 for the other systems described below

(Redmond and Smith, 1980).

3.  "Prior to this system [the 650], universities built their own

machines, either as copies of someone else's or as novel devices. 

After the 650, this was no longer true.  By December 1955, Weik

reports, 120 were in operation, and 750 were on order.  For the

90



first time, a large group of machine users had more or less

identical systems.  This had a most profound effect on programming

and programmers.  The existence of a very large community now made

it possible, and indeed, desirable, to have common programs,

programming techniques, etc."  (Goldstine, 1972, p. 331).

4.  Goldstine, one of the leaders of the wartime project sponsored

by the Army's Ballistics Research Laboratory at the University of

Pennsylvania that resulted in the Eckert-Mauchly computer, notes

that "A meeting was held in the fall of 1945 at the Ballistic

Research Laboratory to consider the computing needs of that

laboratory 'in the light of its post-war research program.'  The

minutes indicate a very great desire at this time on the part of

the leaders there to make their work widely available.  'It was

accordingly proposed that as soon as the ENIAC was successfully

working, its logical and operational characteristics be completely

declassified and sufficient be given to the machine...that those
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who are interested...will be allowed to know all details.'" (1972,

p. 217).  Goldstine is quoting the "Minutes, Meeting on Computing

Methods and Devices at Ballistic research Laboratory, 15 October

1945 (note 14).  Flamm (1988), pp. 224-226, makes a similar point

with respect to military attitudes toward classification of

computer technology.

5.  "The grants were in IBM's interest, because the

corporation felt a strong concern with supporting and

maintaining a close relationship with universities, and

because an entire generation of students and faculty

would associate computers and computing with `IBM.'"

(Galler 1986, p. 37.)  Fisher et al (1983, p. 169)

suggest, however, that this hoped-for "lock in" effect

might in fact have been illusory.

6.  In the case of MIT, IBM donated a model 704 computer
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in 1957, which was available free of charge to MIT

seven hours a day and to 24 other New England

universities another seven hours a day.  IBM itself

used the remaining 10 (nighttime) hours. (Wildes and

Lindgren 1985, pp. 336-7.)

7.  The IBM educational allowance program began in

October 1955, with 60 per cent reductions in lease

rates to universities.  In May 1960, IBM changed the

allowance to 20 per cent for administrative use and 60

per cent for academic use.  In 1963, the company

abandoned the administrative/academic distinction and

reduced all allowances to 20 per cent on new orders.

In 1965, IBM set up a sliding scale of allowances on

the new 360 series, ranging from 20 per cent on the

base model to 45 per cent on a high-end system.  By

1969, the allowance had been reduced to 10 per cent.
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(Fisher et al. 1983, p. 172.)

8.  According to some accounts (Baum, 1981), the Rand group got

the programming job only after MIT, IBM, and AT&T had all

declined it.  IBM, for example, was concerned about how it would

employ some 2,000 programmers once the project ended.

9.  "Indeed, despite what was in many respects a first-rate network

of contacts, the NRDC [National Research and Development

Corporation] was not even aware of some of the military computer

developments taking place in the 1950s and early 1960s.  Nor were

the people carrying out these developments in many cases aware of

work on the commercial front.  In America, in contrast,

communications between different firms and laboratories appear to

have been very good, even where classified work was involved."

(Hendry, 1992, p. 162).
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10.  The data in Figure 2 are taken from Aspray and Williams

(1993b), and include all NSF research funding in numerical

analysis, computer theory, architecture, theoretical computer

engineering, graphics, software, artificial intelligence,

databases, and communications. I am indebted to Professor William

Aspray and Dr. Andrew Goldstein of the IEEE Center for the History

of Electrical Engineering for these data.

11. "...NSF wanted to develop a broad academic base for science

education and scientific research.  Thus it supplied facilities not

only to the top research universities, but also to other

universities liberal arts colleges, junior colleges, and even some

high schools.  While NSF was building a broad national

infrastructure for science, DARPA was constructing a high-powered

experimental computer science research program." (Aspray and

Williams, 1994, p. 28).
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12.  This account draws on the excellent history of DARPA's

Information Processing Techniques Office (IPTO) by Norberg and

O'Neill (1992).

13.  A 1985 study by an ACM committee found that average DoD

funding per faculty member in the computer science departments of

these four universities was $279,000; this amount dropped to

$42,000 per faculty member in departments ranked 5-12.  By

contrast, NSF funding per faculty member in the top four

departments was $31,000, an amount that rose to $46,000 per faculty

member in departments ranked 5-12 and stood at $41,000 per faculty

member in departments ranked 13-24 (Gries, Miller, Ritchie, and

Young, 1986, p. 878).

14.  "IPTO strove to develop a few centers of excellence in order

to stimulate the computer science field in substantial ways, rather

than by making a large number of small contracts.  Contracts

written for this purpose were brief.  They specified in general

96



ways the nature of the research to be pursued, the equipment to be

purchased if needed, and the length of time of the

contract....Manager rather than peer review made possible this

rapid evaluation of proposals and issuance of an intent to contract

with an institution."  (Norberg and O'Neill, 1992, pp. 122-123).

15.  The ARPANET packet-switching architecture and supporting

software were developed by Bolt, Baranek, and Newman, an

engineering firm that had "spun off" from MIT, rather than solely

by academic researchers.  Nonetheless, academic computer science

researchers were very active participants in ARPA's early

development of requirements for what became the ARPANET, as well as

in the testing of the system.  In 1989, ARPA turned over the

network technology to NSF, which became the lead agency of an

Executive Branch consortium guiding the future of the Internet

(Turner 1989).
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16.  These data omit data for Ph.D. production from the University

of California at Berkeley, which for much of this period did not

grant Ph.D.s in computer science (a division of the university's

department of electrical engineering), although it was a major

recipient of ARPA funding for computer science research.  By virtue

of this omission, these data understate somewhat the "true"

influence of the top four ARPA-funded research universities in

computer science.

17.  "An institute like the SEI could play several influential

roles.  It could collect and integrate existing tools into common,

unified, software life-cycle support frameworks.  Such an institute

could act as an integrative agent by energetically soliciting

community opinion and helping the community to achieve a consensus

on critical new suspects of shared infrastructure for the 1990's. 

Additionally, it could furnish effective institutional support for

the technology insertion process.  This process needs to be
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carefully planned and managed, and if it is not vigorously

supported, an essential part of the overall job cannot be

accomplished.

"A key feature of technology transfer is to have people from

the DoD, industry, and academia rotating through the institute. 

Such rotation would have the additional benefit of keeping the

institute fresh and vital over time.  It would thus be a magnet for

top talent without being a talent sink." (Boehm and Standish, 1983,

p. 34).

18.  Moreover, the Office of Naval Research supported considerable

information exchange, workshops, and informal cross-fertilization

that enabled the compiler, first developed by Laning and Zierler at

MIT, to be quickly exploited by John Backus of IBM in creating

FORTRAN:  "During the first part of 1954, John Backus began to

assemble a group of people within IBM to work on improved systems

of automatic programming...Shortly after learning of the Laning and

99



Zierler system at the ONR meeting in May, Backus wrote to Laning

that 'our formulation of the problem is very similar to yours: 

However, we have done no programming or even detailed planning.' 

Within two weeks, Backus and his co-workers Harlan Herrick and

Irving Zierler visited MIT in order to see the Laning-Zierler

system in operation.  The big problem facing them was to implement

such a language with suitable efficiency...

"By November 1954, Backus's group had specified 'The IBM

Mathematical FORmula TRANslating system, FORTRAN."  (Knuth and

Pardo, p. 241).

19.  According to Phillips (1985), "In early 1959 there were 225

computer systems in the [DoD] business area alone, with annual

costs of over $70 million...the total number of computers in DOD

was estimated at 1046 with costs of about $443 million.  On a rough

approximation, DOD estimated that about half of these costs could

be attributed to (1) systems design, (2) flowcharting, (3)

100



programming and coding, and (4) 'debugging.'  With direct

'software' costs of about $35 million, which grew to over $200

million in the next five years, DOD obviously had an interest, as

well as a position of stature, in the subject.  Certainly, if such

a project offered a hope of reducing 'software' costs, it would

provide a strong motivation as well.

"Two other items were of concern to DOD at that time: 

compatibility and the interchange of computer programs; we might

really consider them as two parts of the same basic problem.  This

problem was clearly evident in the supply and logistics area, which

represented about 85 percent of DOD business-type applications in

1959." (p. 305).

20.  According to the U.S. Commerce Department (1984), total U.S.

software industry revenues amounted to $10.3 billion in 1982; in

that year, the DoD Joint Service Task Force on Software Problems

estimated that total Pentagon spending on software amounted to $5-6
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billion (Department of Defense, 1982, p. 6).  A portion of the

revenues included in these estimates of defense-related software

sales are excluded from the Commerce Department measure of industry

revenues (and these revenue estimates may be low, judging from the

comparison with data from the OECD cited in Chapter 1), but the

orders of magnitude suggest that defense-related demand figured

much more prominently within the software industry than in computer

hardware.  Fisher (1978) notes that "At one time DoD was a major

innovator and consumer of the most sophisticated computer hardware,

but now it represents only a small fraction of the total market. 

In software, that unique position still remains:  a significant

fraction of the total software industry is devoted to DoD-related

programs--and this is true in even larger proportion for the more

advanced and demanding systems." (p. 24).

21.  As the Defense Systems Management College study of "Mission

Critical Computer Resources" (MCCR) noted, "In 1966 the FB-111
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required an on-board computer memory of roughly 60,000 words but by

1988 the B-1B Bomber was approaching on-board computer memory

requirements of about 2.5 million words.  Current and future

systems will greatly exceed these memory requirements with large

scale software systems being the norm."  (1990, p. 2-2).

22.  The Congressional Office of Technology Assessment estimated

that as of June 1987 the software development activities of the

Strategic Defense Initiative Organization (SDIO) accounted for more

than $275 million in expenditures (the estimate does not cover a

single fiscal year's expenditures; instead, "...it shows money that

at that time had been spent since the inception of the program,

that was then under contract, or that was expected soon to be under

contract."  (U.S. Congress, Office of Technology Assessment, 1988,

p. 248).
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23.  Fisher (1978) estimated that embedded software accounted for

56%, dataprocessing software 19%, scientific software 5% and "other

and indirect software costs" 20%, of total DoD software

expenditures in 1973 (p. 25).

24.  Joint Services Task Force (1982), p. 5.  Other examples cited

by the Task Force included modifications in the targeting accuracy

of the Minuteman III nuclear missile and an emergency modification

in the guidance systems of the British Sea Wolf antiaircraft

missiles made to adapt them to the needs of the Falklands conflict

in 1982.

25.  Fisher (1978) noted that in 1978, "At least 200 models of

computers are used in embedded computer systems at DoD.  In many

applications, the computers must be installed in configurations

that are incompatible with general-purpose installations." (p. 25).
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26.  One other indication of this "divergence by design" is the

fact that Ada does not incorporate object-oriented programming

design concepts or tools, which now are widely employed within the

civilian software industry.

27.  A partial listing of the major reports of the 1980s includes

the following:  the Joint Services Task Force Report on Software

Problems (1982); the Software Engineering Institute Study Panel

(1983); the Defense Science Board Task Force on Military Software

(1987); the Department of Defense Software Master Plan (1990); and

the Department of Defense Software Technology Strategy(1991). 

Among other things, this tabulation excludes the numerous studies

of software issues in the Strategic Defense Initiative program. 

Pentagon studies of its software needs, of course, substantially

predate the 1980s--the Joint Services Task Force report lists 26

previous studies in an appendix.
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28.  "Migration to commercial support spreads the maintenance costs

for software technology across a much larger base than DoD.  It is

thus a major leverage factor for DoD software technology products.

 Even greater cost-effectiveness leverage can be obtained by

stimulating existing commercial technology products to address DoD

needs."  (Department of Defense Software Technology Strategy, 1991,

p. ES-23).

29.  "The goal of the STARS program is to improve productivity

while achieving greater system reliability and adaptability. 

Meeting this goal requires a very broad attack to improve the

environment in which software is first developed and then

supported.  The DoD's 'Ada"' program provides an initial focus for

the development of a common, sharable software base.  The STARS

program broadens the scope of attention to the entire environment

in which software is conceived and evolved." (Druffel, Redwine, and

Riddle, 1983, p. 10).  The 1991 "Software Technology Strategy"
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report of the Defense Department noted that "The STARS prime

contractors (IBM, Unisys, and Boeing) are developing these

[software environment frameworks] in concert with their commercial

counterparts (in-house for IBM and Unisys; DEC for Boeing) and a

number of tool vendor subcontractors for computer-aided software

engineering (CASE).  The primary program objectives are that STARS

products are commercially, supported, responsive to particular DoD

needs (support of very large, embedded, real-time, and Ada software

applications), and built using common open interfaces to facilitate

CASE tool portability and interoperability. (1991, p. 3-4).

30.  The Defense Department's January 1992 Software Technology

Strategy called for increased reuse of code, in addition to

improvements in software engineering and the use of more commercial

software (Burgess 1992).  Despite the substantial DoD investment in

software engineering, the commercial sector (especially in

microcomputers) appears to be ahead of the defense sector in many
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of these techniques.  For example, Microsoft is far ahead of

traditional large-scale software houses (including IBM's now

independent Federal Systems Division) in the use of such techniques

as rapid prototyping (Smith and Cusumano 1993).

31.  In 1991, DARPA funded a $22 million project on object-oriented

data bases.  The participants include Texas Instruments, the NIST,

and several universities (Stix 1992). The April 1994 request for

proposals for the ARPA-led Technology Reinvestment Program listed

"Object Oriented Technology for Rapid Software Development and

Delivery" as one if its areas of interest.

32.  "The realization that software is more difficult to develop

than hardware is one of the most important lessons of the Apollo

program.  So the choice of memory should be software driven, and

designers should develop software needed for manned spaceflight

near the Manned Spacecraft Center.  The arrangement with MIT
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reduced overall quality and efficiency due to lack of

communication.  Also, more modularization of the software was

needed."  (Tomayko, 1988, p. 62).

33."The story of computers in manned mission control is largely the

story of a close and mutually beneficial partnership between NASA

and IBM.  There are many instances of IBM support of the space

program, but in no other case have the results been as directly

applicable to its commercial product line.  When Project Vanguard

and later NASA approached IBM with the requirements for computers

to do telemetry monitoring, trajectory calculations, and

commanding, IBM found a market for its largest computers and a

vehicle for developing ways of creating software to control

multiple programs executing at once, capable of accepting and

handling asynchronous data, and of running reliably in real time...

"The company maintained its lock on mission control contracts

through Gemini, Apollo, and the Shuttle.  At each point, some
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experienced personnel were transferred to other parts of the

company to share lessons learned.  Several individuals contributed

to OS/360, the first multiprogramming system made commercial

available by IBM.  One became head of the personal computer

division."  (Tomayko, 1988, pp. 243-244).

34."IBM reacted to the increased complexity [of the Gemini

program's data and mission control requirements] in several ways. 

Besides adding more manpower, the company enforced a strict set of

software development standards.  These standards were so successful

that IBM adopted them companywide at a time when the key commercial

software systems that would carry the mainframe line of computers

into the 1970s were under construction."  (Tomayko, 1988, p. 252).

35.  Sapolsky's comment on the changing role of the U.S. Office of

Naval Research (1990) is relevant and prescient in this regard:  

"National security rationalies are no longer very important in
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the support of basic research...But without the protection of

national security rationales, science is vulnerable to political

pressures in ways that undermine its integrity and productivity. 

When vital defense interests are not at stake, politicians wonder

why their districts are not benefiting from the federal research

largess much more than when they are.  Less favored institutions

and disciplines find the urge to employ pork barrel tactics

impossible to resist.  The network of elites that binds together

the scientific community and provides its priorities cannot contain

the desire for equity and opportunity that is so much a part of the

political process.  The Navy and the other armed services may not

regret their reduced role in basic research, but science no doubt

will."  (p. 121).


