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The Federal Government Role in the Development of the
American Software Industry: An Assessment’
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1. Introduction.

The development of the U.S. computer software industry has
been powerfully influenced by federal government policy during
the postwar period. Its importance for the demands of Cold War
defense, especially strategic air defense during the 1950s, meant
that the software industry received considerable support from
federal R&D and procurement funding throughout the postwar
period. But the very novelty of computer technology and software
meant that a substantial portion of the defense-related spending
in software was allocated to the creation of an infrastructure
for the support of a new area of R&D, training, and technology
development. Federal support for the creation of this
infrastructure provided important benefits to the commercial U.S.
software industry. From the earliest years of the postwar era,

private industry has been responsible for a great deal of



innovation in software; but by the 1960s, these iIndustrial
innovations drew on research and manpower that had been
generously supported by federal government funds.

Because of the complex and changing relationship between
software and hardware technology during this period, much of the
influence of federal government policies on the software iIndustry
was channeled through programs affecting the overall computer
industry. For example, federal agencies®™ development and
procurement expenditures for hardware included spending on
software for much of the postwar period.

The structure and effects of federal policy toward the U.S.
software industry have a number of similarities with the history
of federal support in other postwar U.S. high-technology
industries. As iIn the cases of ailrframes (Mowery and Rosenberg
1982), semiconductors (Levin 1982), and computer hardware (Katz
and Phillips 1982; Flamm 1987), defense-related support for both
R&D and procurement accelerated the early development of the

software industry. As iIn those other cases, the influence of



defense-related procurement on the commercial software industry
declined as defense needs diverged from those of a burgeoning
commercial market. Indeed, throughout the 1980s, Pentagon
policymakers sought ways to tap commercial software applications
and operating systems for military systems. There are also some
important differences between the software and other high-
technology i1ndustries, however, most notably In the nature and
evolution of military-civilian spillovers within software, as
well as i1n the role of federally funded university research
within the iIndustry®s development.

Rosenberg (1992) has argued that the computer is one of the
most significant examples of a large class of scientific
instruments that have been developed in universities and widely
applied In industrial economies. Rosenberg"s observations
concerning the "instrumental™ nature of the computer are borne
out by the history of federal policy iIn software innovation in at
least two ways: (1) the key role of the university within the

software industry; and (2) the importance of federal support for



universities®™ adoption of the mainframe computer, the critical
instrument for software research and innovation.

In contrast to their stereotypical role as performers of
basic research, university researchers pioneered in the
development of computer technology well in advance of industry in
both the U.S. and Great Britain. British and U.S. universities
and research institutes affiliated with them were responsible for
important advances during the late 1940s and early 1950s in
computer architecture and hardware, including the stored-program
concepts that were the origins of software. Much of the federal
government®s early postwar efforts to develop computer technology
relied on university researchers.

In both nations, but especially in the U.S., technological
advances and researchers from universities entered the domestic
electronics i1ndustry, and industry came to dominate the
development of subsequent generations of hardware. Universities
remained important, however, In many software advances from the

mid-1950s onward. The contributions of U.S. universities to



these developments relied on the growth of a new academic
discipline, computer science. The creation of this academic
field was aided by federal support during the 1950s and 1960s for
the purchase of the scientific instrument that was indispensable
to computer science research, the mainframe computer.

The software industry, like other postwar high-technology
U.S. 1ndustries, drew on defense-related support for applications
development and basic research. Direct "spillovers,” 1.e.,
widely adopted civilian versions of software developed initially
for military applications, did appear, but these were
supplemented (Flamm, 1988, p. 26) by a number of advances from
the private sector. A number of other advances (including
several 1mportant programming languages and operating systems)
were developed in universities with federal funding.

Growing concern within the Department of Defense over the
soaring costs, project delays, and unreliability associated with
complex, software-intensive weapons systems (concerns that were

heightened by the Strategic Defense Initiative of the 1980s) led
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to two DoD initiatives during the late 1970s and 1980s--a program
in "software engineering,"” and (some years before similar efforts
in other "dual-use™ technologies) efforts to utilize commercial
software for military applications. The limited success of the
second of these initiatives thus far suggests that similar
objectives iIn such technologies as semiconductors or flat-panel
displays will prove difficult to attain.

Throughout the postwar period, the federal government has
accounted for a large share of total U.S. demand for software.
Flamm (1987, pp- 122-123) estimated that the federal government
was the largest single U.S. customer for traded software in 1982.

More recent data on market trends are not available, but i1t is
likely that the federal government®s share of the U.S. market for
traded software has declined during the past decade. A great
deal of defense-related software procurement has involved the
purchase of "embedded" software. There are relatively few
examples of major "'standard'™ operating systems, programming

languages, or applications being developed initially for federal



agencies. But the development of custom software and services
for federal purchasers was for much of the 1960s and 1970s a
rapidly growing industry in the Washington D.C. region.

Our discussion of the federal role iIn the U.S. software
industry focuses primarily on policies that directly affected
this Industry; for this reason, and because 1t 1Is covered In
another chapter of this volume, we omit consideration of
intellectual property protection. We begin with a description of
the earliest years of federal involvement in the U.S. computer
industry, a period during which software scarcely existed as a
distinguishable technology and focus of development effort. We
then examine the federal role iIn supporting the emergence of
computer science as an academic discipline, a discussion that
spans 1955-90. The role of the Department of Defense during this
period Is the subject of the next section. The penultimate
section briefly discusses the activities of another important
U.S. agency iIn software development and procurement, the National

Aeronautics and Space Administration (NASA). The concluding



section summarizes our argument and suggests some points of

contrast with the experience of other industrial economies.

2. The early vears.

Software technology did not develop in a political or
institutional vacuum; nor was government policy unaffected by
changes 1n the nature of software technology. Despite a number
of prewar precursors, the history of computer hardware and
(eventually) software development begins with World War I1.
During the war years, the American military sponsored a number of
projects to develop computers to solve special military problems.

The ENIAC--generally considered the first fully electronic
digital computer--was funded by Army Ordnance, which was
concerned with the computation of firing tables for guns. MIT"s
Whirlwind computer, which was iIntroduced in 1951, grew (after a
difficult adolescence) out of a project begun i1In 1943 to create

an analog-computer flight simulator for pilot training.



In the earliest days of postwar computer technology,
software was literally indistinguishable from hardware. Software
was effectively born with the advent of the von Neumann
architecture for computers. In the summer of 1944, the
mathematician John von Neumann learned by accident of the Army"s
ENIAC project. Developed by J. Presper Eckert and John W.
Mauchly at the Moore School of the University of Pennsylvania,
the ENIAC did not rely on software, but was hard-wired to solve a
particular set of problems. Von Neumann began advising the
Eckert-Mauchly team, which was working on the development of a
new machine, the EDVAC.

Out of this collaboration came the concept of the
stored-program computer: instead of being hard-wired, the EDVAC"s
instructions were to be stored in memory, facilitating their
modification. As we would now say, the computer could be
programmed by software rather than hardware. Von Neumann®s
abstract discussion of the concept (von Neumann, 1945) circulated

widely and served as the logical basis for virtually all
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subsequent computers. But even after the von Neumann scheme
became dominant, which occurred rapidly In the 1950s, software
remained closely bound to hardware. During the early 1950s, the
organization designing the hardware generally designed the
software as well. As computer technology developed and the
market for i1ts applications expanded after 1970, however, users,
independent developers and computer service firms began to play
prominent roles iIn software development (see Chapter 2).

Although military support for the ENIAC and Whirlwind
projects began with narrowly defined goals, these programs
produced general principles and technologies that found much
broader application. Indeed, in the case of Whirlwind (Redmond
and Smith 1980), the Navy never obtained i1ts hoped-for flight
simulator. Jay Forrester, who took charge of the project iIn
1943, became embroiled in a prolonged struggle with the Office of
Naval Research (the primary postwar Navy research funding agency)
over his desire to shift the project to the development of a

general-purpose digital computer rather than a flight simulator.
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The Whirlwind project, which was by far the most expensive of
the early postwar federal computer programs,2 was spared only
when the U.S. Alr Force adopted it as the basis for the SAGE air-
defense program that began in the early 1950s. In addition to
driving the development of a reliable large computing system and
the communications technologies necessary to link these computers
with radar networks, SAGE was among the earliest programs in
large-scale software development (Tropp, 1983).

The development of a U.S. software industry really began
only when the first stored-program computers begin appearing in
significant numbers. The first fully operational stored-program
computer iIn the U. S. was the SEAC, a machine built on a
shoestring by the National Bureau of Standards in 1950 (Flamm,
1988, p. 74). A number of important machines followed. Among
these, i1n addition to Whirlwind and ENIAC, were:

* The IAS computer, 1951, built by von Neumann at the
Institute for Advanced Study and ""cloned™ at the RAND Corporation
and four national labs. Funding came from the Army, the Navy,

and RCA, among others.

* UNIVAC, 1953, built by Remington Rand, which had bought the
rights to the Eckert-Mauchly technology. Early customers
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included the Census Bureau and other government agencies as well
as private firms.

* The I1BM 701, 1953, developed by IBM and influenced by the
IAS design. Originally developed as a scientific computer for
the Defense Department, who bought most of the first units.

The most commercially successful machine of the decade, with
sales of 1800 units, was the low-priced IBM 650 (Fisher et al.
1983, p- 17). The 650, often called the Model T of computing,
thrust IBM into industry leadership (Katz and Phillips 1982, p.
178; Flamm 1988, p. 83). Even iIn the case of the 650, however,
government procurement was crucial: the projected sale of 50
machines to the federal government (a substantial portion of the
total forecast sales of 250 machines) iInfluenced IBM"s decision
to initiate the project. The large commercial market for
computers that was created by the 650 provided strong incentives
for industry to develop software for this architecture.

Programming all of these early machines was a tedious
process that resembled programming a mechanical calculator: the

programmer had to explicitly specify in hardware terms (the

memory addresses) the sequence of steps the computer would
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undertake. This characteristic tied program development closely
to a particular machine, since programmers had to understand its
hardware architecture. Since few models of any single machine
were available, programming techniques developed for one machine
had very limited applicability. This was one reason why the
commercial success of the IBM 650 was crucial to advances 1in
software and In programming techniques. As Goldstine (1972, p.
331) points out, the 650 created a generic "platform™ for the
development of programs that could run on a large installed
base.®

Perhaps the main bottleneck of this "machine-language

programming,”™ however, was the difficulty of changing a program.
Inserting new data or instructions Into the sequence required
changing most i1f not all memory references. In response to this
problem, programming tools--rudimentary languages--appeared. For
example, researchers at IBM and in the Whirlwind group at MIT

developed symbolic assembly languages in which coded statements

referred to "symbolic” addresses that the computer converted to
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specific hardware locations (Sammet 1969, p. 3; Bashe, et al.
1986, pp-. 323-338).

In general, the direction of technological advance was
toward ""higher-level™ languages, that i1s, languages employing
a relatively user-friendly notation that software later
translated into machine language. These iIncluded assemblers,
interpreters, and compilers. The last Is a program that
translates a higher-level "source”™ code into a machine-language
"object" code that a specific computer can understand. In this
way a higher-level language can become machine-independent, since
different compilers can translate the same source code into
different machine languages. The first commercial compiler was
the A-0, developed for the Remington Rand UNIVAC (Bashe, et al.
1986, p. 340) by Grace Murray Hopper, who described it as a means
to support "automatic programming,’ using the computer to
automate some of the tasks of machine-language coding (Hopper
1954, cited i1n Bashe, et al. 1968, p. 431; see also Sammet 1969,

p. 13 and Hopper 1981, passim).
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Much of the early work on automatic programming was
conducted not at universities but at the laboratories of computer
makers or users. Hopper, a veteran of the wartime military Mark
I project at Harvard, was supported by Remington Rand iIn
developing the A-O compiler. The assembler most widely used on
IBM machines was developed by a user (United Aircraft) and
disseminated through an IBM users®™ group called SHARE (Bashe et
al. 1986, p. 358). FORTRAN, the first genuine higher-level
language, also was developed by IBM researchers (Backus 1981).
And the earliest IBM operating system--the program that
stage-manages the execution of programs and the use of
peripherals--was written at the General Motors Research
Laboratories (Bashe et al. 1986, p. 359). An important exception
to this general pattern was MIT, where in the early 1950s the
Whirlwind group developed not only a symbolic assembler but also
an operating system and an algebraic compiler that anticipated
some of the capabilities of FORTRAN (Flamm 1988, table A4; Backus

1981). But 1ts unique architecture and operation solely as a
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research instrument meant that, unlike those for commercial
machines, the automatic-programming techniques developed for
Whirlwind had significantly less influence than their
private-sector counterparts.

The federal government influenced the development of early
automatic programming techniques through i1ts support for the
dissemination of information. From the earliest days of their
support for the development of computer technology, the U.S.
armed forces were surprisingly anxious that technical information
on many aspects of this innovation reach the widest possible
audience, in some contrast to the military in Great Britain or
the Soviet Union.? The Office of Naval Research organized
seminars on automatic programming In 1951, 1954 and 1956 (Rees
1982, p. 120). Along with similar conferences sponsored by
computer firms, universities, and the meetings of the fledgling
Association for Computing Machinery (ACM), the ONR conferences
circulated 1deas within a developing community of practitioners

who did not yet have journals or other formal channels of
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communication (Hopper 1981). The ONR also established an
Institute for Numerical Analysis at UCLA (Rees 1982, p. 110-111),
which made important contributions to the overall field of
computer science.

The private sector took some of the first steps to begin
building the discipline of computer science within U.S.
universities. Computer manufacturers recognized that in addition
to the public-relations benefits of supporting higher education,
they could increase demand for their products by facilitating the
acquisition and use of their hardware at universities (Fisher et
al. 1983, p. 169). Support of academic computing would attack
the software bottleneck through training more programmers and
"lock in" future users and buyers of computer equipment.5

For example, in addition to offering price discounts on its
machines, Control Data Corporation (CDC) offered research grants,
free computer time, and cash contributions to U.S. universities
(Fisher et al. 1983, p. 170). In addition to donating computer

time to establish regional computing centers at MIT and UCLA 1iIn
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the mid-1950s,° 1BM rented some 50 of its model 650 computers to
universities at reduced rates’ (Galler 1986; Fisher et al. 1983,
pp- 170-172). For example, the IBM 650 at the Carnegie Institute
of Technology®s new Graduate School of Industrial Administration
that was used by Herbert Simon, Allen Newell, and Alan Perlis iIn
their early work on artificial intelligence was acquired with
funds from private foundations, although Simon and others also
received support as consultants to the Rand Corporation (Bach
1986) -

The iInstitution-building efforts of the National Science
Foundation and the Defense Department came to overshadow private-
sector contributions by the late 1950s. In 1963, about half of
the $97 million spent by universities on computer equipment came
from the federal government, while the universities themselves
paid for 34 per cent and computer makers picked up the remaining
16 per cent (Fisher et al. 1983, p. 169).

The federal government®s expanding role i1n supporting R&D,

much of which was located in U.S. universities, during the 1950s,
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was supplemented by procurement spending on military systems. In
this area, the government’s needs differed from those of the
commercial sector, with important implications for the
"production technologies™ employed i1n defense and commercial
software. Defense-related demand for software (outside of
logistics applications) was aimed initially not at general-
purpose automatic programming tools but at special-purpose,
large-scale software for specific defense missions, as in air
defense.

The most conspicuous early example of defense-related
software development and procurement is the SAGE ailr-defense
system, the computerized early-warning system developed and
deployed in the 1950s, which involved what was by far the largest
programming effort of the day. In 1950, the Air Force
established the MIT Lincoln Laboratories to develop air-defense
technology. This effort absorbed MIT"s Whirlwind project and
evolved Into SAGE, the Semi-Automatic Ground Environment.

Although the Whirlwind had long since severed its connection to
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the flight-simulator project, i1t had been designed for real-time
command-and-control applications rather than for batch
processing, and was one of the first examples of a "mission-
critical” defense computer. Successful tests of the SAGE system
on Cape Cod led to a full-scale development effort in 1953,
coordinated by Lincoln Labs. Lincoln Labs chose IBM to produce
operational computers that were based on the Whirlwind model;
AT&T developed the communications system that linked the radar
units; and Burroughs built peripheral equipment. A division of
the Rand Corporation that soon spun off to become System
Development Corporation (SDC) took up the massive programming
task.®

The RAND group that became SDC started out as a
psychological-testing unit engaged in simulating human-machine
interaction in radar-defense installations. |In addition to its
simulation experience, RAND in 1955 already employed what one
official estimated to be 10 per cent of all the qualified

programmers in the country--about 25 people (Baum 1981, p. 23).
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By 1959, SDC had more than 800 programmers working on SAGE (Baum,
1981, p. 35). By 1963, SDC had 4,300 employees (not all of whom
were programmers) and, more significantly, some 6,000 former
employees spread throughout the computer industry (Baum 1981, p.
47). One of the greatest contributions of SAGE was i1ts training
of a large cadre of educated systems programmers. Indeed,
because SDC was restricted by Ailr Force pay scales and because it
sought to play this training role, the company encouraged
turnover, which ran to 20% per year. (Baum 1981, p. 51). As one
SAGE veteran noted in the early 1980s, 'the chances are
reasonably high that on a large data processing job in the 1970s
you would find at least one person who had worked with the SAGE
system” (Bennington, 1983, p. 351).

SAGE also contributed to the embryonic discipline of
software engineering. Although many claim that this discipline
was born at a 1968 NATO conference (Naur, Randell, and Buxton,
1976), SDC developed many of the programming and organizational

techniques later associated with software engineering. These
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included modular design techniques that facilitated task
decomposition and organized the division of labor in large
projects.

SAGE was the fTirst of many large-scale government
programming projects. After SAGE, SDC undertook the development
of a command-and-control system for the Strategic Air Command
that required a then-astounding one million lines of code. SDC
also developed JOVIAL, a higher-level programming language for
command-and-control applications that was widely used in
industry. By 1960, however, SDC began to face competition from
the vertically integrated software divisions of large firms like
Boeing and TRW and from the more than 2000 firms that had begun
to enter the contract-software business (Cusumano 1986, p. 121).

SDC abandoned its nonprofit status in 1969 and eventually merged
with Burroughs (later part of Unisys) in 1981.
The federal government remained a major purchaser of

contract software well into the 1980s. By one estimate, DoD
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spent some $4 to $8 billion on contract software in 1982 (Flamm

1987, p. 123).

3. Creating an Academic Discipline: Computer Science and the
Software Industry

The other chapters in this volume emphasize the role of
universities in the growth of the software industries of Western
Europe, Japan, and Russia. Universities have been important
sites for applied, as well as basic, research in software, and
have contributed to the development of new hardware. In
addition, of course, the training by universities of engineers
and scientists active iIn the software industry has been extremely
important. By virtue of their relatively "open'" research and
operating environment that emphasizes publication, relatively
high levels of turnover among research staff, and the production
of graduates who seek employment elsewhere, universities can
serve as sites for the dissemination and diffusion of 1nnovations

throughout the global software industry.
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U.S. universities provided important channels for cross-
fertilization and information exchange between industry and
academia, but also between defense and civilian research efforts
in software and in computer science generally. Hendry (1992)
argues that a lack of interchange between military and civilian
researchers and engineers weakened the early postwar British

computer industry;®

the very different situation in the U.S.
enhanced the competitiveness of this nation®s hardware and
software industry complex. The more modest role of universities
in computer science and software-related research activities in
Japan and the Soviet Union also reduced somewhat the flow of
knowledge among different research sites and hampered the pace of
technological progress iIn these nations®™ software industries (See
Chapters 5, 6 and 9).

Federal policy contributed to the central role of U.S.
research universities iIn the advance of hardware and software

technologies. As our previous discussion of the earliest years

of the U.S. computer iIndustry suggests, universities were among
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the first developers of computers, supported by wartime and early
postwar R&D contracts from the federal government. But even
after the rise of a substantial private sector iIndustry dedicated
to the development and manufacture of computer hardware, federal
R&D support aided the creation of the new academic discipline of
computer science. The creation and legitimation of a new
academic discipline, particularly in the applied and engineering
sciences, within U.S. universities is itself hardly novel.

Partly because of their decentralized structure and financing,
U.S. universities frequently have responded to the demands of
industry (and, In some cases, the state governments that
supported so many U.S. universities) by developing new academic
departments and disciplines iIn areas such as chemical
engineering, electrical engineering, and aeronautical engineering
(Rosenberg and Nelson, 1994; Mowery and Rosenberg, 1993).

Private fTirms supported the early development of academic

computer science, but their contributions and support soon were
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outweighed by those of the federal government. Much of this
government financial support was motivated by defense concerns.
Comprehensive data on federal R&D support for academic
research i1n computer science, let alone in software per se, are
difficult to obtain. The data in Figure 1 display trends in
total federal support for computer science R&D during fiscal
1959-1971, and reveal the importance of DoD-related sources of
funding throughout this period. Figure 1 points out the rapid
rise of the Advanced Research Projects Agency (ARPA, long known
as DARPA), established in 1958 to conduct long-range R&D of
interest to all of the uniformed services, iIn supporting computer
science R&D. Since i1ts data include federally supported R&D
performed outside of universities, the Figure understates the
importance of NSF as a funder of academic computer science
research. Nevertheless, according to Yudken and Simons (1988),
defense-related agencies accounted for more than 50% of academic

computer science R&D from fiscal 1977 through the mid-1980s, and
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defense-related support for applied computer science research

grew rapidly after fiscal 1983.

Figure 1 about here.

The foundations for the contributions of U.S. universities
to the growth of the software industry were laid during the 1950s
by two federal agencies: NSF and ARPA. The approaches taken by
these agencies to building a new academic discipline complemented
one another, as NSF"s support was distributed broadly and that of
ARPA was concentrated on a few leading research universities.

As Aspray and Williams (1993a) note in their survey of the
early NSF programs iIn computer science, during the early 1950s,
NSF support for computer science was modest and was channelled
through i1ts mathematics research program. This picture changed
as a result of the 1956 endorsement by the Advisory Panel on
University Computing Facilities (chaired by John von Neumann) of

a specialized NSF program for the support of computer science,



28

the 1957 launch of Sputnik, and the passage of the National
Defense Education Act In 1958. NSF support for computer science
research grew rapidly after 1958, and was especially important in
meeting the critical need of academic researchers for computer
equipment. Between 1957 and 1972, the National Science
Foundation expended $85 million to support the purchase by more
than 200 universities of computer hardware.

In an emergent discipline that depended on access to state-
of-the-art equipment to conduct much of i1ts research, these
facilities grants for equipment literally laid the foundations
(and 1n other cases, provided the equipment that was placed on
those foundations) for many universities®™ computer science
departments. According to Norberg and O"Neill (1992), 'there
were virtually no formal programs™ iIn computer science in U.S.
universities as of 1959. By 1965, the Association of Computing
Machinery (ACM) reported that more than 15 universities offered
doctorates i1n computer science and 17 offered bachelor"s degrees

(ACM Curriculum Committee on Computer Science, 1965), and the
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output of degreeholders rapidly expanded. Facilities grants
peaked In 1967 and began to decline thereafter as a paradoxical
consequence of White House intervention to create an Office of
Computing Activities within NSF, which assigned a higher funding
priority to computer education than to facilities.

The National Science Foundation also supported academic
research 1In software. Figure 2 displays the growth of NSF
funding for research iIn software and related areas during 1956-
80, which cumulatively amounted to more than $250 million (1987
dollars).10 Among the contributions supported in part or
entirely by Foundation grants were the development of PASCAL,
pathbreaking work in principles of software engineering, and

early object-oriented programming languages, such as CLU.

Figure 2 about here.

Apart from its facilities program, the support of the

National Science Foundation for computer science research was
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organized along classic "basic research”™ principles of peer
review and individual support. Because or in spite of this
structure, NSF support was widely dispersed among U.S.

universities.

The distribution and consequences of NSF*s R&D
programs contrast with those of DARPA computer science funding.12
Rather than being spread among many universities, ARPA

support was concentrated among leading U.S. research
universities, primarily benefiting Carnegie-Mellon, MIT,
Stanford, and the University of California at Berkeley.'® ARPA
funding was intended to support the long-term development of
institutional and team strengths, and therefore was not allocated
exclusively on the basis of individual performance or promise.
Although expert panels played an important role In overseeing and
reviewing its research programs, ARPA"s support for computer
science research was less tightly controlled by peer review than
that of the National Science Foundation. This management

approach was associated with high levels of flexibility and

responsiveness to the needs of academic researchers.
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For much of ARPA®"s existence, its support for academic
computer science research was channelled through IPTO, whose
budget for fiscal 1965-85 i1s shown in Figure 3 (IPTO was
disbanded in 1986). ARPA funding of academic computer science
research contributed a number of EImportant innovations in
software and computer architecture, including computer time-
sharing (based on a project begun at MIT In the early 1960s when
campus demand for computer time began to outpace the available
supply), artificial intelligence architectures and software
(including the LISP program), computer networking and
communications (the ARPANET, forerunner of the NSFNET that
underpins national and international electronic mail, was
undertaken by ARPA as a means of linking researchers at its

> and important modifications

scattered 'centers of excellence™),
to the UNIX operating system to improve its performance in

computer networking applications. As we discuss In more detail

below, during the late 1970s and early 1980s, ARPA also undertook
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a major initiative to improve software development and

maintenance practices.

Figure 3 about here.

In addition to its contributions to software innovations,
ARPA"s concentrated research funding made Important educational
contributions. ARPA research support for computer science in
these iInstitutions, major producers of academic researchers, had
a substantial Impact on computer science research and education
elsewhere In U.S. universities. According to Norberg and O"Neill
(1992, pp- 140-141), 26% of the faculty in the 40 leading U.S.
university departments of computer science as of 1990 had
received their computer science Ph.D. degrees from one of the
three major universities supported by ARPA--Stanford, Carnegie-
Mellon, or MIT. The influence of these three institutions was
even greater among the top 10 U.S. computer science departments,

where 42% of the tenured faculty and 53% of the nontenured
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faculty had received their Ph.D.s from one of these three
universities.'® Other Ph.D. graduates of these universities also
found employment in senior positions in firms such as Silicon
Graphics, Microsoft, and Sun Microsystems. Many faculty at these
institutions also entered into formal and informal consulting
relationships with private firms, and others were directly
involved in the foundation of such important hardware and
software firms as the Carnegie Group, Ingress, and Thinking
Machines.

The original aims of ARPA support for academic research iIn
computer science were the creation of a basic research
infrastructure In this new discipline, which was already being
exploited by defense agencies for applications. This
"infrastructure-building™ goal iIncorporated support for training
of personnel as well as for research. Its educational goals also
influenced ARPA"s academic research programs. Support for the
development of computer time-sharing, for example, was motivated

by concern over the ability of universities to train significant
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numbers of undergraduate and graduate students in computer
science as much as by direct defense needs.

After the late 1960s, the mix of IPTO projects and funding
shifted in favor of applications. This shift was a response to
the growing budget of IPTO, the diminishing tolerance of
Congressional and executive branch policymakers for fundamental
research programs within the defense budget, and demands from the
uniformed services for near-term solutions to such challenges as
software development and maintenance. The increase of $10.5
million (more than 35%) in the IPTO budget during fiscal 1971-75,
for example, masked an absolute decrease iIn the most fundamental
research areas and iIncreases in support for more applied
projects. According to Norberg and O"Neill (1992),

the IPTO budget in FY 1971 represented 60% for basic

research and 40% for exploratory development. By FY 1975,

the numbers were approximately reversed: 43% for basic

research and 57% for exploratory development. The split
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remained essentially the same for the FY 1980 budget, 42%

and 58%, respectively. (pp- 8-9).

Defense-related support for academic computer science
research continued to shift toward applied research through the
mid-1980s. The effects of this shift were enhanced by the growth
of defense-related R&D within overall federal computer science
R&D funding. Expansion in this source of academic R&D funding,
which was more development-oriented than federal R&D funding from
other sources, tilted academic computer science research toward
applications. Yudken and Simons (1988) argued that

An Increasing percentage of the nation®s applied computer

science research i1s being performed iIn universities and

colleges. 1In 1987, academia received about 40% of all
computer science federal obligations, an increase of
approximately 25% since 1982. Academia®s share of federal
funding for applied computer science research has iIncreased

to 33% in 1987, up from 11.8% in 1982. However, its share
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of federal support for basic computer science research

dropped from 78% to 66%. (pp- 62-63).

During the 1980s, ARPA began to develop a new "bridging"
institution that was intended to facilitate and accelerate the
movement of academic computer science research results,
especially those relevant to software, into industry. The
development of the SEI implied some shift in the relationship
between academic research and defense-related software
development. Support for university research alone no longer
provided the necessary infrastructure for solution of serious
problems in defense-related software management. Instead, a new
organization was needed to conduct applied research and to
support the dissemination and application within industry of the
results of this and other research.

The Institute was intended by i1ts sponsors to be sited in
or near a research university, but i1t would provide a "halfway
house™ between academic research and application, supporting and

accelerating the transfer of advances iIn software engineering and
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design from computer science research to application in

" The establishment of SEI

commercial and defense-related firms.'
appears to have reflected some concern (revealed as well in the
shifting composition of Defense Department computer science R&D
spending) that the returns to the large DoD investment iIn
research were not being realized to a sufficient extent or with
sufficient speed iIn defense-related applications. The 1984
announcement of the formation of the Institute, located at
Carnegie-Mellon University, projected a five-year DoD
contribution to the SEI budget of $103 million. DoD funding for
the Institute expanded from $5 million in 1985 to an annual
contribution of almost $20 million during the late 1980s; since
1992, the annual DoD contribution has been reduced to roughly $15
million.

In contrast to the SAGE air defense system, a tightly
targeted development project whose management was shifted by MIT

to the semi-autonomous Lincoln Labs, the SEl focused on

development and dissemination of generic tools and techniques for
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software engineering with defense applications. Its
establishment seems to reflect some divergence between the
mainstream of academic research In computer science and defense-
related requirements for software innovations. Although U.S.
universities developed a number of key innovations in computer
hardware and software during the 1950s and 1960s, the
establishment of the SEIl suggests that the future relationship
between these universities and defense-related software

development may be less close.

4. Defense-related programs and the U.S. software industry

Defense-related procurement and R&D programs supported the
growth of a number of postwar U.S. high-technology industries,
including commercial aircraft, semiconductors, and computer
hardware for much of the postwar period. Although the computer
software industry benefited from large DoD programs for R&D and
procurement, the effects of these programs differed somewhat from

other postwar high-technology industries. In the semiconductor
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industry, for example, DoD R&D programs produced few of the major
technical advances embodied in commercial (as well as military)
products (Tilton, 1971; Levin, 1982; Mowery and Steinmueller,
1994). Private firms accounted for numerous advances In
software, but defense-related R&D programs, notably those of
ARPA, supported important advances iIn fundamental knowledge of
computer architecture, software languages, and design that found
applications in both the civilian and defense sectors of the
emergent industry.

Defense-civilian spillovers nevertheless were important iIn
software. One basis for assessing their Importance is provided
by Flamm®"s tabulation of major advances iIn computer software
during 1950-80 (1988, Table A-4). Of the 45 advances listed by
Flamm as having originated in the U.S., the development of 18 was
funded by the federal government, and all but one of these
innovations drew on funding from the Pentagon and related
military services. The prominent role of university-based

research also is apparent from the fact that of these 18
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innovations, 9 were developed In universities (including MIT"s
Lincoln Labs, the developer of the SAGE air defense computer
system). The central place of universities In defense-civilian
spillovers i1s unique to software among the postwar U.S.
industries characterized by high military R&D and procurement
spending.

The spillovers i1dentified In Flamm®s tabulation assume two
forms: (1) innovations that were first sold to federal agencies;
and (2) innovations that were first sold to private firms. Most
of the widely remarked defense-civilian technological spillovers
in other iIndustries and technologies fall into the first of these
two categories. Fourteen of the 18 i1nnovations in Flamm®s
tabulation that were developed with federal funds were first sold
to federal agencies, while 4 of them were first applied outside
of the federal government. Examples of the second category of
defense-civilian spillovers in other postwar U.S. i1ndustries are
rare, perhaps reflecting the emphasis of defense-related R&D iIn

these other i1ndustries on specific mission applications.
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A mere count of these spillovers says little or nothing
about their economic significance. The innovations listed iIn
Table 1, however, iInclude a number of major advances. The
compiler that was developed for the MIT Whirlwind, for example,
contributed to the development of higher-order languages such as
FORTRAN.'® COBOL, which was described in 1972 as one of the two
languages (the other being FORTRAN) that '...into the foreseeable
future™ would dominate "...most of the world"s serious production
programs'™ (Rosen, 1972, p. 591), is a high-order programming
language developed to specifications formulated by a committee of
industrial and military experts that was sponsored for much of
its life by the Defense Department. DoD support for the
committee reflected military policymakers®™ growing concern over
the costs and incompatibility of the rapidly expanding military
investment in software for data-processing applications, as
opposed to the "mission-critical’ applications In weapons systems
that inspired the development of the defense programming language
of the 1980s, Ada.'® Still another important spillover from

defense to advances iIn civilian software technology, noted above,
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was the investment by the Defense Department during the 1950s in
training the programmers who created the software for the SAGE

air defense computer system.



Year

unknown

Table 1: "Spillovers”

Innovation

Project Rye

early APT language

1950s

1954

1957

1959

1959

1962

1963

1963

Whirlwind batch
operating system

SAGE time-sharing

COBOL language

Jovial

MIT time-sharing

system

Q-32 time-sharing
system

Multiprocessor
system
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in the U.S. Software Industry, 1950-75

Federally

Funded?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

1st Sale
to Federal
Agency?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Developer

Developed by Sperry Rand for
National Security Agency.

MIT Whirlwind

MIT Whirlwind

MIT Lincoln Labs/System

Development Corp.

Developed to DoD
specifications.

Developed by System
Development Corp. for DoD.

Developed at MIT with
DARPA funding.

Developed by System
Corp. for DoD.

Developed by Burroughs
for D-825 military computer.



1963

1964

1966

1968

JOSS dedicated
time-sharing system

Culler-Fried time-
sharing system

Project Genie general

time-sharing system.

MULTICS advanced time-
sharing system

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes
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Developed
DoD.

Developed
Developed
for Scientific

DoD funding.

Developed
funding.

at RAND for

at TRW for DoD.

at U.C. Berkeley
Data Systems with

at MIT with DARPA
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Table 1 (contd.)

Year Innovation Federally 1st Sale Developer
Funded? to Federal
Agency?
1972 TENEX time-sharing Yes Yes Developed by BBN with
system DARPA funding.
1953 Algebraic compiler Yes No Developed at Whirllwind at MIT.
1956 SHARE assembly pgm. Yes No Developed at United Aircraft &

distributed through IBM*"s
SHARE program.

1963 Carnegie Tech. remote Yes No Developed at Carnegie Institute
Job entry system. of Technology with DARPA funding.
1964 Basic Yes No Developed by GE and Dartmouth

with NSF funding.

SOURCE: Flamm (1988), Table A-4.
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The interaction between defense and civilian applications
and technological developments in the emergent U.S. software
industry differed from that seen In other U.S. high-technology
industries in the postwar period for at least two reasons.

First, the share of defense-related demand within total software
industry revenues remained high for a longer period of time than
was true of such industries as semiconductors. According to
Fisher (1978), annual DoD software expenditures amounted to $3-
3.5 billion 1n 1973. Since total software industry revenues were
no more than $4.2 billion in 1977 (Siwek and Furchtgott-Roth,
1993, p. 15), defense demand accounted for a substantial fraction
of software industry revenues iIn the early and mid-1970s. As
late as the early 1980s, some thirty years after the beginnings
of software production, military demand may have accounted for
50% of total software industry revenues.”® By contrast, only ten
years after the commercialization of the integrated circult in

1958, defense-related demand, which had accounted for 100% of
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industry shipments in 1962, amounted to 37% of the market (Mowery
and Steinmueller, 1994, pp. 211-213).

Second, defense demand throughout the postwar period has
been dominated by highly speciralized custom and embedded
software. This characteristic of military demand may well have
reduced product-embodied "spillovers™ (as opposed to spillovers
based on defense R&D) of the type that were significant in other
sectors. Since a large share of DoD R&D funding in computer
science during much of the 1950s and 1960s focused on fundamental
R&D, rather than development, many of the military-civilian
spillovers iIn software assumed a generic, rather than product-
specific, character, and university research was central to their
development. The divergence between the characteristics of
products demanded by the military and those demanded in the
commercial market that has affected such U.S. iIndustries as
semiconductors and aircraft thus may prove to be less significant
in software, because this divergence has been a central factor

from the industry®s earliest days.
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There exists no reliable time series of DoD expenditures on
software procurement that employs a consistent definition of
software, e.g., separating embedded software from custom
applications or operating systems and packaged software, etc.
The data on software expenditures in Figure 4 are also
inconsistent iIn their treatment of DoD expenditures on software
maintenance, as opposed to procurement. Nevertheless, the trends
in these data are dramatic--in constant-dollar terms, DoD
expenditures on software increased more than thirtyfold In just
over 25 years, from 1964-90. Throughout this period, DoD
software demand was dominated by custom software, and DoD and
federal government demand for custom software accounted for a
substantial share of the total revenues iIn this segment of the
U.S. software industry. Much of the rapid growth in custom
software firms during the 1969-80 period that is discussed in
Chapter 2 reflected expansion in federal demand, which in turn

was dominated by DoD demand.?
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Figure 4 about here.

This rapid growth In DoD software expenditures, coupled with
other developments in DoD programs and in the structure of the
U.S. software industry, gave rise to concern within the Pentagon
over "'productivity bottlenecks"™ iIn software production. Software
support and maintenance, i.e., changing programs to adapt to new
mission requirements, eliminate errors, or improve performance,
grew rapidly as a share of total software and hardware costs. By
1985, software support alone was estimated to account for at
least 50% of the cost of complex defense computer systems, a
significant increase from i1ts original share of less than 10% in
the early 1960s (Defense Systems Management College, 1990, p. 2-
3). Policymakers also worried about the availability of skilled
software engineers and the ability of any technical staff to
maintain the rapidly growing, aging, and extremely heterogeneous

installed base of software in DoD weapons systems. The Strategic
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Defense Initiative, with 1ts requirements for large amounts of
highly reliable, error-free software, made all of these problems
more acute and visible.?* These concerns led to a series of
initiatives in the 1980s, including the development of the Ada
high-order language for defense applications, expanded programs
in software engineering that included the STARS (Software
Technology for Adaptable, Reliable Systems) program, and the
Software Engineering Institute.

The complexities of DoD software procurement and maintenance
were exacerbated by the importance of "embedded™ software,
contained in instruments or in components of larger weapons
systems. This type of software accounted for more than 55% of

22 and its share of DoD"s

total DoD software expenditures in 1973,
total software budget may well have iIncreased since then.
Embedded software brought with 1t considerable costs and
benefits. Software enabled much greater flexibility, and often

much greater speed, In modifying deployed weapons systems for new

missions. The 1982 Joint Services Task Force on Software
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Problems estimated that modifying the capabilities of the Air
Force F-111 aircraft through software rather than hardware
enabled a fiftyfold savings in cost and a threefold acceleration
in the deployment of the modified aircraft.®® This "mission-
critical” embedded software also had to meet requirements for
reliability and quality control that were far more demanding than
those associated with conventional data processing operations.

Perhaps the greatest cost associated with its widespread use
was the fact that most of the embedded software employed iIn
weapons systems developed before 1982 was specific to a given
weapons system or contractor, and a lack of standards implied a
lack of compatibility.25 Moreover, as several other chapters in
this volume point out, the dominance of custom applications
within military software minimized incentives to create generic
tools or languages:

There has been little incentive for individual projects to

expend the effort and resources necessary to provide

facilities that would be generally useful, especially when
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there are few, 1If any, other projects using the same

programming language. This may also account for the lack of

off-the-shelf software..._At least 450 general-purpose
programming languages and (incompatible) dialects are used
in DoD embedded computer applications--and none is widely

used. (Fisher, 1978, p. 26).

Maintenance and support of defense software were especially
difficult, since i1diosyncratic programs for specific systems or
applications, developed with limited documentation, could remain
in service for years or even decades.

When confronted with a similar problem in 1959, DoD had
supported an industry-led committee that laid out the
requirements and specifications for a higher-order language,
COBOL, that was developed by private firms. In response to
similar confusion in "mission-critical”™ software, the Defense
Department launched a major effort to develop an "official”
standard for i1ts software procurement in 1974. But in 1974, the

project was controlled more tightly by DoD, which appointed the
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committee charged with defining the requirements and evaluating
the suitability of existing languages to meet them. In the
absence of a satisfactory language, a competition was held to
evaluate competing designs of a new language. The result,
developed largely by Honeywell-Bull on a DoD contract (another
contrast with the COBOL experience), was the Ada language,
announced In 1981 and required in all major DoD procurement
programs.

The Ada initiative was an effort by DoD to create a
standardized software environment that would create a 'virtuous
cycle” similar to that associated with the growth of a "dominant
design™ iIn the civilian microcomputer market, in which the
diffusion of the IBM PC supported growth in the production of
low-cost packaged software for a huge variety of applications
(See Chapters 2 and 5 in this volume). In contrast to COBOL, Ada
has not been extensively employed thus far in nondefense systems,
partly because it was developed to meet requirements that had few

civilian counterparts.®
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The Ada initiative was joined iIn the early 1980s by a
broader effort to enhance the efficiency of defense-related
software development and procurement that led to increased DoD
funding for generic software engineering research and related
activities. Beginning In the early 1980s, with the report of the
Joint Services Task Force on software development and
procurement, a succession of studies®’ reviewed DoD software
policies and agreed on three goals: (1) the costs of software
procurement and maintenance must be brought under control; (2)
one means to achieve this goal was through greater exploitation
of the resources and products of the civilian software i1ndustry
(so-called "COTS'"--commercial off-the-shelf software) for many
defense-related software needs;?® and (3) DoD funding for
expanded research on and dissemination of software engineering
techniques provided one means to achieve the first two goals. In
contrast to the Ada initiative, which defined a defense-specific
set of requirements that produced a 'dedicated™ DoD high-order

computer language, these efforts of the 1980s attempted to bridge
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the gap between defense and civilian technological developments
and "unify" the civilian and defense industrial base in software.
Another motive for efforts to link the civilian and defense-
related software industries more closely was growing concern by
IPTO and ARPA managers with the international competitiveness of
the U.S. computer and electronics industry complex. This concern
motivated large programs in "Strategic Computing,”™ which included
expanded research in software development.

As originally planned, the STARS program and the Software
Engineering Institute had a hardware complement in the Very High
Speed Integrated Circuit (VHSIC) program, which like these
software initiatives sought to exploit civilian technological
capabilities in the semiconductor industry for defense-related
applications (Martin, 1983). The STARS program was intended to
develop better methods for defining software requirements and
specifications in a flexible manner that would also enhance re-
use of software code. Among STARS®" goals were computer-aided

software engineering tools for developing Ada and other software.
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In December 1989, ARPA shifted the STARS program to increase the
involvement of commercial software vendors in the development of
techniques that drew more heavily on civilian software products
and could be sold in civilian, as well as military markets. This
shift 1In program philosophy was associated with new requirements
that STARS contracts involve commercial software vendors.®

The combined effects of sharp cuts iIn the SDIO budget and
across-the-board reductions in overall defense spending after
1989 reduced defense-related R&D spending In software, even as
civilian agencies such as the National Science Foundation
increased their computer science research budgets. The defense
share of federal computer science R&D funding declined from
almost 60% in fiscal 1986 to less than 30% in fiscal 1990
(Clement, 1987, 1989; Clement and Edgar, 1988), and by the early
1990s, defense demand accounted for a declining share of industry
markets.

Although the past development of the U.S. software industry

exhibits a pattern of military-civilian interaction that
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contrasts with that of other U.S. high-technology industries, the
present relationship between civilian and military software
technology appears to resemble that of other industries.
Defense-related demand accounts for a declining share of industry
output, and technologies developed for civilian applications
appear to promise higher performance at lower cost. In response,
the Defense Department has attempted to strengthen its links with
the commercial sector of the software industry, just as It now
seeks to do iIn such products as flat-panel displays (Davis and
Zachary, 1994).

The success of these efforts, however, remains very
uncertain. One of the most important impediments to the
development of such links, defense contracting policies on the
ownership of code, has scarcely been addressed (Zraket, 1992, pp.
310-311). The Ada initiative defined a set of requirements and
an entire language that has thus far produced few *"spillovers"™ or
"spin-on" benefits for the civilian software industry, and few

new entrants have been attracted to the military software market.
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The creation of a separate institution for the development and
dissemination of software engineering techniques for defense-
related applications creates some risk that, despite the
intentions of 1ts sponsors, the Software Engineering Institute
may contribute to further divergence between defense and
nondefense software development techniques and products.

The area of software engineering also reveals divergence
between defense and commercial technologies. DoD"s
conceptualization of the "software bottleneck™ problem has until
recently focused on techniques for design and management of the
development of large-scale software systems that require very low
error rates iIn code In organizations resembling "software
factories” (SAGE was one prototype). Originally developed by
SAGE contractor SDC, the software factory sought to increase
productivity and reduce errors within the development
organization by systematically reusing parts of code on similar

but not identical large-scale projects.®
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The software factory and related techniques of software
engineering remain relevant to the creation of complex,
customized defense software, especially embedded, "mission-
critical” software that cannot tolerate errors iIn code. But
within the commercial software industry, standardization of
platforms and languages, rather than code reuse, has been the key
to great increases iIn efficiency and profitability. Many of the
techniques of the software factory are unnecessary for mass-
market, packaged software, early releases of which often are
riddled with errors. In the commercial sector, where the
problems of sharing code across (proprietary) organizations are
serious, object-oriented programming may provide a way to share
and reuse code iIn new ways and more effectively (Lavoie et al.,
1992). But DoD has not pursued object-oriented techniques for
software development. Ada is not an object-oriented Ianguage,31
and its specificity to DoD applications means that it may not

attract private developers®™ investment and effort In competition
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with far more widely used commercial operating systems and
languages.

Without a radical shift in DOD"s underlying weapons design
and procurement philosophy, from one that emphasizes performance
above all else to one stressing the use of standard hardware
components and platforms, the military efforts to exploit
commercial software are likely to remain ineffective. The case
of software suggests that the development of closer links between
the defense-related and civilian sectors of high-technology U.S.
industries will be very difficult and will take considerable
time.

Our discussion of federal policy extends only through 1990,
but developments since that date nonetheless merit a brief
comment. Since 1992, ARPA has explicitly followed a policy
(which, as we noted above, has been articulated within the agency
since at least 1980, but rarely stated publicly) in which DoD and
other federal agencies will support projects that have both

commercial and defense applications (Alic et al. 1992; Bingaman
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and Inman 1992). Although ARPA"s fundamental R&D support in
software produced important advances in both civilian and defense
application, there are ample gounds for skepticism about the
possibilities for such "spin-on"” benefits from development
funding. As we noted earlier iIn this chapter, the differences
between defense and commercial requirements and markets in
software remain so great that genuinely dual-use benefits from

technology development spending are likely to be rare.

5. NASA Software Programs

Another federal agency with significant software-related
activities is the National Aeronautics and Space Administration
(NASA), which required complex flight-operations software (both
on the spacecraft and on the ground) for i1ts manned space
exploration missions and embedded software for its unmanned
planetary satellites. As Figure 5 (from the Defense Systems
Management College, 1990, p. 7-2) shows, NASA®"s software

requirements for the Space Shuttle and other manned spaceflight



62

missions were more complex (measured in terms of the number of
instructions) than any single U.S. weapons system, including the
B-1 bomber or the AWACS airborne air defense radar system. These
demanding, mission-specific requirements forced NASA and its
civilian contractors to develop advanced techniques of software

engineering.

Figure 5 about here.

In the manned spaceflight program, NASA"s first software
contractor was MIT"s Instrumentation Laboratory (later known as
Draper Labs), which was chosen by NASA on the strength of i1ts
performance in developing guidance systems for the Polaris
nuclear missile (Tomayko, 1988). Although the Apollo software
program was eventually successful, the enormous difficulties
associated with the effort led NASA to seek an on-site contractor
in later programs for the development of flight operations and

ground-based control software.*
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The demanding space and weight requirements of NASA"s manned
and unmanned spaceflight missions meant that most of the on-board
computer hardware and software was unique to these missions. As
a result, the software developed for on-board applications
yielded relatively few "spillovers'™ to commercial applications.
In the case of ground-based computer systems to manage the
extremely complex tasks of launch and communications, however,
"off-the-shelf" hardware was exploited far more extensively.
Moreover, many of the techniques of software development for
these applications were employed in broader commercial markets by
the primary vendor, IBM"s Federal Systems Division (now known as
the Federal Systems Company).** 1BM, which located a large
software development facility near the Johnson Space Center in
Houston, was the major supplier of software for ground control
systems throughout NASA"s manned spaceflight program, and later
became the prime contractor for the Space Shuttle"s software.

Beginning with the Mercury program, IBM*s development of computer
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systems and software for ground control applications yielded
important commercial spillovers:
For IBM and NASA, the development of the Mercury control
center and the network was highly profitable..._Large central
computers with widely scattered terminals, such as airline
reservation systems, have their basis In the distant
communications between Washington and a launch site in
Florida. (Tomayko, 1988, p. 248).
Other important architectural advances spurred by IBM"s
experience as the prime contractor for ground-control hardware
and software include the demonstration of the design principles
that underpinned the subsequent innovation of virtual memory, as
well as major improvements in IBM"s internal software engineering

practices and guidelines._®

All of these yielded important
commercial spillovers for IBM and for the broader U.S. software
industry.

Although they were valuable for the development of complex,

custom software programs, the software engineering advances
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supported by IBM®"s NASA experience nevertheless are less relevant

to the packaged software market that became so important during

the 1980s, as Smith and Cusumano (1993) point out:
The [IBM NASA software development] process is an excellent
fit for the environment: a dedicated customer, a limited
problem domain, and a situation where cost iIs important but
less of a consideration than zero defects. For the wide
range of commercial software developers that do not operate
in this type of environment, the...complete FSC Houston
approach 1s not feasible, although variations of the process
are clearly possible and used at other IBM sites and other
companies...Drawing upon this success In process improvement
and quality delivery, the IBM Federal Systems Company has
also created a team that now goes out and consults on the
software development process. (Smith and Cusumano, 1993, p.
19).
In spaceflight no less than in defense-related procurement

large government software contracts now appear to yield fewer
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benefits for vendors in the commercial market, underlining the
divergent requirements and strategies associated with these
sectors of the U.S. software industry. [IBM"s 1993 divestiture of
its Federal Systems Company seems to underline the limited
relevance of the large-scale software factory for developing
commercial software (which accounted for $11 billion in 1993

corporate revenues, according to the firm"s Annual Report).

6. Conclusion

The federal government®s role in the development of the U.S.
software industry is broadly similar to its role in the
development of such other postwar high-technology industries as
semiconductors, computer hardware, and commercial aircraft. In
all of these cases, federal expenditures on R&D and procurement
were motivated primarily by defense concerns iIn the context of
the Cold War. Defense-related expenditures produced important
"spillovers™ for commercial applications, which was also the case

in software. Especially 1In semiconductors and computer hardware,
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federal procurement also supported significant entry by many
startup firms, as in the software industry.

But the apparent similarities between software and other
postwar "‘dual-use' industries mask some important differences in
the structure of federal policy toward the software industry.

For example, throughout the brief history of the software
industry, defense-related demand for (largely custom) software
has accounted for a much larger share of the total market than
was true of semiconductors. Federal funding of university
research and development activities appear to have been more
important to the evolution of this postwar industry than i1s true
of semiconductors or aerospace. In contrast to these industries,
which drew on established academic disciplines even as they
transformed them, the software industry relied on the creation of
a new academic discipline, computer science. Federal
policymakers in agencies such as ARPA focused their R&D support
on universities because of the need for a new academic

infrastructure of training and research for the development of a
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technology with numerous defense-related applications. Moreover,
the explicit "targeting” of institutional strength in computer
science, combined with the defense mission of agencies such as
ARPA, meant that this source of academic research support
employed policies and criteria for support that contrasted with
the peer review system more commonly associated with federal
support for fundamental academic research. The contrasting
postwar histories of the British and U.S. computer industries
appear to stem in part from the very different policies adopted
by each nation®s military establishment to the support of
university research and education In computer science.

The National Science Foundation also included support for
infrastructure through i1ts funding of computer purchases by U.S.
universities, and thereby complemented the focused policies of
ARPA. The mmportant role of universities within the software
industry, and the importance of federal financial support for the
research facilities of these universities, both suggest some

interesting similarities between the U.S. software and
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biotechnology iIndustries. In the case of biotechnology, of
course, the National Institutes of Health have played an
indispensable role iIn supporting fundamental research and
equipment acquisition that have yielded major commercial
applications.

Although ARPA®"s R&D support focused on specific areas of
opportunity iIn computer science, the overall structure of federal
R&D support in software-related fields was not tightly "targeted”
on specific civilian applications, or even on civilian technology
development. In contrast to the ambitious programs mounted
within Europe and Japan, U.S. government R&D policy devoted
relatively little attention (until recently) to civilian
applications. Indeed, the recent federal emphasis on technology
development and civilian applications indicate some shift iIn
federal policy in the direction of European and Japanese
programs, which have had little success In the software industry.

The history of federal policy iIn the software industry

supports a strong role for public funds iIn the creation of a
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research infrastructure, including support for the production of
trained personnel, rather than a policy that attempts to focus
research programs on the development of specific technologies for
civilian applications. It also suggests the importance of
support for institutions and facilities, In addition to
individual investigators, in order to spur the growth of new
academic disciplines. In all of these respects, the lessons of
postwar federal policy in the software industry closely resemble
those of federal technology policy In other sectors (See Nelson,
1985; Mowery and Rosenberg, 1989). Paradoxically, the national
security rationale for much of the DoD and ARPA funding,
especially the ARPA funding of university 'centers of
excellence,”™ may have insulated these programs, which did not
operate solely via peer review, from the distributional politics
that otherwise might have forced the use of very different
criteria for allocation.®® The lack of a "civilian

competitiveness"” rationale for them may have iIncreased the
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contribution of these federal R&D programs to the U.S. software
industry®s competitiveness.

Although military-civilian spillovers were important in the
software industry, their structure appears to have differed
somewhat from those associated with other postwar dual-use
industries. In a number of other postwar iIndustries, as we noted
in the iIntroduction to this chapter, government R&D support and
defense-related procurement often yield commercial applications
in the commercial sector during the earliest stages of a
technology®™s development. With the maturation of the technology
and the emergence of a commercial industry, however, government
procurement needs diverge from those of the commercial market,
especially i1f this market becomes large relative to the
government market (See Mowery and Rosenberg, 1989; Cowan and
Foray, 1994). This development often reduces the spinoffs from
defense-related government spending on R&D and procurement, and
military applications may come to rely more heavily on “spinons”

from the commercial sector.
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This transition seems to have occurred quite early iIn the
development of the U.S. software industry. The early
experimental machines at universities, such as Whirlwind or the
IAS computer, yielded a number of generic software concepts and
tools. But very soon the private sector, notably IBM, began
volume production of standard platforms. At the same time, the
commercial sector, responding to the resulting growth in the
market for standard commercial applications, began to provide
generic programming tools and languages. Private firms also
extended some financial support for computer science and
developed end-user capabilities through user groups. The mid-
1950s had some interesting similarities with the current
situation in the software iIndustry, with standardized hardware
platforms supporting the growth of commercial production of
software, although independent software vendors now play a much
more prominent role In the commercial sector (see chapter 2).

Rapid growth in defense-related demands for software, and

for science and technology in general, during the 1950s expanded
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government spending on software and computer science. Government
funding stimulated the creation of a university-based
infrastructure for the development ‘“generic” technology and
abstract principles, many of which were applicable to both
military and commercial software. Rather than applications of
technologies developed for defense purposes, software-related
spillovers frequently flowed from defense-related support for
fundamental research, and universities were important sources of
such spillovers. Had private firms retained the primary
responsibility for the "legitimation”™ of computer science, this
process might well have taken considerably longer and might have
restricted the diffusion of the results of university-based
research.

The divergent nature of military and commercial demand for
software has not been significantly reduced by the development of
Ada, and i1t is likely to hamper efforts to improve military
utilization of commercial software products. Indeed, the shift

in defense-related R&D support toward applied research may reduce
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the future "'spillovers'™ to commercial appplications formerly
generated by this research funding. The establishment of the
Software Engineering Institute, which was intended to supplement
the role of U.S. universities in supporting defense-related
software R&D, suggests that this divergence may also affect the
relationship between DoD R&D programs and academic research in
software and computer science. The contrasting roles of MIT 1in
establishing Lincoln Labs to manage the SAGE project and ARPA in
the establishment of the SEI highlights this changing
relationship.

The political and economic circumstances within which these
federal agencies influenced the early development U.S. software
industry were iIn many respects unique. Although federal support
for its university infrastructure will remain vital, the software
industry has achieved sufficient scale and economic vitality that
federal R&D policy i1s likely to exercise less direct influence
over its future technological development. But the lessons of

federal policy iIn this industry, at least some of which seem to
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contradict the spirit of current federal policy initiatives In
software and other high-technology industries, remain relevant in

the U.S. economy of the future.
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NOTES

1. We are grateful to Jay Adams, William Aspray, Bruce Bruemmer,
Randy Katz, Larry Druffel, Bonnie Chen, George Mazuzan, Scott
Wallace, and Andrew Goldstein fTor 1invaluable assistance iIn the
preparation of this chapter. Support for the second author®s
research for this chapter was provided by the U.S.-Japan Industrial
Technology Management Program, sponsored by the Air Force Office of
Scientific Research; by the Center for Research iIn Management of

the Haas School of Business; and by the Alfred P. Sloan Foundation.

2. The Whirwind®"s cost of $3 million substantially exceeded the
average cost of $650,000 for the other systems described below

(Redmond and Smith, 1980).

3. "Prior to this system [the 650], universities built their own
machines, either as copies of someone else®s or as novel devices.
After the 650, this was no longer true. By December 1955, Weik

reports, 120 were iIn operation, and 750 were on order. For the
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first time, a large group of machine users had more or less
identical systems. This had a most profound effect on programming
and programmers. The existence of a very large community now made
it possible, and indeed, desirable, to have common programs,

programming techniques, etc." (Goldstine, 1972, p. 331).

4. Goldstine, one of the leaders of the wartime project sponsored
by the Army"s Ballistics Research Laboratory at the University of
Pennsylvania that resulted In the Eckert-Mauchly computer, notes
that "A meeting was held in the fall of 1945 at the Ballistic
Research Laboratory to consider the computing needs of that
laboratory "“in the light of its post-war research program.® The
minutes iIndicate a very great desire at this time on the part of
the leaders there to make their work widely available. "It was
accordingly proposed that as soon as the ENIAC was successfully
working, its logical and operational characteristics be completely

declassified and sufficient be given to the machine...that those
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who are interested...will be allowed to know all details."" (1972,
p. 217). Goldstine is quoting the "Minutes, Meeting on Computing
Methods and Devices at Ballistic research Laboratory, 15 October
1945 (note 14). Flamm (1988), pp- 224-226, makes a similar point
with respect to military attitudes toward classification of

computer technology.

5. "The grants were iIn IBM"s iInterest, because the
corporation felt a strong concern with supporting and
maintaining a close relationship with universities, and
because an entire generation of students and faculty
would associate computers and computing with “IBM.""
(Galler 1986, p. 37.) Fisher et al (1983, p. 169)
suggest, however, that this hoped-for "lock iIn" effect

might in fact have been 1llusory.

6. In the case of MIT, IBM donated a model 704 computer
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in 1957, which was available free of charge to MIT
seven hours a day and to 24 other New England
universities another seven hours a day. |IBM i1tself
used the remaining 10 (nighttime) hours. (Wildes and

Lindgren 1985, pp. 336-7.)

7. The IBM educational allowance program began in
October 1955, with 60 per cent reductions in lease
rates to universities. In May 1960, IBM changed the
allowance to 20 per cent for administrative use and 60
per cent for academic use. In 1963, the company
abandoned the administrative/academic distinction and
reduced all allowances to 20 per cent on new orders.
In 1965, IBM set up a sliding scale of allowances on
the new 360 series, ranging from 20 per cent on the
base model to 45 per cent on a high-end system. By

1969, the allowance had been reduced to 10 per cent.



94

(Fisher et al. 1983, p. 172.)

8. According to some accounts (Baum, 1981), the Rand group got
the programming job only after MIT, IBM, and AT&T had all
declined 1t. IBM, for example, was concerned about how it would

employ some 2,000 programmers once the project ended.

9. "Indeed, despite what was In many respects a first-rate network
of contacts, the NRDC [National Research and Development
Corporation] was not even aware of some of the military computer
developments taking place In the 1950s and early 1960s. Nor were
the people carrying out these developments In many cases aware of
work on the commercial front. In America, iIn contrast,
communications between different firms and laboratories appear to
have been very good, even where classified work was involved."

(Hendry, 1992, p. 162).
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10. The data i1In Figure 2 are taken from Aspray and Williams
(1993b), and include all NSF research funding 1In numerical
analysis, computer theory, architecture, theoretical computer
engineering, graphics, software, artificial intelligence,
databases, and communications. 1 am indebted to Professor William
Aspray and Dr. Andrew Goldstein of the IEEE Center for the History

of Electrical Engineering for these data.

11. "...NSF wanted to develop a broad academic base for science
education and scientific research. Thus i1t supplied facilities not
only to the top research universities, but also to other
universities liberal arts colleges, junior colleges, and even some
high schools. While NSF was Dbuilding a broad national
infrastructure for science, DARPA was constructing a high-powered
experimental computer science research program.”™ (Aspray and

Williams, 1994, p. 28).
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12. This account draws on the excellent history of DARPA"s
Information Processing Techniques Office (IPTO) by Norberg and

O*Neill (1992).

13. A 1985 study by an ACM committee found that average DoD
funding per faculty member in the computer science departments of
these four universities was $279,000; this amount dropped to
$42,000 per faculty member in departments ranked 5-12. By
contrast, NSF funding per faculty member 1i1n the top Tour
departments was $31,000, an amount that rose to $46,000 per faculty
member in departments ranked 5-12 and stood at $41,000 per faculty
member in departments ranked 13-24 (Gries, Miller, Ritchie, and

Young, 1986, p. 878).

14. "IPTO strove to develop a few centers of excellence iIn order
to stimulate the computer science fTield In substantial ways, rather
than by making a large number of small contracts. Contracts

written for this purpose were brief. They specified iIn general
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ways the nature of the research to be pursued, the equipment to be
purchased if needed, and the length of time of the
contract. .. .Manager rather than peer review made possible this
rapid evaluation of proposals and issuance of an iIntent to contract

with an institution.” (Norberg and O"Neill, 1992, pp. 122-123).

15. The ARPANET packet-switching architecture and supporting
software were developed by Bolt, Baranek, and Newman, an
engineering firm that had ''spun off"" from MIT, rather than solely
by academic researchers. Nonetheless, academic computer science
researchers were very active participants 1i1n ARPA"s early
development of requirements for what became the ARPANET, as well as
in the testing of the system. In 1989, ARPA turned over the
network technology to NSF, which became the lead agency of an
Executive Branch consortium guiding the future of the Internet

(Turner 1989).
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16. These data omit data for Ph.D. production from the University
of California at Berkeley, which for much of this period did not
grant Ph.D.s iIn computer science (a division of the university's
department of electrical engineering), although 1t was a major
recipient of ARPA funding for computer science research. By virtue
of this omission, these data understate somewhat the 'true"
influence of the top fTour ARPA-funded research universities 1In

computer science.

17. "An institute like the SEI could play several influential
roles. It could collect and integrate existing tools iInto common,
unified, software life-cycle support frameworks. Such an institute
could act as an integrative agent by energetically soliciting
community opinion and helping the community to achieve a consensus
on critical new suspects of shared infrastructure for the 1990°s.

Additionally, 1t could furnish effective iInstitutional support for

the technology iInsertion process. This process needs to be
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carefully planned and managed, and 1f 1t 1s not vigorously
supported, an essential part of the overall job cannot be
accomplished.

"A key feature of technology transfer is to have people from
the DoD, industry, and academia rotating through the institute.
Such rotation would have the additional benefit of keeping the
institute fresh and vital over time. It would thus be a magnet for
top talent without being a talent sink."™ (Boehm and Standish, 1983,

p. 34).

18. Moreover, the Office of Naval Research supported considerable
information exchange, workshops, and informal cross-fertilization
that enabled the compiler, first developed by Laning and Zierler at
MIT, to be quickly exploited by John Backus of IBM iIn creating
FORTRAN: "During the Tfirst part of 1954, John Backus began to
assemble a group of people within IBM to work on improved systems

of automatic programming...Shortly after learning of the Laning and
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Zierler system at the ONR meeting iIn May, Backus wrote to Laning
that "our formulation of the problem i1s very similar to yours:
However, we have done no programming or even detailed planning.*
Within two weeks, Backus and his co-workers Harlan Herrick and
Irving Zierler visited MIT iIn order to see the Laning-Zierler
system in operation. The big problem facing them was to implement
such a language with suitable efficiency...

"By November 1954, Backus"s group had specified “The IBM
Mathematical FORmula TRANslating system, FORTRAN." (Knuth and

Pardo, p. 241).

19. According to Phillips (1985), "In early 1959 there were 225
computer systems in the [DoD] business area alone, with annual
costs of over $70 million...the total number of computers in DOD
was estimated at 1046 with costs of about $443 million. On a rough
approximation, DOD estimated that about half of these costs could

be attributed to (1) systems design, (2) Tflowcharting, (3)
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programming and coding, and (4) “debugging.” With direct
"software® costs of about $35 million, which grew to over $200
million in the next five years, DOD obviously had an interest, as
well as a position of stature, In the subject. Certainly, if such
a project offered a hope of reducing "software® costs, i1t would
provide a strong motivation as well.

"Two other 1items were of concern to DOD at that time:
compatibility and the interchange of computer programs; we might
really consider them as two parts of the same basic problem. This
problem was clearly evident in the supply and logistics area, which
represented about 85 percent of DOD business-type applications in

1959." (p. 305).

20. According to the U.S. Commerce Department (1984), total U.S.
software industry revenues amounted to $10.3 billion in 1982; in
that year, the DoD Joint Service Task Force on Software Problems

estimated that total Pentagon spending on software amounted to $5-6
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billion (Department of Defense, 1982, p. 6). A portion of the
revenues included in these estimates of defense-related software
sales are excluded from the Commerce Department measure of industry
revenues (and these revenue estimates may be low, judging from the
comparison with data from the OECD cited in Chapter 1), but the
orders of magnitude suggest that defense-related demand figured
much more prominently within the software industry than in computer
hardware. Fisher (1978) notes that At one time DoD was a major
innovator and consumer of the most sophisticated computer hardware,
but now 1t represents only a small fraction of the total market.

In software, that unique position still remains: a significant
fraction of the total software industry is devoted to DoD-related
programs--and this is true iIn even larger proportion for the more

advanced and demanding systems."” (p. 24).

21. As the Defense Systems Management College study of "'Mission

Critical Computer Resources™ (MCCR) noted, "In 1966 the FB-111
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required an on-board computer memory of roughly 60,000 words but by
1988 the B-1B Bomber was approaching on-board computer memory
requirements of about 2.5 million words. Current and future
systems will greatly exceed these memory requirements with large

scale software systems being the norm." (1990, p. 2-2).

22. The Congressional Office of Technology Assessment estimated
that as of June 1987 the software development activities of the
Strategic Defense Initiative Organization (SDI0) accounted for more
than $275 million in expenditures (the estimate does not cover a
single fiscal year®s expenditures; instead, "...i1it shows money that
at that time had been spent since the inception of the program,
that was then under contract, or that was expected soon to be under
contract.” (U.S. Congress, Office of Technology Assessment, 1988,

p- 248).
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23. Fisher (1978) estimated that embedded software accounted for
56%, dataprocessing software 19%, scientific software 5% and "other
and i1ndirect software costs" 20%, of total DoD software

expenditures 1n 1973 (p-. 25).

24. Joint Services Task Force (1982), p. 5. Other examples cited
by the Task Force included modifications iIn the targeting accuracy
of the Minuteman 111 nuclear missile and an emergency modification
in the guidance systems of the British Sea Wolf antiaircraft
missiles made to adapt them to the needs of the Falklands conflict

in 1982.

25. Fisher (1978) noted that in 1978, "At least 200 models of
computers are used iIn embedded computer systems at DoD. In many
applications, the computers must be installed i1n configurations

that are incompatible with general-purpose installations.” (p. 25).
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26. One other iIndication of this "divergence by design”™ is the
fact that Ada does not 1incorporate object-oriented programming
design concepts or tools, which now are widely employed within the

civilian software industry.

27. A partial listing of the major reports of the 1980s includes
the following: the Joint Services Task Force Report on Software
Problems (1982); the Software Engineering Institute Study Panel
(1983); the Defense Science Board Task Force on Military Software
(1987); the Department of Defense Software Master Plan (1990); and
the Department of Defense Software Technology Strategy(1991).

Among other things, this tabulation excludes the numerous studies
of software issues in the Strategic Defense Initiative program.

Pentagon studies of i1ts software needs, of course, substantially
predate the 1980s--the Joint Services Task Force report lists 26

previous studies In an appendix.
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28. "Migration to commercial support spreads the maintenance costs
for software technology across a much larger base than DoD. It 1is
thus a major leverage factor for DoD software technology products.

Even greater cost-effectiveness leverage can be obtained by
stimulating existing commercial technology products to address DoD
needs.” (Department of Defense Software Technology Strategy, 1991,

p. ES-23).

29. "The goal of the STARS program is to improve productivity
while achieving greater system reliability and adaptability.

Meeting this goal requires a very broad attack to Improve the
environment iIn which software 1i1s TfTirst developed and then
supported. The DoD"s "Ada™" program provides an initial focus for
the development of a common, sharable software base. The STARS
program broadens the scope of attention to the entire environment
in which software is conceived and evolved.” (Druffel, Redwine, and

Riddle, 1983, p. 10). The 1991 ™"Software Technology Strategy"
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report of the Defense Department noted that "The STARS prime
contractors (IBM, Unisys, and Boeing) are developing these
[software environment frameworks] in concert with their commercial
counterparts (in-house for IBM and Unisys; DEC for Boeing) and a
number of tool vendor subcontractors for computer-aided software
engineering (CASE). The primary program objectives are that STARS
products are commercially, supported, responsive to particular DoD
needs (support of very large, embedded, real-time, and Ada software
applications), and built using common open interfaces to facilitate

CASE tool portability and interoperability. (1991, p. 3-4).

30. The Defense Department®s January 1992 Software Technology
Strategy called for increased reuse of code, 1i1n addition to
improvements in software engineering and the use of more commercial
software (Burgess 1992). Despite the substantial DoD investment in
software engineering, the commercial sector (especially 1iIn

microcomputers) appears to be ahead of the defense sector in many
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of these techniques. For example, Microsoft is far ahead of
traditional large-scale software houses (including IBM"s now
independent Federal Systems Division) In the use of such techniques

as rapid prototyping (Smith and Cusumano 1993).

31. In 1991, DARPA funded a $22 million project on object-oriented
data bases. The participants include Texas Instruments, the NIST,
and several universities (Stix 1992). The April 1994 request for
proposals for the ARPA-led Technology Reinvestment Program listed
"Object Oriented Technology for Rapid Software Development and

Delivery" as one 1T 1ts areas of iInterest.

32. "The realization that software is more difficult to develop
than hardware is one of the most important lessons of the Apollo
program. So the choice of memory should be software driven, and
designers should develop software needed for manned spaceflight

near the Manned Spacecraft Center. The arrangement with MIT
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reduced overall quality and efficiency due to lack of
communication. Also, more modularization of the software was

needed.' (Tomayko, 1988, p. 62).

33."The story of computers in manned mission control i1s largely the
story of a close and mutually beneficial partnership between NASA
and 1BM. There are many iInstances of IBM support of the space
program, but in no other case have the results been as directly
applicable to i1ts commercial product line. When Project Vanguard
and later NASA approached I1BM with the requirements for computers
to do telemetry monitoring, trajectory calculations, and
commanding, IBM found a market for 1i1ts largest computers and a
vehicle fTor developing ways of creating software to control
multiple programs executing at once, capable of accepting and
handling asynchronous data, and of running reliably in real time...

"The company maintained i1ts lock on mission control contracts

through Gemini, Apollo, and the Shuttle. At each point, some
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experienced personnel were transferred to other parts of the
company to share lessons learned. Several individuals contributed
to 0S/360, the Tfirst multiprogramming system made commercial
available by IBM. One became head of the personal computer

division.”" (Tomayko, 1988, pp. 243-244).

34_."IBM reacted to the iIncreased complexity [of the Gemini
program®s data and mission control requirements] in several ways.

Besides adding more manpower, the company enforced a strict set of
software development standards. These standards were so successful
that 1BM adopted them companywide at a time when the key commercial
software systems that would carry the mainframe line of computers

into the 1970s were under construction.” (Tomayko, 1988, p. 252).

35. Sapolsky"s comment on the changing role of the U.S. Office of
Naval Research (1990) is relevant and prescient iIn this regard:

"National security rationalies are no longer very important iIn
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the support of basic research...But without the protection of
national security rationales, science is vulnerable to political
pressures In ways that undermine i1ts integrity and productivity.

When vital defense interests are not at stake, politicians wonder
why their districts are not benefiting from the federal research
largess much more than when they are. Less favored institutions
and disciplines find the urge to employ pork barrel tactics
impossible to resist. The network of elites that binds together
the scientific community and provides 1ts priorities cannot contain
the desire for equity and opportunity that is so much a part of the
political process. The Navy and the other armed services may not
regret their reduced role iIn basic research, but science no doubt

will." (p. 121).



