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ABSTRACT. This paper introduces the rest of this issue, which is dedicated to the 
contributions of Sir Richard Stone, Michael Bacharach, and Philip Israilevich. It starts 
out with a brief history of biproportional techniques and related matrix balancing 
algorithms. We then discuss the RAS algorithm developed by Sir Richard Stone and 
others. We follow that by evaluating the interpretability of the product of the adjustment 
parameters, generally known as R and S. We then move on to discuss the various formal 
formulations of other biproportional approaches and discuss what defines an algorithm 
as “biproportional”. After mentioning a number of competing optimization algorithms 
that cannot fall under the rubric of being biproportional, we reflect upon how some of 
their features have been included into the biproportional setting (the ability to fix the 
value of interior cells of the matrix being adjusted and of incorporating data reliability 
into the algorithm). We wind up the paper by pointing out some areas that could use 
further investigation. 
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1. The Early History of Biproportional Matrix Balancing 

 

At least as early as the 1930s, researchers documented biproportional adjustment 

techniques—also known as “iterative proportional fitting” or “raking” (Ireland & 

Kullback, 1968). The two first documented pieces were by Kruithof (1937), who 

estimated telephone communications traffic and called it “the method of twin factors”, 

and—according to Bregman (1967)—by Leningrad architect G.V. Sheleikhovskii, who 

estimated transportation traffic flows. 

Nevertheless, it was not until Deming & Stephan (1940), who used the approach 

to derive expected contingency tables, that the approach became accessible in the English 

language as well as to social scientists. Since then, not only has the technique been 

refined and extended but an abundance of applications has emerged. They include the 

estimation of birth and death rates (Chandrsekar & Deming, 1949), migration flows 

(Chilton & Poet, 1973; Schoen & Jonsson, 2003), transportation flows (e.g., Furness, 

1965), international and interregional trade (Bénard, 1963; Canning & Wang, 2003), 

transition probabilities (Theil & Rey, 1966; Moffit, 1993; Kendall & Nichols, 2002), 

voting patterns (Johnston et al., 1982, Balinski & Gonzalez, 1997),1 and the incidence of 

fire reporting (Greene et al., 2001). One of the most sophisticated families of techniques 

for filling in missing data, however, are expectation maximization algorithms based on 

Markov chain Monte Carlo methods with a Gibbs sampler originally developed by 

Geman & Geman (1984) to reconstruct electronic images.2 A somewhat related line of 

so-called “bound and collapse” algorithms developed by Ramoni & Sabastiani (1998) 

also has been gaining momentum. Despite the ever-increasing sophistication of 

techniques for estimating nondisclosed or missing data, however, simple biproportional 

approaches probably remain most popular. 

Because of its simplicity and popularity, we opted to focus this issue of Economic 

Systems Research upon biproportional approaches in the development of input-output 

tables and similar economic accounts. Nevertheless, a few contributions herein surely 
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reveal approaches that are strong divergences from techniques that are strictly 

biproportional.  

Interestingly it was none other than the founder of input-output analysis who first 

used biproportional techniques in this setting. Indeed, Leontief (1941) used it to identify 

the sources of intertemporal change in the cells of a given nation’s input-output tables. 

Nonetheless, it was Sir Richard Stone (Stone et al., 1942; Stone, 1961, 1962; Stone & 

Brown, 1962) who waved the banner on behalf of this technique within the field.  

Given this background, in the next section we review the general biproportional 

formulation posed by Stone (1961, 1962) in an input-output context. Next, we develop 

brief reviews of other algorithms that have been used since Bacharach (1970) to solve 

problems that could be handled by RAS. We classify them into two types: alternative 

biproportion formulations and those that can strictly be formulated as mathematical 

programs. In the course of summarizing the alternative biproportional formulations, in 

Section 3 we attempt to unify them. In Section 4, we point both linear and nonlinear 

programming algorithms that have or could be used in the context of balancing input-

output tables. While we review the material in Sections 3 and 4 we point out why some of 

the algorithms were employed, besides their unadulterated novelty. As a result, we follow 

with Section 5, which briefly discusses published extensions to the biproportional 

approaches that mend certain problems inherent to Stone’s original formulation. We 

conclude this paper by discussing areas within the field of biproportional techniques that 

are ripe for additional research within the field of input-output analysis. Throughout the 

introduction to this special issue on biproportional techniques in interindustry analysis, 

we contextualize this issue.  

 

2.  The Basic Problem and an Early Algorithm 

 

The fundamental problem to which biproportional techniques are applied is rather simple 

and can be stated as follows. Consider two rectangular matrices, an “initial” matrix 

Z of dimension n by m where  and an unknown “target” matrix +
ija ∈R *Z  with the 

same dimensions and other mathematical properties. (Overbars denote an array with the 

dimension of a full set of input-output transactions, including value added and final 
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demand.) Indeed, only the margins (the row and column sums) of *Z  are known. The 

problem is to find a third matrix Z  not only with the same dimension and mathematical 

properties as *Z  but also with the same known margin, i.e., 

 

(1) ij
n
iij

n
i zz ~

1
*

1 == Σ=Σ  and ij
m
jij

m
j zz ~

1
*

1 == Σ=Σ  

 

Usually an objective of this problem is to obtain a Z  that is as close as possible to 

*Z , following defined criteria. While the margins of *Z  are used to obtain Z  via the 

structure of Z , it is typically only possible to make ex-post observations about the 

closeness of Z  to *Z . And, of course, more often than not, *Z  remains forever unknown. 

It may not be immediately clear from this set up, but there are infinite solutions to 

this problem. Indeed, since the initial working by Deming & Stephan (1940), numerous 

algorithms have been developed to solve it. Stone (1962) and Stone & Brown (1962) 

developed a particular biproportional procedure that has become known as “RAS”, due, it 

seems, to the notation Stone used in a series of papers on the topic. While the A in the 

name “RAS” clearly denoted the direct requirements matrix in a Leontief setting, one 

could immediately surmise through observation that the matrices, which Stone used to 

pre- and post-multiply A in his papers, are labeled suspiciously similar to the author’s 

first and last initials. Below, we diverge slightly from Stone’s notation, although we do 

not wish to confuse the reader, as we discuss operations on flows and not direct 

coefficients.  

RAS has two main advantages over competitive algorithms. First, it is a relatively 

simple algorithm that assures no negative values can be achieved.3 Second, it demands a 

minimum of data. RAS is an iterative procedure where the rows and columns of 

preliminary estimates of Z  are iteratively changed using proportions that are based on 

the known margins of *Z . If we let angled brackets ⋅  denote a diagonal matrix, with the 

denoted vector on its diagonal and zeros elsewhere, and e a summation vector of 1s of 

appropriate dimension, the algorithm can be described as follows: 4 
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Step 0 (Initialization): Set p = 0. Let the initial value of the estimate be the known 

values of the prior, i.e., ( )0 =Z Z .  

Step 1 (Row Scaling): Let p = p + 1, and ( ) ( )1ˆ p p−
-1

*R = Z e Z e  and 

( ) ( ) (ˆ1
2p- p p-1Z = R Z ) .  

Step 2 (Column Scaling): Next let ( ) ( )1
2ˆ pp −′ ′

-1
*= e Z e ZS  and ( ) ( ) ( )ˆ1

2p-p pZ = Z S . 

 

In RAS, Steps 1 and 2 constitute a full iteration and are repeated until, once a full 

iteration is complete, both ( )ˆ pR  and ( )ˆ pS  for a given iteration are extremely close to their 

respective identity matrices. Typically this algorithm will kick out its estimate of *Z  

either when all diagonal elements of both ( )ˆ pR  and ( )ˆ pS  are within a certain pre-specified 

tolerance (say, 1.00000000 ± 0.0000001) or after a specific number of iterations (say, k) 

have passed. Indeed, Bacharach (1970) demonstrated that there is a unique equilibrium 

solution to this algorithm. That is, ZZ
~~

lim . Further, Bacharach noted that )( =∞→
k

k

)ˆ()ˆ(
~ )(

1
)(

1
)( pk

p
pk

p
k SZRZ == ΠΠ= . Hence, by letting )ˆ(ˆ )(

1
pk

p RR =Π=  and )ˆ(ˆ )(
1

pk
p S=Π=S , 

ˆˆZ = RZS , which the analyst hopes very close to, if not the same as, *Z .  

 

2.1. Interpretation of R̂  and Ŝ     

 

In this setting, Stone et al. (1963) interpreted R̂  as embodying interindustry or 

intercommodity substitution effects. This interpretation arises because Z  is pre-

multiplied by R̂ , which means that it acts on Z  strictly rowwise. Hence, not only does 

R̂  “correct” Z  by applying an overall shift factor that raises the scalar growth rate of the 

entire economy,5 ](/[]([ )) eZeeZe * ′′=δ , it can be articulated as the product of the scalar 

shift factor δ  and a diagonal matrix ( )ˆ ˆ /δ=T R , which redistributes shares of gross 

output rowwise on the elements of the prior matrix Z . That is, one can identify the 
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economywide change in input mix as T̂ . This means that through T̂  the RAS algorithm 

increases the average economywide use of one sector’s production as an input at the 

apparent expense of another’s—by definition an economywide substitution effect.6 Stone 

et al. (1963) also used such shift-share thinking to arrive at an economic interpretation of 

Ŝ  when Z  and *Z  are full sets of national economic accounts including noncompetitive 

imports. Ŝ  is decomposed into the same scalar shift effect, δ , and a similarly composed 

economywide share effect by industry ˆˆ /δ=W S

υ

 that almost exclusively embodies 

adjustments to the initial economy’s industry mix. 

 

2.2. Matrices of Direct Requirements and a “Reinterpretation” of  and  R̂ Ŝ

 

To move this discussion of the interpretation of RAS along, let us first digress briefly into 

a more typical application of RAS. That is, RAS is usually not effected upon the full 

input-output transactions matrix. Typically in the literature, researchers have focused use 

of the RAS technique on Z and , which are intermediate industry accounts only. That 

is, researchers have tended to assume that “current year” vectors of total intermediate 

inputs, , and total intermediate outputs, , are known or knowable. 

In such cases,  and , articulate differences within the intermediate matrix only. Hence, 

*Z

*
1

*
ij

n
ij z=Σ=η

R̂

*
1

*
ij

m
ji z=Σ=

Ŝ

T̂ , Ŵ , and δ similarly denote the vectors of input mix, industry mix, and shift factors 

common across intermediate industries only, not economywide. We should note that the 

tendency has been for researchers to focus upon the direct requirements matrix 1ˆ −A = Z  

- where 

X

)Z(== eZx ′′e  - and not the intermediate transactions matrix Z.7 Nonetheless, 

all RAS operations actually are acted upon margins of the intermediate transactions 

matrix, and the termination tests employed are grounded in comparisons of the vectors 
( )pZ e  and ( )p′e Z  to the vectors  and , respectively, although (  

sometimes is compared to  for the case of columnwise adjustments.

*η *υ )/())( *Ze′iZe′

x/υ 8 As a result, the 

economic interpretation of industry mix effects in the total set of interindustry accounts 

boils down to one of productivity effects when only intermediate accounts are RASed.9  
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Moreover, it has been shown that any interpretation of ri and sj (for arbitrary i and 

j) is questionable since these terms are not identified in the context of the RAS algorithm. 

That is, RAS is hyperbolically homogenous since, for an arbitrary scalar α , 

. Or, more generally, for an arbitrary diagonal matrix α , the 

diagonal matrix β  is such that R . (“Hyperbolically homogenous” 

means that  and  necessarily must be the inverse of one another.) We use the 

minimum discrimination of information approach (explained in Section 3.2) to explain 

what we mean through an example. Assume 

)/ˆ()ˆ(ˆˆ αα SZRSZR =

ˆ

α̂

0>ˆ

)ˆˆ()ˆˆ(ˆˆ SZRSZ βα=

β̂

 

5 2 1
3 9 4

 
=  

 
Z  ,  * 11 3 2

2 8 6
 

=  
 

Z

 

and that ( ) 10 =ir  for all i. This yields: 

 

1.364 0 0
1.464 0 ˆˆ ,   0 1.150 0 , and 

0 0.738
0 0 1.811

 
   = =       

R S
9.98 3.37 2.65
3.02 7.63 5.35

 
=  

 
Z . 

 

On the other hand, if we change only one value of the algorithm’s initializing 

vector, ( )0r , we arrive at different values for  and . LettingR̂ Ŝ ( )0
2 2r = , we get:  

 

0.859 0 0
2.323 0 ˆˆ ,   0 0.724 0 , and 

0 1.171
0 0 1.142

 
   = =       

R S
9.98 3.37 2.65
3.02 7.63 5.35

 
=  

 
Z . 

 

So  and  do not remain the same: in mathematical parlance this means they 

are not identified. Interestingly, however, the solution is the same in the two problems.  

Moreover, across the two examples, the ratio  remains equal to 0.504, and the ratios 

 and  keep fixed at 0.843 and 1.576, respectively. So while the absolute levels 

R̂

3s

Ŝ

12 / rr

12 / ss 1/ s
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of the elements of  and S  change, their relative values within each vector do not. From 

this it is clear the product  may possibly be interpreted as the result of industry and 

input substitution effects. That is, although the values of and  are not identified, 

biproportional approaches force the effects of R  to be offset by the effects of S  and vice 

versa. 

R̂ ˆ

ˆ ˆRZS

ˆ

R̂  Ŝ

ˆ

Ŝ

ˆ

iλ

( )1e jµ− +
jµ

Σ=

Ŝ

Unfortunately since R  and S are not identified, it is definitely not possible to give 

a straightforward interpretation to them in terms of absolute values, at least without some 

other transformation(s). The fact that the elements within each of these two vectors have 

constant relative values offers a potential solution. A typical mathematical solution in 

such cases is normalization. In this case, due to issues of degrees of freedom, 

normalization can be affected on either R  and , not both! Due to the iterative nature of 

the procedure, interpretation of such normalization is not so simple.  Normalization 

without some sort of rationale predicated in economic theory (e.g., simply letting r

ˆ

ˆ

1 1=  

or ) can increase the interpretation problem rather than solve it (de Mesnard, 

2002, 2004a). An interesting exception to this may be a rationale posed by van der 

Linden & Dietzenbacher (1995) who suggested normalizing such that the average of 

elements  (using appropriate weights) equals one, which can be interpreted as a global 

substitution effect of zero. Nonetheless, any normalization amounts to imposing a 

constraint on a Lagrangian since, as can be inferred from Section 3.2, the  and S  terms 

are themselves Lagrange multipliers. This is because they are derived by imposing 

11 =Σ = i
n
i r

ir

( )1e i

R̂ ˆ

ir
λ− +=  where the  are the multipliers associated with the constraints 

ijzm
jijzm

j
~

1
*

1 == Σ=Σ  and js =  where the  are the multipliers associated with the 

constraints ij
n
i zijzn

i
~

1=
*

1=Σ . This makes such normalization an odd sort of mathematical 

operation to undertake. 

To summarize, it is only the relative value of any given element within each of the 

 and  vectors that is interpretable. As a result, normalizing not only is possible, it is 

the only proper way to interpret the elements of and  since their absolute values 

cannot be interpreted.

R̂ Ŝ

R̂  
10 
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2.3. On the Gap between the Projection and the Target 

 

Using their form of normalization, van der Linden & Dietzenbacher (1995, 2000) note 

that there surely must be other “sector-specific” substitution effects not accounted in a 

decomposition of economic change like that detailed above and that a lack of accounting 

for such sector-specific factors may well be the reason that the above economic 

interpretation of RAS was not convincing to some, most notably Lecomber (1975a, b) 

and Miernyk (1977, 2004). Hence, in addition to R  and  acting on Z to derive and 

estimate of Z

ˆ Ŝ
*, van der Linden & Dietzenbacher suggest that a third factor should be used 

to identify sources of economic change, essentially rediscovering work of Kouevi (1965) 

mentioned in Lecomber (1975a, p. 17). This element-specific factor they define 

as ∆ = , the ratio of a given “actual” element of the direct matrix to its value 

estimated via RAS.

* /ij ij ija a
11  Hence,12  

 
*
ij ij ij i ij j ija a ra s= ∆ = ∆ . 

 

With this in mind, it was de Mesnard (1988, 1990, 2004b) who appears to have 

first extended the economic interpretation of RAS by recognizing the gap between  

and 

*Z

Z~  in terms of structural change.13 Since Z~  has the same column and row margins as 

 after the proportional projection, *Z Z~  is directly comparable to , removing the effect 

of differences in sector size—the case between Z and . When applying this principle, 

one applies a biproportional filter, a generalized version of the well-known shift-share 

method discussed earlier (for more information, see, e.g., Stevens & Moore, 1980). The 

direct comparison of 

*Z
*Z

( *, )~ ZZZ RAS=  and  is done by computing the gap between *Z Z~  

and  and various norms: *Z ZZ ~* −  for the whole economy, ii ZZ ~* −  for rows i, 

jjZ Z~* −  for columns j and even ijijz z~* −  for all i, j. These Frobenius norms can be 

interpreted in terms of distance between the projected matrix Z~  and the target matrix : 

this is handy when evaluating the structural change. Note that this generates some 

*Z
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difficulties as ( ) ( ) ZZZZZZ −≠− ,, *** RASRAS . Hence, in Biproportional Methods of 

Structural Change Analysis: A Typological Survey, featured in this issue, Louis de 

Mesnard presents an interpretation that can be given to the gap, some difficulties for 

measuring it, and some methods to circumvent these difficulties. 

 

3. Alternative Biproportional Techniques 

 

It is our objective in this introductory piece to demonstrate the new directions that matrix-

balancing techniques are taking. So we will not rehash Polenske’s (1997) review of 

findings on the performance of RAS. Thus, for background, we will quickly review here 

instead the line of research on matrix-balancing techniques. The reason we do so, is that 

these alternative techniques typically are used to overcome one or more of RAS’s 

apparent shortcomings. Indeed, it is by overcoming such shortcomings that biproportion 

techniques have advanced most during the past two decades. Interestingly, while some 

researchers have been extending these alternate approaches, others have been advancing 

their apparent similarities to RAS. Hence, in this manner we will come full circle in the 

subsequent section by showing how some researchers have modified the traditional RAS 

algorithm, presented earlier, to overcome its own shortcomings. 

Matrix-balancing techniques can be classified broadly into two categories: scaling 

algorithms (like RAS) and optimization algorithms. Scaling algorithms are identified by 

the way they balance matrices—they iteratively multiply rows and columns of a prior 

matrix by positive constants to derive a series of candidate solution matrices. 

Optimization algorithms minimize functions that measure distance between a specified 

characteristic of candidate matrices and the prior matrices. These so-called objective or 

penalty functions induce the problems’ solutions to be as close as possible to their priors. 

The constraints of the optimization problem are the balancing conditions that force the 

solution from being the same as the prior.  

 

3.1. The Diagonal Similarity Scaling Algorithm 
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Osborne (1960)14 and, later, Grad (1971) applied a somewhat different scaling algorithm 

than RAS. It is the so-called “diagonal similarity scaling” (DSS) algorithm which 

follows: 

 

Step 0 (Initialization): Set p=0. Let the initial value of the estimate be the known 

values of the prior, i.e., ( )Z = Z. 0

Step 1 (Select the index): Let q be defined as the minimum index satisfying the 

following: | .  |ezze|ezze p
i

p
ini

p
q

p
q ••≤≤•• −′=−′ |max1

That is, scan the matrix to find the row-column pair (row i and column i) for 

which the row sum is most different from the column sum. 

Step 2 (Scale): With scaling parameter 2
1)]/()[( p

q
p
q

p
•• ′= zeezα  let  

1

1

, if ,

  , if  ,

,       otherwise.

p p
ij

p
ijp

ij p

p
ij

z i q j
z

z j

z

α

α
+

+

 = ≠

= =




q

q i q≠

p

 

Existence and uniqueness results for the DSS algorithm are available in Eaves et 

al. (1985) and Schneider (1989, 1990). 

The approach gets its name because each iteration derives a new candidate matrix 

by applying a single diagonal matrix to both sides of the last candidate matrix. This 

diagonal matrix  has the value of the identity matrix in all but one element—that 

diagonal element where i = q. In that one case, 

pD
p

qqd α= —the scaling parameter. As a 

result, Step 2 of the algorithm can be alternately formulated as . This 

formulation gives it the appearance of being a special case of RAS. Moreover, Lamond & 

Stewart (1981) and Cottle et al. (1986) likened DSS and RAS to the coordinate descent 

algorithm applied to the dual of minimum discrimination of information problem 

(presented next). 

( ) 11p p p p −+ =Z D Z D

An advantage of this approach over standard RAS is an extension provided by 

Schneider (1989, 1990) that enables it to handle upper and lower bounds on the margin 

totals. But its main drawback is that it requires column sums to equal row sums, which is 
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assured in the case of input-output analysis only for gross output. In this case gross value 

added and gross final demand would have to be known. Of course, balancing of the 

components of these two particular accounts could not be performed within the context of 

this algorithm. In any case, the minimum discrimination approach provides the same 

solution with greater flexibility. 

 

3.2. The Minimum Discrimination of Information Approach 

 

One of the earliest and most prominent scaling techniques besides RAS is the minimum 

discrimination of information approach. Building on important work by Shannon (1948a, 

b) and Kullback & Liebler (1951) on information theory, Uribe et al. (1965) associated 

the RAS solution with the optimal solution of the following minimization problem:15 

 

Minimize )/~log(~
11 ijijij

m
j

n
i zzzI == ΣΣ=  

subject to izz ij
m
jij

m
j ∀Σ=Σ ==    *

11
~  and   Σ jzz ij

n
iij

n
i ∀Σ= ==    *

11
~  

 

The advantage of this minimum discrimination of information approach, as it has 

become known, is that it can be more readily applied when less than perfect information 

is available than is required either by RAS or DSS. For example, it has been used when 

only some of the row and column totals are known or all of it is known with some 

specified degree of reliability.  

Interestingly, its solution is precisely , where r  for all 

i, and , for all j. Hence, the algorithm can be solved iteratively by giving 

initial values, say 

ˆˆ=Z R Z S jij
m
jii szz 1

* / =• Σ=

iji
n
ijj zrzs 1

* / =• Σ=

( )0 =r  or e ( )0 =s e :16  for all i, and 

 for all j. 

)1( +p
jij s1

* / =• Σm
j z)1( + = i

p
i zr

ij
p

i
n
ij zrz )(

1
* / =• Σ=p

js )1( +

As in the case of RAS, this is computed iteratively until equilibrium is reached. 

Hobson (1969) and Snickars & Weibull (1977) explored the properties of this approach 

and have shown that the solution exists, is unique, and converges, provided its conditions 

are respected. It is rather obvious: the series  for all i ])/(/[ )(
1

*
1

*)1(
ijij

p
i

n
ij

m
ji

p
i zzrzzr =•=•

+ ΣΣ=
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has necessarily a fixed point, unique, existing and converging because the function I is a 

convex and continuously derivable function defined on a compact set.  

 

3.3. Entropy Maximization  

 

The same result can also be generated from the entropy maximization principle (Jaynes, 

1957a, b; Wilson, 1970): 

 

Maximize  ijij
m
j

n
i zzH ~log~

11 == ΣΣ=   

subject to  izz ij
m
jij

m
j ∀Σ=Σ ==    *

11
~  and   Σ jzz ij

n
iij

n
i ∀Σ= ==    *

11
~  

and to Kzc ijij
m
j

n
i =ΣΣ ==

~
11 , 

 

where  is a unit cost of exchange per monetary unit exchanged (including 

transportation costs, transaction costs, legal fees, bank charges, etc.) on arc {  and K is 

the total cost of exchange over all the arcs of the network.  

ijc

}, ji

One can readily obtain the minimum discrimination of information approach and 

vice versa by posing , or equivalently )(e ijc
ijz γ−= γ/)(log ijij zc −=  for all i, j, where γ is 

the multiplier associated with the last constraint. Note that γ/1−  could be interpreted as 

a scale factor. Moreover, when K is minimized, this algorithm retrieves the result of the 

so-called “transport problem” (provided all variables are real). 

 

3.4. Other Biproportional and Biproportion-like Problems in Economics 

 

The number of problems in economics that lead, more or less, to a biproportional form is 

very large. Examples are: the gravity model (Nijkamp, 1975); the probabilistic 

multinomial model (Choukroun, 1975); the interaction minimization principle 

(Watanabe, 1969; Guiasu, 1979); the theory of movements (Alonso, 1978; Ledent, 1981); 

utility theory (Niedercorn & Bechdolt, 1969; Niedercorn & Moorhead, 1974); and 

Gumbel’s method (Thionet, 1976). 
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Vermot-Desroches (1986) and de Mesnard (1988, 1990) suggest that after a bit of 

transformation these alternatives should yield the same result as either the minimization 

discrimination of information or entropy maximization approaches. Many algorithms 

could potentially generate this result—some yet to be invented. If they fail to yield the 

same result as RAS, the concept of biproportion could be in doubt. Fortunately, de 

Mesnard (1994) demonstrated that all algorithms with a biproportional form (provided 

they respect constraints (1)) do, in fact, yield the same results. This provided a substantial 

basis toward refuting the reputation of biproportional methods, especially RAS, for being 

strictly empirical. 

 

4. Non-biproportional Approaches 

 

A third family of algorithms also largely developed in the 1970s and 1980s. We call 

members of this rather broad family non-biproportional approaches. Current they are 

handled strictly by mathematical programming software like LINDO and MINOS. They 

are all general constrained matrix problems that cannot be solved using the simpler set of 

scaling techniques. But they are closely related to matrix balancing problems (Bacharach, 

1970; Byron, 1978). Again, the objective function of these optimization problems can 

take many forms. Generally they minimize the sum some measure of distance between all 

elements of the two matrices (the prior and the estimated projection). 

Of this genre, the most commonly applied objective function is that first presented 

to an input-output audience by Almon (1968), the minimization of the square of the 

Euclidean distance between  and Z, i.e., Z 2
11 )~( ijij

m
j

n
i zz −Σ ==Σ . It is of particular interest 

because it has statistical properties that permit parallels to ordinary least squares (Durieux 

& Payen, 1976). 

Among other methods there are: 

• The minimization of the Hölder norm at the power θ: θ|~|11 ijij
m
j

n
i zz −ΣΣ == . 

When θ = 1, minimizing the Hölder norm becomes the minimization of the absolute 

differences, |~|11 ijij
m
j

n
i zz −ΣΣ == , 
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• The weighted absolute differences (Lahr 2001a, b), i.e., 

|)~|(11 ijijij
m
j

n
i zzz −ΣΣ == . 

• The normalized absolute differences used by Matuszewski et al. (1964), 

i.e., )/|~(|11 ijijij
m
j

n
i zzz −ΣΣ == , 

• Pearson's  or the normalized square of differences used by Deming & 

Stephan (1940) and Friedlander (1961), i.e. 

2χ

]/)~[( 2
11 ijijij

m
j

n
i zzz −Σ ==Σ ,  

• Neyman's : 2χ ]~/)~[( 2
11 ijijij

m
j

n
i zzz −ΣΣ == , although the lack of knowledge 

about  makes this objective less desirable from the perspective of the typical problem 

posed by input-output analysts. 

Z

• The weighted square differences, i.e., ])~([ 2
11 ijijij

m
j

n
i zzz −ΣΣ == . 

One of the main characteristics of this class of methods is that it can generate 

negative-valued elements in Z~  even if there are none in Z: that is, sign is not always 

preserved. While this can be a “good” thing, it is generally annoying since negative flows 

are difficult to interpret in economic terms (e.g. what is a negative flow ijz~ ? If it is the 

flow of commodity i sent by sector j to sector i, then it isodd since sector j is not the 

producer of commodity i. And if it is the negative flow of commodity i sent by sector i to 

sector j, what does that mean? Is it something like the return of books from a college 

bookstore after the end of a semester?) It is always possible to introduce an additional set 

of nonnegativity constraints ( 0~ ≥ijz  for all i, j) but remember that the solutions 

accumulate at the borders of the convex set of these constraints (each time where the 

solution would be negative). Hence, many zeros may appear in Z~ .17 

The family of nonlinear optimization algorithms that can be applied to the general 

constrained matrix problem is large. Hence, it would be nigh unto impossible to elucidate 

them within the confines of this introduction. In addition to traditional linear programs, 

methods used to balance matrices include nonlinear network methods (see, e.g., Bachem 

& Korte 1978, 1980, 1981a,b,c; Dembo et al. 1989), conjugate gradient algorithms 

(Byron, 1978), Lagrangian relaxation techniques, and successive overrelaxation 

algorithms. Many of the algorithms have yet to be applied to economic accounts. 
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Dembo et al. (1989) and Schneider & Zenios (1990) provide surveys of large-

scale network optimization algorithms, and Zenios et al. (1989) do so with an eye upon 

the context of social accounting matrices. These algorithms are so classified because they 

exploit the network structure inherent in the matrices upon which they operate—one node 

for every row and for every column of the matrix, one arc for every nonzero entry, and 

backarcs to convert transportation into a circulation network and to enforce the condition 

that the total flow into a column is the same as the total flow into the corresponding row. 

Although Bachem & Korte presented what eventually became their 1981 paper in 

Metrika at the Seventh International Conference on Input-Output Techniques held in 

Innsbruck in April of 1979, it was Florian & Los (1982) and van der Ploeg (1982, 1984, 

1988) who apparently first delivered this concept to the eyes of input-output analysts.  

Most of the literature in this field applies quadratic or entropy penalty functions. 

The quadratic function is justified because of its ready statistical interpretation as a 

generalized least-squares estimator, and the entropy function because of its basis in 

information theory as mentioned earlier. 

Several of the objective functions that had been published in the literature are not 

linear and must be linearized before finding a solution. Recall that linearization is not the 

panacea for such nonlinear problems because it is only worthwhile if the solution is in the 

neighborhood of the hyperplane of linearization. 

In Alternate Input-Output Matrix Updating Formulations in this issue, Randall W. 

Jackson & Alan T. Murray compare the performances of several of these algorithms to 

that of RAS, two of them bypassing biproportion’s sign-preserving features using a 

suggestion by Junius & Oosterhaven (2003). Interestingly, the authors find RAS is a top 

performer in their simulations, especially with regard to speed. But it is not consistently 

best at yielding an accurate projected matrix. Moreover, without sign-preserving features 

some of the other algorithms also perform well. But in these cases, at least at present, 

computational efficiency is extremely poor compared to that of RAS. 

 

5. Extensions of Biproportion Techniques 
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RAS, in particular, and biproportional techniques, in general, seemed to lose favor among 

competitive methods used by researchers during the 1980s and 1990s. Nonetheless, it 

appears now that extensions at least were incubating. Indeed, a number of the extensions 

of biproportional techniques demonstrated in this special issue of Economic Systems 

Research, recall earlier works published and unpublished that harken to works from this 

period. 

 

5.1. Biproportion with Known Interior Information 

 

Perhaps one of the earliest extensions of RAS known to the editors of this issue was one 

Lecomber (1975a) mentioned and that was performed by Omar (1967) who removed the 

sign-preserving feature of RAS, simply by setting all cells in the prior matrix so that they 

were zero. The negative numbers inherent to the prior tables were fortunately sufficiently 

small, so resulting tables apparently were not sensitive to such alteration (Schneider, 

1965; Omar, 1967). 

Philip Israilevich, one of three major contributors to whose memories this issue is 

dedicated—the others being Sir Richard Stone and Michael Bacharach—developed 

something called “ERAS”. Israilevich’s work was informed about the fundamentals of 

RAS provided by his professors Ronald E. Miller and Peter Blair (see Miller & Blair, 

1985) as well as his familiarity with advances in matrix balancing techniques founded 

upon optimization techniques via Stavros Zenios and his colleagues. In his Ph.D. 

dissertation entitled Biproportional Forecasting of Input-Output Tables, Israilevich 

(1986) developed a RAS-based approach that fixes interior cell values of the “forecasted” 

matrix to known values. This approach helped Szyrmer (1989) develop an interesting 

piece that showed more known information in such a setting will improve RAS’s 

projection capability.18 Lahr (2001a) supported this notion as well, by measuring the gain 

in accuracy when adding selected perfect information to a nonsurvey table. The data 

added in Lahr’s work were based on an algorithm that identified sectors that had the 

greatest linkage power and then the elements within that sector to which the Leontief 

inverse was most sensitive. 
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According to Paelinck & Waelbroeek (1963), one can incorporate known interior 

information matrix information in a RAS setting. When projecting to a desired table, one 

can account for the values of known interior cells of such a table by setting the particular 

known cell values to zero and subtracting the known values from the corresponding row 

and column margins. One can obtain the solution by proceeding with the standard RAS 

procedure and placing the known values back into their cells when the algorithm 

terminates. In this way, rather than adding to constraints (1), which would obviate the 

possibility of biproportional techniques and often was a reason why mathematical 

programs were used, this operation basically requires a mere realigning of them. Of 

course, too many zeros can possible pose a problem since zero cells serve to block the 

ability of the RAS procedure to distribute excess value from one sector to another. 

Gilchrist & St. Louis (1999) described an algorithm they call “TRAS” (three-

stage RAS) after Bacharach’s (1970, pp. 93-99) two-stage algorithm. Like Israilevich’s 

(1986) approach, of which these authors were unaware, TRAS extends RAS by 

including, in the table to be projected, “known” information beyond that for the column 

and row totals. In particular, using a perspective not unlike that presented by Oosterhaven 

et al. (1986), who updated a set of regional tables based upon a new national table, 

Gilchrist & St. Louis (1999) cite the case of provincial tables in Canada where some 

elements of published tables are suppressed at one level of sectoral detail and not 

suppressed at a more-aggregated level of sectoring. The object of their algorithm then is 

to fill in the detailed matrix’s censored data using information from its more aggregated 

but uncensored equivalent. The so-called “third stage” of TRAS is one adjusting for 

differences in sectoral detail between the two matrices. Using a Monte Carlo experiment 

for all Canadian provinces, the authors showed that being informed by the more 

aggregated tables improved the accuracy of the detailed tables substantially compared to 

a standard RAS approach. This was especially the case for the Make tables as opposed to 

the sparser Use tables. 

In An Algorithm for the Consistent Inclusion of Partial Information in the 

Revision of Input-Output Tables in this issue Donald Gilchrist & Larry V. St. Louis 

revisit TRAS, limiting themselves to the construction of a relatively detailed table for 

Alberta only. This time they opt for a stronger test of the marginal value of TRAS over 
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RAS. They do so by using the results of the RAS adjustments as the initial coefficients in 

subsequent TRAS adjustments. They then measured the marginal gain of TRAS over 

RAS, by regressing the result from the RAS and the incremental gain from TRAS against 

the actual coefficients for five different tables: the make coefficients, use coefficients, 

market share, direct coefficients, and Leontief inverse matrices. The incremental gain 

from TRAS is shown to be statistically significantly different from the information 

obtained via RAS in all but the market share matrix. While both RAS’s and TRAS’s 

performance in estimating elements of the make coefficients and market share tables was 

not very good and their ability to replicate the Use coefficients matrix was fair, their 

ability to replicate the direct coefficients and Leontief inverse was remarkable. Hence, it 

is clear that timely, accurate input-output tables can be produced with approaches like 

TRAS. 

Timely annual estimates of national accounts are not only desired, but, thanks to 

enhanced computer power, are becoming a reality in many corners of the world. 

Accordingly, the U.S. Bureau of Economic Analysis (US BEA) recent embarked on a 

research venture to speed up their procedures for producing annual tables at the same 

level of sectoral detail at which they supply their benchmark tables. In their contribution 

to this issue entitled Increasing the Timeliness of U.S. Annual I-O Accounts, US BEA 

researchers Mark Planting & Jiemin Guo reveal some results from the BEA 

investigation. As might be expected, they implement price information as did Barker 

(1975) and Snower (1990) and find the value of including known information about value 

added by industry. Like many previous studies, they find that adding known information 

tends to improve the quality of the annual tables resulting from the automated updating 

procedure.19 They also find that accuracy of tables with enhanced sectoral detail is more 

heavily influenced by the addition of the estimated value added data. But perhaps most 

surprising, however, is their finding that difference in the relative accuracy between 

tables (of the same dimension) with and without known value added precisely accounted 

is not that great. 

 

5.2. Biproportion Incorporating the Reliability of “Known” Data 
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As mentioned earlier, one reason that researchers seem to have moved away from RAS 

was that it was difficult to incorporate information on the relative reliability of data that is 

“known”.  Needless to say, balancing matrices composed of data with different qualities 

can be an imposing challenge. As Lahr (1993) and others have noted, analysts typically 

draw upon a variety of data sources in constructing an input-output table. This is 

especially true for the case of national accounting agencies, which can even have multiple 

sources for a particular data element.  

This apparent focus away from RAS due to data reliability issues occurred, 

however, despite an early RAS-based concept for attacking this problem (Stephan, 1942; 

Stone et al. 1942) and a promising generalization of RAS published by Allen & 

Lecomber (1975). The latter pair of authors essentially applied RAS only to a matrix that 

embodied “any views on the relative accuracy of cells” (Allen & Lecomber, 1975, p. 48) 

in an initial matrix that was a hybrid of the prior matrix and “known” exogenous new 

data. Perhaps the departure from RAS for accounting for data reliability was simply due 

to the fact that optimization techniques could handle reliabilities relatively explicitly 

using weak inequality constraints and objective functions that incorporate penalties for 

deviations from some “desired” value. On the other hand, it may well have been that 

procedures for documenting data reliability at the time simply were not up to the task. 

Although Allen & Lecomber (1975) performed tests on their generalized version 

of RAS, they did not document how they had identified the relative reliability of their 

data. Indeed, explicit discussion of how to measure data reliability in an input-output 

setting was not really documented until the debate between Gerking (1976; 1979a, b), 

Miernyk (1976, 1979), and Gerking & Pleeter (1977), which Gerking started due to the 

general subjective treatment of data reliabilities in a West Virginia input-output table.20  

Jensen & McGaurr (1976) may well have been the first to document explicitly how they 

accounted for data reliability in the development of input-output tables.  

Recent work by Robinson et al. (2001) briefly summarizes some of the efforts 

undertaken via constrained optimization approaches to handle differing data reliabilities. 

Most notable among them is that by Golan et al. (1994), who, following suggestions 

made in the pioneering work of Stephan (1942), Stone et al. (1942) and Byron (1978), 
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develop a specification where each “known” element of a projected matrix is assumed to 

have a different degree of robustness associated with it.  

Lahr (2001a) returned to RAS as a means of handling data reliability issues, albeit 

only for deviations from “known” margins. He did so by adjusting the RAS algorithm so 

that the termination criterion for the differences of intermediate margin estimates from 

“known” margins (so-called “tolerances”) were pre-specified percentages of the known 

margins themselves. He designed these pre-specified percentages to reflect reliability of 

the “known” margins: the greater the reliability, the lower the percentage.  

Based upon an algorithm developed in Stone (1984), in this issue Ebsen Daalgard 

& Christian Gysting describe An Algorithm for Balancing Commodity-flow Systems. 

Their algorithm includes a biproportional row and column pass at its outset, and can 

handle commodity-flow systems with six different sets of prices (RAS can handle only 

one). Perhaps more importantly, unlike RAS, margin totals in their algorithm do not have 

to be balanced at the start. A key feature of the algorithm is its ability to incorporate 

information on the relative reliability of different data elements in a target vector.  

Comparing the results of a fully automated pass of their algorithm at an aggregated level 

to an official manual one balanced at a more detailed level, the authors find few 

differences of any magnitude worthy of mention. Interestingly, their results were quite 

robust with respect to substantial variations in the reliability parameters. Given the large 

successes the authors show, it will be interesting to see how their approach performs in 

another setting, especially with greater sectoral detail. 

 

5.3. The Concept of Frame Shifting 

 

Conway (1990) developed an alternative approach to circumvent RAS’s shortcomings in 

updating input-output models—the so-called regional econometric input-output model 

(REIM) approach. The REIM approach uses principles of Marshallian output equilibrium 

to circumvent the need for updated prices to rebalance an input-output table’s rows in 

value terms. Without prices, columnwise constraints cannot be imposed; as a result much 

of value added is considered a residual, as typical in national accounts.  
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By anyone’s standard it would be a bit of stretch to consider the REIM approach 

“biproportional” since it only adjusts across rows once. Nonetheless, we mention it here 

because Israilevich (2002)21 conceived an extension of Conway’s innovation that 

amounts to a single adjustment for both the row and column of an input-output table. He 

called it “frame shifting”. He overcame the lack of prices by suggesting that price 

equations could be built using Sheppard’s Lemma with the direct input-output 

coefficients as input shares as in Hudson & Jorgenson (1974) without explicitly 

articulating physical quantities.  

Unaware of Israilevich’s work at the outset, Kurt Kratena & Gerold Zakarias 

implement it after a fashion in Input Coefficient Change Using Bi-proportional 

Econometric Adjustment Functions in this issue. The application is one for Austria, and 

varies from Israilevich’s concept by accounting for actual rather than implicit energy 

prices and by not necessarily ensuring that the row adjustment conforms with the output 

vector. As in the case of several other instances in this issue of ESR, RAS outperforms 

the novel technique in forecasting a known input-output table. Nonetheless, this approach 

shows much promise, especially from the perspective of economic rationale. Hence, it is 

not surprising that these authors suggest several ways in which one could improve upon 

their technique. 

 

6. Conclusion 

 

Searching for a better estimate of a matrix based on the structure of a prior and margins 

of another matrix is a very general problem. As we point out at the start of this paper, it is 

applied in many fields outside the developing application to National Accounting for the 

purposes of estimating regional flows, interregional flows, international flows, financial 

flows, migration flows, voting behavior,22 etc. Biproportional methods are efficient where 

information is missing, unavailable, and when econometric estimation is at least difficult 

if not impossible—typically where phenomena are represented by matrices.  

If attendance at the sessions we organized at recent professional meetings is any 

measure, biproportional and related techniques have regained the popularity they once 

owned in the production of input-output accounts and social accounting matrices. This 
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may largely be due to the ready availability of data and very low-cost of computing 

power, especially relative to that of labor. Hence, advancing these techniques clearly 

remains a vital, potent theme in our field. Moreover, as papers in this issue bear witness, 

this is a topic in which academics have as much to learn from researchers in national 

accounting offices as vice versa. As a result it is clear that we shall be learning more from 

practitioners about their innovations in balancing social accounting matrices or systems 

of national accounts. We look forward to learning more particulars about how they 

incorporate differing data reliabilities and the complexities of subjective reliability 

assessments. Moreover, it will be useful to learn if the enhancements in accuracy and 

labor savings yield returns in making these accounts more timely.  

Clearly there are other topics from which we should hear some news in the near 

future. Applications of Geman & Geman’s (1984) expectation algorithm and/or Ramoni 

& Sabastiani’s (1998) “bound and collapse” algorithm seem to have some potential if the 

nature of the “neighborhood” surrounding the missing accounts data can be specified 

without much difficulty.  

It is clear there is a need for greater intensity in the use of biproportional 

techniques in certain settings. The increasing ease of data access and the mounting 

evidence for maintaining sectoral detail in official accounts will make a single complex 

series of different biproportional procedures a necessity for those who construct 

multiregional input-output accounts. First one would estimate interregional trade along 

the lines suggested by Canning & Wang (2003). Then regional data like that pointed out 

as being critical by Lahr (2001b) would itself have to be “filled-in” for disclosure 

problems before it is integrated into an intermediate set of accounts that subsequently 

would have to be balanced itself.  

In any case, biproportional techniques and related algorithms are alive and well 

with a great prognosis in the future of interindustry accounting. We look forward to 

seeing more experiences with them published within the pages of this journal. 
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Endnotes 

 

*Z

1 Estimating voting patterns can require working on integer numbers instead of real 
numbers, which generates some difficulties. 

2 The origins of this line of work are quite different from that of standard biproportional 
algorithms, stemming from the likes of Metropolis et al. (1953) and Hastings (1970). It 
is also related to the expectation maximization algorithm developed by Dempster et al. 
(1977) as well as algorithms developed by King et al. (2001), Gelfand & Smith (1990), 
and Tanner & Wong (1987), which are used to fill in missing data. For more details, see 
King et al. (2001), Little & Rubin (2002), or Schafer (1997). 

3 Junius & Oosterhaven (2003) have introduced a version of RAS, that they call 
“Generalized RAS” that accepts negative entries in Z and . Also remember that a 
zero in Z is projected as a zero in Z~  with RAS. 

4 This presentation is for any set of real non-negative matrices, not only for input-output 
matrices. 

5 This growth rate incorporates both real and inflationary growth if the family of Z 
matrices is not in real terms.  

6 This substitution matrix would also include information on real and inflationary growth 
as well as relative prices changes if the family of Z matrices is not in real terms.  

7 This is mostly due to academic interest in the changing structure of the direct 
requirements matrices since with some care they can be interpreted as representing the 
state of an economy’s technological development. 

8 Both of these operations are Hadamard (element-by element) division. 
9 However, it should be noted that results from the direct requirement matrices approach 

and of the transaction matrices approach are not necessarily comparable.  
10 This problem is not apparent in RAS, because it always starts with the same initial 

values, although the values of and  could depend upon whether one starts RAS 
with a row or column adjustment operation (steps 1 and 2 above are exchanged). The 
reader could find a parallel to this issue in the question of using relative or absolute 
prices in the general equilibrium theory. 

R̂  Ŝ

|

11 It must be noted that van der Linden and Dietzenbacher (1995, 2000) actually call this 
ratio a “sector-specific change” and not until Dietzenbacher & Hoekstra (2002), who 
used the difference ~|  instead, was it given the more appropriate nomenclature 
of the "cell-specific change". 

*
ijij aa −

|

12 This is comparable to de Mesnard’s (in this issue) concept of computing on the flow 
matrices ~| *

ijij zz − . Note that the difference approach makes possible the computation of 
the relatively simple Frobenius norm, either globally as in, columnwise as 

2
1])~([ 2*

ijiji zz −Σ , or rowwise as 2
1])~( 2*

ijijj zz −Σ[ , while the ratio approach necessitates 
computing a less common geometric norm. 
13 Indeed, van der Linden & Dietzenbacher (1995, 2000) and Dietzenbacher & Hoekstra 

(2002) also acknowledge this in the course of their work. Toh (1998), Andréosso-
O’Callaghan & Yue (2000) and Jalili (2000) build on it as well. 

14 Osborne (1960) developed this technique to enhance the accuracy of computing 
eigenvalues of a matrix. 
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*

15 Bregman (1967) and Theil (1967) often tend to be cited for this contribution. 
16 Nothing obliges one to initialize this algorithm with a vector of ones. Any other set of 

starting values will do, even a vector with different values for each element i. Moreover, 
doing so does not alter the values of the all-important product of the r and s vectors at 
equilibrium! Hence, one clear advantage over RAS is this approach’s lack of need for 
known initial starting values. Interestingly, if one does start with a vector of ones for s, 
after half of an iteration this approach produces intermediate candidate matrices that are 
identical to those produced via RAS. It remains that this approach is more general than 
RAS, or, RAS is a particular case of it. 

17 This should not be confused with the advantages provided by Junius & Oosterhaven’s 
(2003) generalized RAS (GRAS): in GRAS, both Z and Z contain negative terms. 

18 Lahr (2001a) as well as some unpublished experiments conducted by de Mesnard in 
consultation with Ronald E. Miller indicate that the extent of any biproportional 
“improvement” depends in part on the axiomatic chosen to measure the improvement: 
indeed, in some cases, the improvement could be negative. 

19 Planting & Guo measure table quality simply by counting the number of large 
coefficients differences. 

20 Although,Gerking did not mention it in his arguments, Stone et al. (1942) support his 
contention that it is important to formally account for data reliability. 

21 This is a post humous publication, cobbled together by his good friend and colleague 
Geoffrey J.D. Hewings. Philip Israilevich passed away in early December 1997, after a 
three-year bout with retinal cancer. 

22 Balinski & Gozalez (1997) apply an integer biproportional method to estimate voting 
patterns. 
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