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Abstract

We study a model in which two perfectly informed experts offer advice to a deci-
sion maker whose actions affect the welfare of all. Experts are biased and thus may
wish to pull the decision maker in different directions and to different degrees. When
the decision maker consults only a single expert, the expert withholds substantial in-
formation from the decision maker. We ask whether this situation is improved by
having the decision maker consult a cabinet of (two) experts. We first show that there
is no perfect Bayesian equilibrium in which full revelation occurs. When both experts
are biased in the same direction, it is never beneficial to consult both. In contrast,
when experts are biased in opposite directions, it is always beneficial to consult both.
Finally, a cabinet of extremists is of no value.
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1 Introduction

The power to make decisions rarely resides in the hands of those possessing the necessary
specialized knowledge. Instead experts are often solicited for advice by decision makers.
Thus, a division of labor has arisen between those who have the relevant expertise and
those who make use of it. The diverse range of problems confronted by decision mak-
ers, such as corporate CEOs or political leaders, almost precludes the possibility that they
themselves are experts in all relevant fields and hence, the need for outside experts natu-
rally arises. CEOs routinely seek the advice of marketing specialists, investment bankers
and management consultants. Political leaders rely on a bevy of economic and military
advisors. Investors seek tips from stockbrokers and financial advisors.

These and numerous other situations share some common features.
First, the experts dispensing advice are by no means disinterested. Differing objectives

among the parties may lead the experts to attempt to influence the decision maker in ways
that are not necessarily in the latter’s best interests. Investment banks stand to gain from
new issues and corporate mergers, decisions about which they regularly offer advice. The
political future of economic and military advisors may be affected by the decisions on
which they give counsel. Stockbrokers are obviously interested in the investment decisions
of their clients.

Second, in nearly all of these cases decision makers are bombarded with advice from
numerous experts, with possibly different agendas. Moreover, experts may strategically
tailor their advice to counter that offered by other, rival, experts. For instance, hawks may
choose more extreme positions on an issue if they know that doves are also being consulted,
and vice-versa. Thus the decision maker faces the daunting task of sifting through the mass
of sometimes conflicting opinions that are offered and coming to a conclusion as to the best
course of action. Indeed, this ability is routinely touted as the mark of a good leader.

Thus, the decision maker, in determining the size and composition of her “cabinet”
of advisors, must carefully consider the following questions: Is it possible to extract all
information relevant to the decision from a cabinet? Is it better to actively consult a number
of advisors or only a single, well chosen, advisor? Is it better to form a cabinet with diverse
opinions about what is the “correct” decision, or does a cohesive cabinet lead to better
advice? Is an advocacy system, where the decision maker appoints experts with opposing
viewpoints, helpful in deciding on the correct action? How do experts with extreme views
affect the advice offered to the decision maker? These questions form the central focus of
our paper.

To get at these questions, we use a simple model in order to analyze the interplay
among a single decision maker andtwo interested experts who have superior information.
The experts offer advice to the decision maker in order to influence the decision in a way
that serves their own, possibly differing, objectives. We ask how a decision maker should
integrate the opinions of experts when faced with this situation.

In our model, an expert’s preferences are parametrized by a measure of his inherent
bias relative to the decision maker. The experts may differ both in terms of how biased
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they are and in which direction. They may be biased in opposite directions (opposing
bias): one expert may wish to pull the decision maker to the left and the other to the right.
Alternatively, both may wish to pull in the same direction but to differing degrees (like
bias). The absolute value of the bias parameter indicates how “loyal” an expert is to the
decision maker. Of course, a more loyal expert’s objectives are more closely aligned with
those of the decision maker.

If the decision maker had the option of consulting only one of the two experts for
advice, it seems natural that he would consult only the more loyal expert, and indeed that
is the case in our model. Nevertheless,a priori it may be beneficial tocombinethe advice
from the two experts. It is easy to see that if the advice were solicited in a way that each
expert was ignorant of the fact that the other was also offering advice, the decision maker
would surely benefit relative to consulting only one expert. We study how this conclusion
is affected if each expert were aware that the other was also offering advice.

We first establish that, even though the information possessed by the experts is perfectly
correlated, the lack of congruence in incentives between the decision maker and the experts
always leads to a withholding of information on the part of the experts. That is, it is
impossible to form a cabinet such that the experts always reveal their information. To
assess whether it might still be beneficial to combine the advice of experts, we examine
separately the case where experts have like biases and the case where biases are opposing.

Like biases. When the two experts have like biases, we find that the decision maker
would deriveno benefit relative to consulting only one expert. Thus, despite the fact that
the two experts have identical information and the more loyal expert does not fully divulge
what he knows, the advice offered by the less loyal expert is of no additional value. More-
over,ex anteall parties, including the less loyal expert, would agree that the best course of
action is for the decision maker to consult only the more loyal expert.

Opposing biases.When the two experts have opposing biases, the decision maker al-
ways derives some benefit from consulting both experts relative to consulting only one.
Indeed, we show that even when experts would reveal no information if consulted alone,
combining the information of the experts leads them to completely reveal their information
over a portion of the state space, and this is beneficial relative to consulting only a single
expert. However, this conclusion holds only if at least one of the experts is not an “extrem-
ist.” If both of the experts are extremists, no information is revealed – either when they are
consulted separately or when information is combined.

Related Work The advice that experts offer does not have any direct economic effect;
at best it only influences economically relevant decisions. Thus experts’ advice has the
nature of “cheap talk.” Indeed our basic model is closely related to the model of Crawford
and Sobel (1982) of strategic information transmission between two parties, one of whom
has information useful for the other (see also Green and Stokey (1980)).

Our model differs from the Crawford and Sobel (1982), hereafter referred to as CS, in
that we allow formultiplesources of information. This context leads to important strategic
considerations absent in the single expert analysis. Now an expert must consider not only
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how his advice will directly influence the decision maker but also what information is com-
ing from other experts and how his mere presence will affect that. Likewise, the decision
maker now has the option of listening to only a subset of the panel of experts. As will be-
come apparent, the additional strategic considerations that arise with multiple experts lead
to technical complications not present with a single expert. Differences between the single
expert model of CS and our model are highlighted in later sections.

As is well known, models with cheap talk suffer from a plethora of equilibria and
efforts to identify some as salient has led to the development of a substantial literature on
refinements in this context (Matthews, Okuno-Fujiwara and Postlewaite (1991) and Farrell
(1993)). Farrell and Rabin (1996) present a concise survey. The models we consider also
have multiple equilibria; however, for the most part, our focus is on the “most informative”
equilibrium.

Closely related are papers by Gilligan and Krehbiel (1989), who examine the case of
opposing biases and by Austen-Smith (1990), who examines the case of like biases. Gilli-
gan and Krehbiel (1989) are concerned with the effect on legislative outcomes of having
two “expert” committees with opposing biases restrict the set of legislative alternatives that
may be implemented. They show that the restrictive “closed rule” system of determining
the set of alternatives, does not lead to different legislative outcomes compared to the “open
rule” where the set of alternatives is unrestricted. Austen-Smith (1990) examines the effect
of debate, modeled as cheap-talk, on legislative outcomes when there are three legislators.
His model is substantially different from ours in that the “expert” legislators vote on what
legislation is to be passed. Thus, the separation between the experts and the decision maker
is absent in his model.

The problem of multiple experts has also been considered by Ottaviani and Sorensen
(1997). Both their model and concerns, however, are different from ours. In their model the
experts are not directly affected by the decisions but care only about making recommen-
dations that are validatedex post. Thus experts care only about their reputation for “being
on the mark.” Ottaviani and Sorensen (1997) then show that a kind of “herd” effect results
when experts are consulted sequentially: experts may well neglect their own information
in order to appear correct. Also related are papers by Banerjee and Somanathan (1997) and
Friedman (1998), which examine information transmission in a setting in which there is a
continuum of potential experts with differing prior beliefs, at most one of whom receives
an informative signal about the state. Finally, the effects of combining information pro-
vided by experts with opposing incentives has also been examined by Shin (1994) in the
context of persuasion games (see Milgrom and Roberts (1986)), and by Dewatripont and
Tirole (1998) in the context of a moral hazard model.

Our work is also somewhat related to the problem of information transmission between
a decision maker and a single expert when the decision maker is uncertain about the bias of
the expert. Sobel (1985) and Morris (1997) focus on reputational considerations in the ex-
pert’s advice in analyzing this problem. Morgan and Stocken (1998) consider this problem
in a static CS-like setting and focus on information transmission by equity analysts.

The remainder of the paper proceeds as follows. Section 2 outlines the basic model.
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In Section 3, we establish the impossibility of complete information transmission as well
as a structural property of a monotonic equilibria of the two expert game. Section 4 ex-
amines the like bias case and shows that the addition of a less loyal expert conveys no
additional information relative to simply consulting the more loyal expert alone. In Section
5, we examine the opposing biases case and show that combining information can be ben-
eficial even when neither expert will reveal any information when consulted alone. There
are, however, limits to information gains from combining: when both of the experts are
extremist or when an extremist expert is consulted last combining experts’ advice is not
beneficial. Section 6 examines possible extensions of the simple model. Finally, Section 7
concludes. All proofs are collected in Appendix A. A second appendix, Appendix B, takes
up issues related to the existence of non-monotonic equilibria.

All of our results are illustrated by means of a series of examples. The examples offer
the essential intuition for the general results without some of the technical details of the
formal proofs. Indeed, all of the main propositions of the paper can be understood by
means of the examples.

2 Preliminaries

In this section we sketch a simple model of decision making when there are multiple ex-
perts. We do not model any of the examples mentioned in the introduction explicitly.
Rather our model is a stylized representation of the interaction among decision makers
and experts across a broad range of institutional settings. The overall structure extends the
model of CS to a setting with multiple experts.

Consider adecision makerwho takes an actiony2 R; the payoff from which depends
on some underlying state of natureθ 2 [0;1] : The state of natureθ is distributed according
to the density functionf (�) : The decision maker has no information aboutθ; but there are
two expertseach of whom observesθ:

The two experts then offer “advice” to the decision maker by sending messagesm1 2
[0;1] andm22 [0;1] ; respectively. After observing the state, messages are sentsequentially
andpublicly. First, expert 1 offers his advice; which is heard by both the decision maker
and expert 2. Expert 2 then offers his advice, and the decision maker takes an action. The
decision maker is not in any way bound by the advice of the experts. Instead, she is free to
interpret the messages however she likes as well as to choose any action.1

The payoff functions of all three agents are of the formU (y;θ;bi) wherebi is a param-
eter which differs across agents. For the decision maker, agent 0; b0 is normalized to be 0:
For the experts, agents 1 and 2,bi 6= 0 andb1 6= b2: We writeU (y;θ) �U (y;θ;0) as the
decision maker’s payoff function. We suppose thatU is twice continuously differentiable
and satisfiesU11 < 0; U12 > 0; U13 > 0: SinceU13 > 0 the parameterbi measures how
closely the experti’s interests are aligned with those of the decision maker and it is useful
to think of bi as a measure of howbiasedexperti is, relative to the decision maker. We

1In the political science literature, this is referred to as the “open rule” (Gilligan and Krehbiel (1989)).

5



also assume that for eachi; U (y;θ;bi) attains a maximum at somey: SinceU11 < 0; the
maximizing action is unique. The biases of the two experts and the decision maker are
commonly known.

These assumptions are satisfied by “quadratic loss functions.” In this case, the decision
maker’s payoff function is

U (y;θ) =�(y�θ)2 (1)

and experti’s payoff function is

U (y;θ;bi) =�(y� (θ+bi))
2 (2)

wherebi 6= 0: An important case, first introduced by CS, combines quadratic loss functions
with the assumption that the stateθ is uniformly distributed on[0;1] : We will refer to this
as the “uniform-quadratic” case.

In studying the multiple experts problem, we divide the analysis into two cases. If both
experts are biased in the same direction, that is, bothb1;b2 > 0; then the experts are said to
havelike biases. If the experts are biased in opposite directions, that is,bi > 0> bj ; then
the experts are said to haveopposing biases.2

Definey� (θ) = argmaxyU (y;θ) to be theidealaction for the decision maker when the
state isθ: Similarly, definey� (θ;bi) = argmaxyU (y;θ;bi) be the ideal action for expert
i: SinceU13 > 0; bi > 0 implies thaty� (θ;bi) > y� (θ); and since such an expert always
prefers a higher action than is ideal for the decision maker, we will refer to him as being
right-biased. Similarly, if bi < 0 theny� (θ;bi) < y� (θ) and we refer to such an expert as
beingleft-biased.

Notice that with quadratic loss functions, the ideal action for the decision maker is to
choose an action that matches the true state exactly: for allθ; y� (θ) = θ: The ideal action
for an expert with biasbi is y� (θ;bi) = θ+bi:

A word of caution is in order. Our results fall into two categories. Some concern the
structure of equilibria of the multiple experts game and are derived under the assumptions
given above. Others concern welfare comparisons among equilibria and require an addi-
tional assumption. This is no different from the single expert model considered by CS and
like them we need their Assumption M (p. 1444 of CS) in order to derive unambiguous
welfare results (specifically, Propositions 2 and 3). This assumption, while not so trans-
parent, is satisfied by the uniform-quadratic case. Thus in the interests of exposition, we
have chosen to derive the welfare results only for the uniform-quadratic specification. The
reader should be aware that these results can be derived more generally under Assumption
M of CS.

3 Equilibrium with Experts

Single Expert Before studying equilibria of the model with two experts it is instruc-
tive to recall the structure of equilibria of the model with a single expert as derived by

2The case where bothb1;b2 < 0 is qualitatively no different from the case where bothb1;b2 > 0:
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Crawford and Sobel (1982).
In the single expert game a strategy for the expertµ specifies the messagem= µ(θ)

that he sends in any stateθ: A strategy for the decision makery specifies the actiony(m)
that she takes following any messagem by the expert. LetP(�jm) denote the cumulative
distribution function that specifies posterior beliefs about the state held by the decision
maker after the messagem:

In a perfect Bayesian equilibrium(1) for all messagesm; the decision maker’s action
y(m) maximizes her expected payoff given her posterior beliefsP(�jm); (2) the beliefs
P(�jm) are formed using the expert’s strategyµ by applying Bayes’ rule wherever possible;
(3) given the decision maker’s strategyy; for all statesθ, µ(θ) maximizes the expert’s
payoff.

CS show that every equilibrium of the single expert game has the following structure.3

There are a finite number of equilibrium actionsy1;y2; :::;yN: The equilibrium breaks the
state space intoN disjoint intervals[0;a1); [a1;a2); ::: ; [an�1;an); ::: ; [aN�1;1] with action
yn resulting in any stateθ 2 [an�1;an): The equilibrium actions are monotonically increas-
ing in the state, that is,yn�1 < yn: Finally, at every “break point”an the following “no
arbitrage” condition

U (yn;an;b) =U (yn+1;an;b) (3)

is satisfied. In other words, in statean the expert is indifferent between the actionsyn and
yn+1: SinceU12> 0, for all θ < an, the expert strictly prefersyn to yn+1 and for allθ > an,
the reverse is true. Thus (3) serves as an incentive (or self-selection) constraint.

Multiple Experts In the multiple experts game a pure strategy for expert 1 is a func-
tion µ1(θ) mapping states into messages and a pure strategy expert 2 is a functionµ2(θ;m1)
mapping states and messagesm1 from expert 1 into messages. A (pure) strategy for the
decision maker is a functiony(m1;m2) mapping messages into actions. LetP(�jm1;m2)
denote the cumulative distribution function that specifies posterior beliefs about the state
held by the decision maker after messagesm1 andm2:

In the multiple expert game a (pure strategy)perfect Bayesian equilibrium(PBE) en-
tails: (1) for all pairs of messagesm1 andm2; the decision maker’s actiony(m1;m2) max-
imizes her expected payoff given her beliefsP(�jm1;m2); (2) the beliefsP(�jm1;m2) are
formed using the experts’ strategiesµ1 andµ2 by applying Bayes’ rule wherever possible;
(3) given the decision maker’s strategyy; for all statesθ and messagesm1 sent by expert 1
µ2(θ;m1) maximizes expert 2’s payoff; and (4) given the decision maker’s strategyy and
expert 2’s strategyµ2; for all statesθ, µ1(θ) maximizes expert 1’s expected payoff.4

Given a PBE we will denote byY theoutcome functionthat associates with every state

3CS actually characterize the set ofBayesianequilibrium outcomes. In the single expert game this is the
same as the set ofperfect Bayesianequilibrium outcomes. As we show in Section 3 this equivalence does
not hold in the multiple expert game.

4The formal definition of a PBE requires only that the various optimality conditions hold foralmost every
state and pair of messages. This would not affect any of our results.
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the resulting equilibrium action. Formally, for eachθ

Y (θ) = y(µ1(θ) ;µ2(θ;µ1(θ))) :

Denote byY�1(y) = fθ : Y (θ) = yg : Given an outcome functionY we can determine
the resultingequilibrium partition

P =
�
Y�1(y) : y is an equilibrium action

	

of the state space. The partitionP is then a measure of the informational content of the
equilibrium. If the equilibrium partitionP is finer thanP 0; then the informational content
of P is greater than that ofP 0; since the former allows the decision maker to discern among
the states more effectively.

A PBE always exists. In particular, there are always equilibria in which all messages
from both of the experts are completely ignored by the decision maker, or in other words,
both experts “babble.” To see that this is a PBE, notice that since the messages of the
experts contain no information, the decision maker correctly disregards them in making her
decision. Likewise, from the perspective of each of the experts, since messages will always
be ignored by the decision maker, there is no advice giving strategy that improves payoffs
relative to babbling. Obviously, information loss is most severe in a babbling equilibrium.
Typically, there are also other, more informative, equilibria.

Example 1 Let the stateθ be distributed uniformly on[0;1], and let the payoff func-
tions be of the quadratic loss kind specified in (1) and (2). This is the uniform-quadratic
case introduced earlier.

Suppose thatb1 = 1
40 andb2 = 1

9 so that the experts havelike biases and expert 1 is
less biased than is expert 2. A PBE for this game is depicted in Figure 1, where the states
a1 =

1
180; a2 =

22
180; a3 =

61
180 and the actionsy1 =

1
360; y2 =

23
360; y3 =

83
360; y4 =

241
360:

In the figure, the outcome functionY is the step function depicted by the dark lines.
The lower dotted line depicts expert 1’s ideal actionsy� (θ;b1) = θ+b1 and similarly, the
upper dotted line depicts expert 2’s ideal actionsy� (θ;b2) = θ+ b2. In equilibrium, the
information available to the decision maker is that the state lies in one of four intervals
[0;a1); [a1;a2); [a2;a3) or [a3;1]: The actiony1 is then optimal for the decision maker
given that he knows thatθ 2 [0;a1); y2 is optimal givenθ 2 [a1;a2); etc.

To see that this is an equilibrium configuration, notice that in statea2 expert 1 is exactly
indifferent between actionsy2 andy3 since(a2+b1)�y2 = y3� (a2+b1) : (In the figure
this indifference is indicated by the vertical double pointed arrow centered ona2 + b1:)
Expert 1 strictly prefersy2 to y3 in all statesθ < a2 and prefersy3 to y2 in all statesθ > a2:

Thus given the decision maker’s strategy he is willing to distinguish between statesθ < a2
and statesθ > a2:

Similarly, in statea3 expert 2 is indifferent betweeny3 andy4 and is willing to distin-
guish between statesθ < a3 and statesθ > a3:

Thus in statesa2 anda3 the “no arbitrage” condition (3) from CS holds for either expert
1 or expert 2:
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Figure 1: A PBE with Like Biases

In statea1; however, neither expert is indifferent betweeny1 andy2: Indeed, expert 1
strictly prefersy1 to y2 in statea1: (Notice that expert 1’s ideal actiony� (a1;b1) ; is closer
to y1 thany2.) Expert 2; on the other hand, strictly prefersy2 to y1: The equilibrium calls for
expert 1 to “suggest” actiony1 by sending a messagem1 = y1 and for expert 2 to “agree”
and also send the messagem2 = y1: Expert 2 has the option of “disagreeing” with expert
1 and inducing actiony3. The equilibrium is constructed so that expert 2 is indifferent
betweeny1 andy3 in statea1 and so strictly prefersy3 to y1 if θ > a1: Thus, even though
in states just abovea1; expert 1 would strictly prefer to switch from the equilibrium action
y2 to y1; were he to actually suggest actiony1; expert 2 would disagree, resulting in action
y3: Sincey2 is preferred toy3 by expert 1 in these states, expert 1 will choose not to
deviate: Here we see how the strategic interaction of the two experts creates the possibility
of “disciplining” the experts in a manner not possible for the single expert case.5

A Mechanism Design Interpretation Since our focus is on finding the most informative
equilibrium in the multiple experts game, the following “mechanism design” interpretation
of the decision maker’s problem will sometimes prove helpful. Viewed in this light, finding

5A detailed specification of the equilibrium strategies and beliefs for this and all other examples in the
paper may be obtained from the authors.
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the most informative equilibrium may be viewed as a type of implementation problem
where the “planner is a player” (see Baliga, Corchon and Sj¨oström, (1997)) but where the
set of feasible game forms that the planner can propose is substantially constrained.

Specifically, suppose that the decision maker were free to assign a “meaning” to each of
the messages that the experts might issue provided that the assigned meaning was consis-
tent in equilibrium. In effect, the decision maker is choosing alanguage.This is equivalent
to the decision maker announcing her beliefsP(�jm1;m2) for all message pairs(m1;m2).
Such an announcement immediately implies an actiony(m1;m2) associated with each mes-
sage pair. Given an announcement of beliefsP(�jm1;m2) and a messagem1; expert 2
chooses a strategyµ2(θ;m1) to maximize his payoff. Similarly for expert 1. Finally, for the
announced beliefs to be consistent requires that the announced beliefs correspond to poste-
rior beliefs obtained by applying Bayes’ rule for all message pairs(µ1(θ) ;µ2(θ;µ1(θ))) :
Thus the decision maker’s problem is to choose a language that is incentive compatible.

The problem of choosing the most informative equilibrium is formally equivalent to
choosing beliefsP(�jm1;m2) to maximize herex anteexpected payoff subject to the con-
straints that(µ1;µ2;y) form a PBE.

With this reformulation in mind, we turn to the question of whether there exists an
announced set of beliefs satisfying the above constraints such that the state is always com-
pletely revealed. We shall refer to this as full revelation. Obviously, such a fully revealing
equilibrium would maximize the decision maker’s expected payoff.

3.1 Full Revelation

Full revelation means that in every state, the equilibrium action is the same as the decision
maker’s ideal action, that is, for allθ;Y (θ) = y� (θ) : (Equivalently, the associated equilib-
rium partitionP consists of singleton sets.) With only a single expert, CS show that full
revelation isnot aBayesian equilibrium (BE).

With multiple experts, however, full revelation can occur in a BE. We demonstrate
this by looking at the case where the experts are biased in the same direction, that is,
b1 > 0; b2 > 0: Both experts then prefer a higher action than is optimal for the deci-
sion maker: y� (θ;bi) > y� (θ) : Suppose that the decision maker announces the beliefs
P(θ = minfm1;m2gjm1;m2) = 1: The associated strategy of the decision maker is then
y(m1;m2) = y� (minfm1;m2g) : Let expert 1 follow the strategyµ1(θ) = θ of revealing the
state and expert 2 follow the strategy of also revealing the state regardless of what expert
1’s message is:µ2(θ;m1) = θ: In stateθ, both experts send messagesm1 = m2 = θ; and the
action taken isy� (θ) which, from the perspective of either expert, is better than any action
y< y� (θ). Reporting anmi < θ will only decreasei’s payoff whereas reporting anmi > θ
will have no effect given that the other expert followsµj :

Thus with perfectly informed experts, there exists a BE in which the decision maker
can extract all the information and achieve a first-best outcome.

The equilibrium constructed above, however, involves non-optimizing behavior on the
part of expert 2 off the equilibrium path. Specifically, in stateθ 2 [0;1) if expert 1 were
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to choose a messagem1 = θ+ ε; for ε > 0 small enough, it is no longer optimal for expert
2 to playµ2(θ;m1) = θ: Indeed, he is better off also deviating tom2 = m1: Thus the full
revelation BE constructed above is not a PBE.

The reason the Bayesian equilibrium constructed above does not survive the stronger
PBE notion should be familiar. Expert 2 cannot credibly commit to reveal the state regard-
less of expert 1’s message. Expert 1 can exploit this by exaggerating the true state slightly,
confident in the knowledge that expert 2 will follow his lead.

More generally:

Proposition 1 There does not exist a fully revealing PBE.

3.2 Monotonic Equilibria

The outcome function associated with full revelation, as well as that associated with a
babbling equilibrium, and with all equilibria where only a single expert is consulted have in
common the property that the equilibrium action induced in a higher state is at least as large
as that induced in a lower state. Formally, we will say that a PBE(µ1;µ2;y) is monotonic
if the corresponding outcome functionY (�) is a non-decreasing function. Notice that the
PBE constructed in Example 1 also shares this property.

For the remainder of the paper, our analysis will concern itself with monotonic equi-
libria. Recall that in the case of a single expert we know from CS that all equilibria are
monotonic. This is not true with multiple experts as an example in Appendix B shows. For
the case of like bias, we also provide sufficient conditions to ensure that all equilibria are
monotonic equilibria (Proposition 5 in Appendix B). In the case of opposing biases, our
conclusions remain unaltered if we also admit the possibility of non-monotonic equilibria.

The following result identifies some simple necessary conditions satisfied by monotonic
equilibria.

Lemma 1 Suppose Y is monotonic. If Y has a discontinuity atθ and

lim
ε#0

Y (θ� ε) = y� < y+ = lim
ε#0

Y (θ+ ε)

then

U
�
y�;θ;minfb1;b2g

�
�U

�
y+;θ;minfb1;b2g

�
; and (4)

U
�
y�;θ;maxfb1;b2g

�
�U

�
y+;θ;maxfb1;b2g

�
: (5)

Viewed from a mechanism design perspective, the inequalities (4) and (5) are in the na-
ture of incentive constraints: at any discontinuity, the expert with bias minfb1;b2g weakly
prefers the lower actiony� whereas the expert with bias maxfb1;b2g weakly prefers the
higher actiony+: As we pointed out earlier, Example 1 shows that these inequalities may
be strict for both players (for instance, at the first point of discontinuity,a1) and thus the
incentive compatibility constraint of each of the experts holds with slack. This is to be
contrasted with the single expert case where the incentive constraints (3) must hold with
equality.
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4 Experts with Like Biases

In this section, we examine a situation in which a decision maker can consult with a group
of like biased experts. We focus on two questions: first, what is the information content of
advice offered by a given panel of such experts; and second, how should a decision maker
determine the composition of such a panel. We begin by establishing limits to information
transmission by a group of like biased experts.

Our first result shows that when the experts have like biases there can be at most a finite
number of equilibrium actions played in any monotonic PBE.6 In particular, it rules out the
possibility of full revelation in the case of like biases (Case 2 in the proof of Proposition 1)
since a fully revealing equilibrium must be monotonic and involves an infinite number of
equilibrium actions.

Lemma 2 Suppose experts have like biases and Y is monotonic. Then there are a finite
number of equilibrium actions.

The intuition for Lemma 2 is that if two equilibrium actions are sufficiently close to one
another, then there will be some state where the lower action is called for, but both experts
prefer the higher action. As a consequence, the first expert can deviate and send a message
inducing the higher action confident that expert 2 will follow his lead. Put differently, it
is impossible to satisfy the incentive constraints of Lemma 1 if equilibrium actions are too
close together.

A consequence of Lemma 2 is that the information transmitted with like biased experts
is severely limited: only a finite number of actions occur in equilibrium. The multiple
expert setting shares this qualitative feature with the single expert model of CS despite the
fact that the information possessed by the two experts is perfectly correlated.

We next turn to a more precise examination of the potential informational benefits of
adding an expert.

4.1 Choosing a Cabinet

Suppose that there is a decision maker who must choose a panel of like biased experts,
a cabinet, to advise her. She is aware of the biases of each of the experts that she might
select. What is the optimal composition of the panel?

Proposition 2 shows the solution to the problem of determining the optimal panel is
strikingly simple. Specifically, it is optimal to have a one member panel that consists of the
least biased expert. We show that it is always the case that in the most informative partition
equilibrium the more biased expert’s advice has no value. In other words, the more biased
expert isredundant.

6In Appendix B, we show (Lemma 4) thatall PBE consist of only finite equilibrium actions for the
uniform-quadratic case.
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To answer this question requires that we make welfare comparisons among the set of
monotonic PBE in a multiple experts setting. However, we remind the reader that to ob-
tain unambiguous welfare comparisons even among single expert equilibria as in CS, we
require an additional assumption (their Assumption M, p. 1444 of CS) to guarantee that a
rightward shift in one break point leads to a rightward shift in all break points. The most fre-
quently employed specification where this assumption is satisfied is the uniform-quadratic
case given in Example 1. The transparency of the argument is also much improved by
considering this case; thus, for the remainder of the section, our arguments will reflect
the uniform-quadratic specification. However, one can show that our main result for this
section (Proposition 2) holds generally when Assumption M is satisfied.

Example 2 It is useful to illustrate the information transmission properties of the
multiple expert game by continuing to study the uniform-quadratic case from Example 1
whereb1 =

1
40 andb2 =

1
9.

If the decision maker solicited only expert 1 for advice, the Pareto superior (and also
most informative) equilibrium results in the partitionP1 of [0;1] being communicated to
the decision maker.

` �
1
+ � �

1
+ � � �

1
+ � � � � � a

0 1
10

3
10

6
10 1

This means that if the true stateθ lies in the interval
�
0; 1

10

�
; the expert sends a message

m1 =
1
20 advising the decision maker to choose actiony1 =

1
20: Similarly, if θ 2

�
1
10;

3
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�
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suggestsy2 =
4
20, if θ2
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3
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6
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�
; he suggestsy3 =

9
20 and ifθ2

�
6
10;1

�
he suggestsy4 =

16
20:

We will refer to points such as110;
3
10 and 6

10 as “break points” in that they determine
how the set of states is broken up in such an equilibrium. In the figure given above the
superscript above each break point labels the expert whose message distinguishes states
below the break point from states above the break point. Thus, the decision maker only
knows which of these four intervals contains the true state. As a result, his expected utility
is�0:0083: Notice that in this case, there is no slack in the incentive constraints of expert
1 at any point of discontinuity.

Similarly, if the decision maker solicited only expert 2 for advice, the most informative
equilibrium partition isP2:

` � � � �
2
+ � � � � � � � � � a

0 5
18 1

resulting in a payoff of�0:0332 to the decision maker. Notice that expert 2 withholds
more information than does expert 1, in the sense that the variance of the true state of the
world, given the equilibrium partition, is higher with expert 2 than expert 1. Intuitively,
since expert 2 wishes the decision maker to choose a larger value ofy than does expert 1,
he withholds more information than does expert 1. Put differently, in announcing beliefs,
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the decision maker is faced with a much more daunting problem in satisfying incentive
compatibility for the more biased expert 2. As a result, the most informative equilibrium
consulting only expert 2 leads to considerably more information withholding.

If there were no further strategic considerations, that is neither expert knew of the
other’s existence, the decision maker couldcombinethe reports of the two experts to obtain
the partitionP1^P2:
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which is the coarsest common refinement (join) of P1 andP2: The decision maker’s ex-
pected utility is now�:0081: Thus, it seems plausible that the addition of another expert,
even an expert more biased than expert 1, might be helpful in overcoming the problem of
strategic information withholding.

Of course, this ignores strategic interaction among the experts. That is, each expert acts
as though he or she were the only source of information available to the decision maker.
Indeed, the specification above is not a PBE in the multiple experts game. One profitable
deviation is for expert 1 to induce a higher equilibrium action for states near1

10:

Now suppose that the decision maker solicits both experts for advice regarding the true
state, and the experts are aware of each other’s presence. What is the most informative
monotonic PBE?

One such equilibrium was described in Example 1 with the following information par-
tition.
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Recall that at the pointθ = 1
180 neither expert is indifferent betweeny1 and y2 and so

there is slack in both incentive constraints. In particular, expert 1 strictly prefers thelower
equilibrium action for states near1180 and for states near61

180: The decision maker’s expected
utility in this equilibrium is�:0250:

An analogous PBE when we eliminate the slack in expert 1’s incentive constraint at the
first point of discontinuity results in the equilibrium partitionQ :
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where expert 1 is exactly indifferent at the first two break points and expert 2 is indifferent at
the third break point. This results in expected utility of�:0247 to the decision maker. This
is better than the equilibrium of Example 1: The intuition for this result is that, by shifting
the first break point to the right, informativeness is improved since all of the other break
points shift to the right as well. Moreover, as there is slack in expert 1’s incentive constraint,
such a rightward shift is possible. Thus, one can show thatQ is the most informative PBE
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in which there are three break points and both experts’ messages are relevant. It can also
be shown that it is not possible to create a fourth (or more) interior break point.

Even though the partition size is limited to that of the most loyal expert, it might still be
possible that combining messages from the experts represents an informational improve-
ment for the decision maker.

ComparingQ to P1 we see that the more biased expert 2 distorts the third break point
to the left, from 6

10 to 41
120. This reduces the information content in the right-most interval

by introducing slack into expert 1’s incentive constraint. Moreover, the leftward shift by
expert 2 shifts all of the other break points to the left; thus it also distorts expert 1’s break
points to the left, from3

10 down to 23
180 and from 1

10 to 1
72: The aggregate effect of these

distortions is to reduce the expected utility of the decision maker and that of both experts.
Thus, we observe thatin the case of like biases the most informative monotonic equi-

librium is generated by consulting the most loyal expert alone.
To see why this argument generalizes, notice that for any PBE, if there is a break point

where expert 1’s incentive constraint holds with slack, it is possible to shift this break point
to the right while still preserving incentive compatibility. By Assumption M, all of the
other break points shift to the right as well and rightward shifts improve informativeness.
Repeated application of this argument implies that the most informative equilibrium is one
where there is no slack in any of expert 1’s incentive constraints as points of discontinuity,
but this is exactly the equilibrium condition for the single expert case given in CS. Thus,
we have that the addition of one (or more) less loyal experts in the case of like biases can
never help information transmission.

Formally,

Proposition 2 Suppose that expert i has bias bi > 0. Then the addition of another expert
with bias bj � bi is neverinformationally superior.

Despite the fact that the messages of one expert can be used to discipline the incentives
of the other expert to deviate, in the case of monotonic equilibria with like biased experts,
this disciplining only has the effect of causing the incentive constraints to hold with slack.
As we saw in the example, slack in the incentive constraints effectively shifts all of the
break points to the left in any monotonic PBE and hencereducesinformation transmission.

Notice that this redundancy effect holds regardless of whether the committee is cohe-
sive, in the sense the that the biases of the two experts are close to one another, or extremely
diverse, in the sense that the less loyal expert is much more biased expert than the loyal
expert.

5 Experts with Opposing Biases

Previously, we observed that a cabinet composed of two experts with like biases is no more
effective than simply consulting the more loyal expert alone. In this section, we examine
whether it is helpful for the decision maker to choose a cabinet where the experts biases
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oppose one another. Specifically, we study the case when the experts are biased in “opposite
directions,” that is,bi > 0 > bj : Now, while experti still prefers a higher action than is
ideal for the decision maker, expertj prefers alower action: for allθ; y�

�
θ;bj

�
< y� (θ)<

y� (θ;bi) : In effect, the experts want to tug the decision maker in opposite directions.
Recall from Proposition 1 that fully revealing PBEs do not exist. We argue below, how-

ever, that when experts have opposing biases it is possible to construct monotonic equilibria
which are “semi-revealing” in the sense that the decision maker gets to know the true state
over aportion of the state space. We then show that semi-revealing equilibria are infor-
mationally superior to the most informative single expert equilibrium. This construction
requires, however, that the single expert not be an “extremist.”

Extremists We will say that a right biased expert (bi > 0) is anextremistif for all θ;
U (y� (θ) ;θ;bi)�U (y� (1) ;θ;bi) : Similarly, a left biased expert (bj < 0) is an extremist if
for all θ;U

�
y� (0) ;θ;bj

�
�U

�
y� (θ) ;θ;bj

�
:

A right biased extremist is an expert whose bias is so high that no matter what the state
he prefers the highest ideal actiony� (1) to the ideal actiony� (θ) : Similarly, a left biased
extremist prefers the lowest ideal actiony� (0) to y� (θ) :

In the uniform-quadratic case an expert is an extremist ifjbij �
1
2. Notice that if an

extremist were to be consulted alone he would reveal no information whatsoever: in the
single expert game the unique equilibrium involves only babbling.

5.1 Semi-Revealing PBE

With opposing biases there exist monotonic equilibria that are semi-revealing: acontinuum
of equilibrium actions are induced. Consider the uniform-quadratic case and supposeb1 <

0< b2 <
1
2:

Figure 2 depicts the outcome functionY associated with a PBE. As illustrated, in this
equilibrium the state is completely revealed when it is below 1�2b2 and completely con-
cealed otherwise. Thus for all statesθ < 1�2b2; Y (θ) = θ = y� (θ) ; the ideal action for
the decision maker.

For all statesθ � 1�2b2; the equilibrium strategies call for expert 1 to send the “true”
messagem1 = θ and for expert 2 to “concur” by sending messagem2 = m1. As long as
expert 2 sends a messagem2 < m1+2b2 the decision maker follows expert 1’s advice and
choosesy= m1: If expert 2 “disagrees” with expert 1 and sends a messagem2 � m1+2b2;

the decision maker follows 2’s advice and choosesy= m2:

Notice, however, that if expert 1 were to “suggest” a lower actiony< θ in stateθ �
1� 2b2 by sending the messagem1 = y; expert 2 would disagree. Ifm1 � θ� b2 then
expert 2 would disagree since he can induce his ideal actiony(θ;b2) = θ+b2 by sending
messagem2 = θ+b2: If m1 > θ�b2 then expert 2 can inducem1+2b2 by disagreeing.
This is indeed the best outcome 2 can obtain by disagreeing and is preferred to the action
m1 (sincem1 + 2b2� (θ+b2) < (θ+b2)�m1). Hence, in either case, any attempt by
expert 1 to deviate by suggesting a lower action will fail since expert 2 will disagree, thus
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Figure 2: A PBE with Opposing Biases

saddling him with an evenhigheraction than that called for in equilibrium. In this manner,
it is possible to play the experts off against one another to obtain complete revelation in the
interval[0;1�2b2):

For statesθ > 1�2b2; however, this construction fails since now there is no rational-
izable actionz� 1 such that expert 2 is indifferent betweeny = θ andz: Thus in states
θ > 1�2b2 complete revelation is not possible. The equilibrium strategies call for expert 1
to suggestm1 = 1�b2: The decision maker follows 1’s advice wheneverm1 > 1�2b2 and
expert 2’s advice is irrelevant. Ifm1 � 1�2b2 then 2 disagrees and can induce the action
1:

It is useful to contrast the PBE constructed above with the equilibrium construction
of Gilligan and Krehbiel (1989) (hereafter, GK). GK consider the uniform-quadratic case
for experts withequalbut opposing loyalties (b1 = �b2). Their construction also differs
from ours in that they examine benefits to combining in a model in which experts’ advice
is givensimultaneously. For extremely biased experts,b2 2

�1
4;

1
2

�
, the GK equilibrium
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construction yields a completely non-informative equilibrium: both experts babble. We
have demonstrated that, when experts speak sequentially, it is still possible to obtain full
revelation over the interval[0;1�2b2] :

With this result in hand, we turn to the general question of when a cabinet of advisors
with opposing biases is helpful.

5.2 Choosing a Cabinet

We now show that the semi-revealing equilibrium constructed above is informationally
superior to the most informative equilibrium with a single expert of biasb2 as long as
0< b2 <

1
2:

Recall from CS (p. 1441) that any equilibrium partitionP consists of the intervals
[a0;a1); [a1;a2); :::; [an�1;an); :::; [aN�1;aN] where

an =
n
N
�2n(N�n)b2:

ForN� 2; it is convenient to define

aN�1(b2) =
N�1

N
�2(N�1)b2

as the last break point in the partitionP when the expert has biasb2:

We will argue that for allN; 1�2b2 > aN�1: This is certainly true forN = 1 and for all
N � 2 it is routine to verify that:7

1�2b2 >
N�1

N
�2(N�1)b2

= aN�1(b2)

The information partitionQ generated by the semi-revealing equilibrium consists of
singleton setsfθg for all θ � 1�2b2 together with the set(1�2b2;1]: Any equilibrium
information partitionP generated by a single expert with biasb2 consists of the intervals
[0;a1); [a1;a2); :::; [an�1;an); :::; [aN�1;1]: Since 1�2b2 > aN�1(b2) ; Q is clearly finer
thanP :

Finally, observe that the strategies of the semi-revealing equilibrium depend only onb2
and are valid for allb1 < 0 as long as 0< b2 <

1
2: The exact value ofb1 plays no role in the

construction.
We have thus established:

Proposition 3 Suppose that expert i has bias bi > 0 and is not an extremist. Then the
addition of another expert with bj < 0 is alwaysinformationally superior.

7SinceN�1
N < 1 and 2(N�1)b2� 2b2:
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Proposition 3 shows that whenever the more loyal expert is willing to reveal some
information on his own, the addition of a second expert with opposing bias, regardless
of how extreme, creates the possibility of an equilibrium that is strictly preferred by the
decision maker and both of the experts.

Are there any informational gains from having a cabinet of extremists? In other words,
is there any value to having an extreme diversity of opinion in the cabinet?

5.3 Extremists and the “Crossfire Effect”

Suppose, without loss of generality, thatb1 < 0< b2; then

Proposition 4 (Crossfire Effect) If both experts are extremists, no information is trans-
mitted in any monotonic PBE.

Notice that since extremists never reveal any information when consulted alone, the
Crossfire Effect also applies to the case of like biased experts.8 Proposition 4 highlights
the limits to the gains from multiple opposing experts illustrated in the example above. Re-
call that in the example the presence of expertj led experti to reveal more information that
he was willing to reveal on his own and vice-versa. Proposition 4 shows that this does not
hold if both experts are sufficiently extreme in their biases. The key intuition in deriving
this result is the importance of a “disagreement” action for expert 2. When experts are
extremists, an appropriately constructed “disagreement” action exceeds the highest ratio-
nalizable action (namely,y� (1)) on the part of the decision maker. Thus, there is no set
of beliefs that the decision maker could announce that would lead expert 2 to anticipate
such extreme actions being taken. As a consequence, the perfection refinement, this time
as applied to the decision maker, constrains the informativeness of equilibrium.

Proposition 3 shows that balancing opposing non-extremists may result in each convey-
ing more information than each would singly. In contrast, the message of Proposition 4 is
that combining the advice of the two experts is of no value when both experts are extrem-
ists. Finally, we show that pairing an extremist with a non-extremist can lead to an interval
in which the state is completely revealed only if the non-extremist is consulted second.

Example 3 Consider the uniform-quadratic case whenb1 = �1
2; b2 = 1

3. Then the
semi-revealing PBE constructed earlier is preferred by all to consulting either expert singly.

Now suppose that the order of polling is reversed. This is equivalent to settingb1 =
�1

3 andb2 = 1
2: In this case, the unique monotonic equilibrium is babbling. To see this,

temporarily suppose that all monotonic PBE consisted of finite equilibrium actions, then
one can show that one of the experts must be indifferent at points of discontinuity. Then,
since neither expert will reveal any information when polled alone, it follows that there can
be no points of discontinuity where one of the experts is indifferent. We can use the first

8The television talk showCrossfireregularly pits an avowed right wing extremist against an avowed left
wing extremist. The debate is singularly uninformative.
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part of the proof of Proposition 4 to show that a continuum (or countably infinite number)
of actions cannot occur. Finally, suppose that we are in the like bias case, that isb1 = 1

2;

b2 =
1
3: From Proposition 2, we know that babbling is the only monotonic equilibrium with

this cabinet composition.
Thus, we have shown that both the composition of the cabinet as well as the order of

polling can have a profound impact on the information content of the most informative
equilibrium.

6 Extensions

In this section, we indicate some possible extensions to our basic model.
Our assumption that both experts are perfectly informed aboutθ and that biases are

commonly known ensures that any improvement in information from combining the advice
of the experts arises solely from the strategic interaction. In our model, the introduction of
a second expert may be useful, not because his information augments that held by the first
expert, but because of the strategic interaction between them. Indeed, were the first expert
simply to disclose his information honestly, introducing a second experts would obviously
have no value.

Of course, in practice the information of experts is neither perfect nor identical. Hence,
in addition to the strategic motives highlighted in this paper, familiar information aggrega-
tion motives are also likely to influence the optimal number and composition of experts.
Thus, our model should be thought of as only a partial description of the problem of choos-
ing a cabinet. Incorporating both motives would obviously enhance the realism of the
model but at an increase in complexity that takes it beyond the scope of the present analy-
sis. Such an extension also obscures circumstances in which the pure strategic interaction
effect of the two experts is helpful and when it is not.

We also assumed that the two experts offer advicesequentiallyand speak exactly once.
Obviously this is a departure from the reality of give-and-take discussions between decision
makers and experts. One possibility that captures this “conversational” flavor of consulting
experts is to model message sending in a manner analogous to continuous time bargaining
games where, at each instant, any one of the parties is free to send a message. Obviously,
this complicates equilibrium characterization significantly and remains for future research.

Another alternative to our extensive form is to model the messages of the experts as oc-
curring simultaneously. It is straightforward to show that the most informative equilibrium
under such an extensive form is full revelation. Thus, the introduction of a second expert
has a dramatic effect on information transmission. This equilibrium, however, is not robust
to a number of perturbations of the information structure and the extensive form of the
game. For instance, were we to assume that instead of observingθ perfectly, the experts
instead received noisy signals ofθ, then full revelation is no longer an equilibrium even
as the noise term becomes arbitrarily small. Sequential moves has the same effect, but is
much more analytically tractable and preserves the original CS analysis as a special case.
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We have relied in a significant way on the specific extensive form, in particular that the
order in which the experts are polled is fixed. One might reasonably argue that equilibria
should be robust to reversing the order of polling. Our conclusions about the like bias case
are robust to this perturbation. One can also show that the opposite bias results are likewise
robust. In particular, it is possible to construct equilibria in which (a) the strategies of
the experts are independent of the order of polling; and (b) the information is superior to
consulting either expert alone.9

Finally, our analysis only concerns itself with cabinets consisting of two experts. Obvi-
ously, the sequential framework we adopt is not particularly conducive to exercises where
more and more experts are added. Nonetheless, we believe that the basic intuition that
satisfying the incentive constraints of the most loyal agent leads to the most informative
equilibrium in the like bias case will carry over into then agent case. In the case of oppo-
site bias, again it is the most loyal agent who determines the length of the revealing interval
in our construction of a semi-revealing equilibrium. Thus, we expect that our construction
would continue to be an equilibrium provided that the most loyal expert does not speak
first. Whether this can be improved upon by combining the information of more experts
remains an open question.

7 Conclusion

Self interested experts influence the decision process by strategically withholding infor-
mation that they possess. In a single expert setting, less biased experts offer more precise
information. However, we show that when there are multiple experts with like biases, the
combining of advice from both experts is detrimental. Naturally, the less loyal expert offers
less precise information. While this by itself is harmful to the decision process, it has a sec-
ondary effect. It also causes the more loyal expert to strategically respond by reducing the
precision of the information he conveys. The presence of the disloyal advisor contaminates
the advice of the loyal advisor. With like biases, a kind of “Gresham’s Law” operates: Bad
advice drives out good advice. Thus, a single advisor is superior to a cabinet composed of
advisors from the same side of the spectrum.

When experts have opposing biases, the situation is different. Now unless the more
loyal expert is an extremist, combining his advice with that of a second advisor, even if less
loyal, is always beneficial. The disloyal expert, even if of little use by himself, can be used
to discipline the more loyal expert. With opposing biases, even bad advice can enhance
good advice. Thus, a cabinet composed of advisors from opposite sides of the spectrum is
superior to a single advisor. But there are limits to how much additional information may
be garnered from a cabinet. Full revelation is still not possible. Moreover, if the cabinet
consists of opposing extremists, no information is conveyed.

9The equilibrium construction is available upon request from the authors.
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A Proofs

Proof of Proposition 1. Suppose not. Then there is a PBE in which the state is fully
revealed and thus for allθ; the equilibrium actionY (θ) = y� (θ) : We first consider the case
of opposing biases.

Case 1: Opposing biases
First, consider the sub-case whereb1 < 0< b2:

Let θ < 1 be such thaty�
�
θ;b2

�
= y� (1) :

Let θ 2
�
θ;1

�
: Sinceb1 < 0 we have thaty� (θ;b1) < y� (θ) : Choose aθ0 > θ close

enough toθ so thaty�
�
θ0;b1

�
< y� (θ) : Suppose thatm1 andm2 are the equilibrium mes-

sages in stateθ: Since the equilibrium is fully revealing,y(m1;m2) = y� (θ) :
Let m0

2 = µ2

�
θ0;m1

�
be expert 2’s best response to the messagem1 in stateθ0: Then

by definition,U
�
y(m1;m0

2) ;θ
0
;b2

�
�U

�
y(m1;m2) ;θ0;b2

�
and sincey(m1;m2) = y� (θ)<

y� (θ;b2)< y�
�
θ0;b2

�
;U1

�
y(m1;m2) ;θ0;b2

�
> 0 and soy(m1;m0

2)� y� (θ) :
Next observe thaty(m1;m0

2) � y�
�
θ0
�
: Suppose thaty(m1;m0

2) < y�
�
θ0
�
. Then by

sending the messagem1 in stateθ0 expert 1 can induce the actiony(m1;m0
2) and since

y�
�
θ0;b1

�
< y� (θ)� y(m1;m0

2)< y�
�
θ0
�

this is a profitable deviation for 1: This is a con-
tradiction and soy(m1;m0

2)� y�
�
θ0
�
> y� (θ) :

By the definition of a PBE, it must be the case that the out of equilibrium action
y(m1;m0

2)� y� (1) = y�
�
θ;b2

�
: Now sinceθ < θ; we also havey(m1;m0

2)< y� (θ;b2) :
Thus we have deduced thaty� (θ)< y(m1;m0

2)< y� (θ;b2) : Sinceb2 > 0; this implies
thatU (y� (θ) ;θ;b2)<U (y(m1;m0

2) ;θ;b2) : But this contradicts the assumption thaty� (θ)
is an equilibrium action in stateθ. Thus full revelation cannot be an equilibrium.

The sub-case whereb2 < 0< b1 is treated similarly.
Case 2: Like Biases
The proof for the case of like biases is analogous. We omit the proof because, in the

case of like biases, the conclusion also follows from a more general result to come (Lemma
2).�

Proof of Lemma 1. In order to economize on notation, in what follows, we will denote
θ� ε by θ� andθ+ ε by θ+:

Case 1.b1 � b2:

To establish (4), suppose the contrary, that is, supposeU (y�;θ;b1) < U (y+;θ;b1).
Then by continuity, for allε > 0 small enough,

U
�
Y
�
θ�

�
;θ�;b1

�
<U

�
Y
�
θ+

�
;θ�;b1

�
: (6)

Now suppose that in stateθ�, expert 1 were to send the messagem+1 = µ1

�
θ+

�
and letm2

be expert 2’s best response to this off-equilibrium message in stateθ� so that:

U
�
y
�
m+1 ;m2

�
;θ�;b2

�
�U

�
y
�
m+1 ;m

+

2

�
;θ�;b2

�
:

This implies thaty
�
m+1 ;m2

�
� y

�
m+1 ;m

+

2

�
since otherwise we would have thatU

�
y
�
m+1 ;m2

�
;θ+;b2

�
>

U
�
y
�
m+1 ;m

+

2

�
;θ+;b2

�
contradicting the fact thatY

�
θ+

�
= y

�
m+1 ;m

+

2

�
is the equilibrium

action in stateθ+:

22



But now sincey
�
m+1 ;m2

�
� y

�
m+1 ;m

+

2

�
and expert 2 weakly prefers the former in

stateθ�; the fact thatb1 � b2 implies that expert 1 also weakly prefers the former. Thus
U
�
y
�
m+1 ;m2

�
;θ�;b1

�
�U

�
Y
�
θ+

�
;θ�;b1

�
and hence by (6)

U
�
y
�
m+1 ;m2

�
;θ�;b1

�
>U

�
Y
�
θ�

�
;θ�;b1

�
:

Thus by sending the messagem+1 in stateθ� expert 1 can induce an action that he prefers
to the equilibrium action. This is a contradiction and thus (4) holds.

To establish (5), again suppose the contrary, that is,U (y�;θ;b2)>U (y+;θ;b2) : Then
sinceb1 � b2;U (y�;θ;b1)>U (y+;θ;b1) :

Then by continuity, for small enoughε > 0;

U
�
Y
�
θ�

�
;θ+;b1

�
>U

�
Y
�
θ+

�
;θ+;b1

�

and
U
�
Y
�
θ�

�
;θ+;b2

�
>U

�
Y
�
θ+

�
;θ+;b2

�
:

Hence if in stateθ+; expert 1 were to send the messagem�
1 = µ1

�
θ�

�
expert 2 will induce

an actiony
�
m�

1 ;m2
�

that is strictly lower thanY
�
θ+

�
: This is a profitable deviation for 1

and hence a contradiction. Thus (5) holds.
Case 2.b1 � b2:

The proof for this case is similar. If either (4) or (5) does not hold then expert 1 has a
profitable deviation.�

Proof of Lemma 2. Let ε = minj minθ
�
y�
�
θ;bj

�
�y� (θ)

�
> 0:

Supposeθ0 < θ00 are two states such thatY
�
θ0
�
� y0 < y00 � Y

�
θ00
�
: Then there exist

m0
1;m

0
2 satisfyingm0

1 = µ1

�
θ0
�
, m0

2 = µ2

�
θ0;m0

1

�
andy(m0

1;m
0
2) = y0 and similarly for the

double primes. We will argue thaty00�y0 � ε:
Suppose thaty00�y0 < ε:
Let σ0

;σ00 be such thaty� (σ0) = y0 andy� (σ00) = y00: Then clearlyσ0
< σ00

:

CLAIM . σ0 2Y�1(y0) andσ00 2Y�1(y00) :
PROOF OF CLAIM. Let θ = minY�1(y0) andθ = maxY�1(y0) : Theny� (θ)� y0 � y�

�
θ
�
:

If y0 < y� (θ) thenU (y0;θ)< U (y� (θ) ;θ) and sinceU12> 0; for all t 2
�
θ;θ

�
; U (y0; t)<

U (y� (θ) ; t) : If y0 > y�
�
θ
�

a similar argument holds.
Now sincey� (�) is increasing,θ � σ � θ andY (�) is monotonic,σ0 2Y�1(y0) :
This establishes the claim.2

Now sinceU1(y0;σ0) = 0,U13> 0 implies that forj = 1;2;U1
�
y0;σ0;bj

�
> 0 and since

y00�y0 < ε; U1
�
y00;σ0;bj

�
> 0 also. Similarly, sinceU1(y00;σ00) = 0;U13 > 0 implies that

U1
�
y00;σ00

;bj
�
> 0 and sincey0 < y00;U1

�
y0;σ00

;bj
�
> 0 also.

Now letz0 solve
U
�
y00;σ0

;b2
�
=U

�
z0;σ0

;b2
�

and letz00 solve
U
�
y00;σ00

;b2
�
=U

�
z00;σ00

;b2
�
:
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SinceU1(y00;σ00;b2) > 0 andU11 < 0; U1(z00;σ00;b2) < 0 and soz00 > y00: Next since
U12> 0;U (y00;σ00;b2)<U (z0;σ00;b2) and soz00 > z0:

Now in stateσ0; if expert 1 sent the messagem00
1 in lieu of m0

1; then we claim that expert
2 could do no better than sending messagem00

2 resulting in actiony00: This is because all
actions in the interval(y00;z00) cannot be induced by expert 2 followingm00

1 that is, there
does not exist anm2 such thaty(m00

1;m2) 2 (y00;z00) : If there were such a message theny00

would not be the equilibrium action in stateσ00: Thus, followingm00
1; no action greater than

y00 is preferred by expert 2 toy00: Thus if expert 1 sends the messagem00
1 in stateσ0

; expert
2 will respond by sending the messagem00

2; thereby resulting in actiony00: This deviation is
then profitable for expert 1.�

Proof of Proposition 2. Supposea1;a2; :::;an�1 are points where the functionY is dis-
continuous. Letc= minfb1;b2g : Lemma 1 implies that these points satisfy the following
system of inequalities

(a1+c)�
a1

2
�

a1+a2

2
� (a1+c)

(a2+c)�
a1+a2

2
�

a2+a3

2
� (a2+c)

...

(an+c)�
an�1+an

2
�

an+an+1

2
� (an+c)

...

(aN�1+c)�
aN�2+aN�1

2
�

aN�1+1
2

� (aN�1+c)

This system is equivalent to

a1 �
a2

2
�2c

a2 �
a1+a3

2
�2c

...

an �
an�1+an+1

2
�2c

...

aN�1 �
aN�2+1

2
�2c

which results in the following recursive system:

a1 �
1
2

a2�2c

a2 �
2
3

a3�4c
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...

an �
n

n+1
an+1�2nc

...

aN�1 �
N�1

N
�2(N�1)c

Now leta1;a2; :::;aN�1 be the solution to the corresponding system of equations. Then
clearly we have thata1� a1;a2� a2; :::;aN�1� aN�1: We can now directly apply Theorem
4 of CS. This implies that the single expert equilibrium is informationally superior.�

Proof of Proposition 4. We first show that a continuum of equilibrium actions cannot oc-
cur. We then establish that the only monotonic PBE with finite equilibrium actions involves
babbling.

Consider an interval of states(σ;τ) such that for allθ2 (σ;τ) ;Y (θ) = y� (θ) so that the
state is completely revealed in this interval. Since expert 2 is an extremist, for allθ2 (σ;τ) ;
U (y� (θ) ;θ;b2) <U (y� (1) ;θ;b2) : Hence,y� (θ) must be the highest action inducible by
expert 2 followingµ1(θ) :

Sinceb1 < 0; for smallε > 0;U (y� (θ) ;θ;b1)<U (y� (θ� ε) ;θ;b1) : Hence, in stateθ;
if expert 1 playsµ1(θ� ε) ; expert 2 can do no better than to inducey� (θ� ε) by playing
µ2(θ� ε;µ1(θ� ε)) ; but this is a profitable deviation for expert 1.

Hence, no interval of the form(σ;τ) can exist and hence there cannot be a continuum of
equilibrium actions. Essentially the same argument also rules out that there are a countable
infinity of equilibrium actions.

Thus there must be a finite number of equilibrium actions.
SupposeY has an upward jump atθ: Then sinceb1 < b2; Proposition 1 implies that

U (y�;θ;b1)�U (y+;θ;b1) andU (y�;θ;b2)�U (y+;θ;b2) :

CLAIM . If lim ε#0Y (θ� ε) = y� < limε#0Y (θ+ ε) = y+;then

eitherU
�
y�;θ;b1

�
=U

�
y+;θ;b1

�
or U

�
y�;θ;b2

�
=U

�
y+;θ;b2

�
.

PROOF OF CLAIM. Suppose neither is an equality. Since for all smallε > 0; Y (θ� ε) <
y� (θ� ε) the fact that expert 2 is an extremist then implies thatU (Y (θ� ε) ;θ� ε;b2) <
U (y� (1) ;θ� ε;b2) : Therefore the highest action that 2 can induce following the message
µ1(θ� ε) isY (θ� ε) : Now in some stateθ+ε if 1 were to send the messageµ1(θ� ε) this
would result in the actionY (θ� ε) and would be a profitable deviation for 1: Since this is
a contradiction, the claim is established.�

Thus we have argued that at every point of discontinuity at least one expert is indifferent
betweeny� andy+:

Finally, we establish that points of discontinuity where one of the experts is indifferent
cannot occur in any monotonic PBE. Suppose that the contrary is true, then there exist at
least three break points,an�1;an andan+1; such that

U (y(an�1;an) ;an;bi) =U (y(an;an+1) ;an;bi) (7)
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whereȳ(σ;τ) is the action that maximizesE [U (y;θ) jθ 2 (σ;τ)]
First, we show thatan�1 > 0 andan+1 < 1: Suppose thatan�1 = 0, then we have that

U (y(0;an) ;an;bi) =U (y(an;an+1) ;an;bi) :
For α 2 (0;1) defineβ(α) by

U (y(0;α) ;α;bi) =U (y(α;β(α)) ;α;bi) :

But since the most informative equilibrium with experti alone involves no information
revelation we know that for allα 2 (0;1), β(α)> 1 contradicting (7). Thus,an�1 > 0: A
similar argument shows thatan+1 < 1:

Now for ε > 0 defineφ(ε) by

U (y(an�1�φ(ε) ;an) ;an;bi) =U (y(an;an+1+ ε) ;an;bi) :

Note thatφ(ε) is well-defined sinceU is concave andy is increasing in both arguments.
Furthermore,φ is increasing. Letε= min

�
1�an+1;φ�1(an�1)

	
: Thus eitheran+1+ε= 1

or an�1�φ(ε) = 0: This contradicts the first observation.
Hence, there are no points of discontinuity at which one of the experts is indifferent.

The only remaining monotonic PBE is babbling by both experts.�

B Non-monotonic Equilibria

Throughout, we have restricted attention to the case where equilibria were monotonic. In-
deed, our results on welfare analysis for like biased experts relied essentially on this. We
now study some features of non-monotonic equilibria and provide some sufficient condi-
tions for all equilibria to be monotonic for like biased experts in the uniform-quadratic
case.

We begin by presenting an explicit example of a non-monotonic equilibrium.

B.1 Example of Non-monotonic Equilibria

Example 4 Once again, consider the uniform quadratic case. Suppose thatb1 =
11
160

andb2 = 3
20 are the biases of the two experts. A PBE for this game is depicted in Figure

3, where the statesa1 = :1; a2 = :28; a3 = :34 and the actionsy1 = :1475; y2 = :19 and
y3 = :67:

The outcome functionY associated with this equilibrium is depicted above and is
clearly non-monotonic. Notice that in statea1 expert 1 is indifferent betweeny1 andy2;
hence, for allθ > a1; expert 1 prefersy2 to y1: Likewise, in statea3; expert 1 is indifferent
betweeny1 andy3: Finally, in statea2 expert 2 is indifferent betweeny2 andy3:

To induce actiony2; expert 1 must suggest the actionm1 = y2; and expert 2 must agree.
If, on the other hand, expert 2 disagrees, actiony3 is induced. Since expert 2 (weakly)
prefersy2 to y3 if and only if θ � a2; then when expert 1 suggestsy2; expert 2 will “agree”
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Figure 3: A Non-monotonic PBE

only θ� a2. Thus, despite the fact that both experts prefery2 to y1 for θ2 (a2;a3) ; expert 1
cannot obtainy2 since expert 2 will then “disagree” and induce the higher actiony3 that he
prefers toy2. It is the threat of “overshooting” by the more biased expert 2 that sustains the
downward jump in the outcome function despite the fact that both experts and the decision
maker prefer the higher actiony2 to y1 whenθ > a2:

B.2 Sufficient Conditions for Monotonicity

We now turn to establishing sufficient conditions for equilibria to be monotonic when ex-
perts have like biases.

Lemma 3 There exists aθ < 1 such that Y(�) is monotone over
�
θ;1

�
:

Proof. Observe that sinceU1(y� (1) ;1) = 0; andU13 > 0; U1(y� (1) ;1;bi) > 0: Let θ =
inf fθ : U1(y� (1) ;θ;minfb1;b2g)> 0g : SinceU1(y� (1) ;1;bi) > 0 for i = 1;2; it follows
thatθ < 1: Then for allθ > θ and ally� y� (1) ;U1(y;θ;bi)> 0 for i = 1;2:

Suppose there exist statesθ0;θ00 satisfyingθ < θ0 < θ00 such thatY
�
θ0
�
= y0 >Y

�
θ00
�
=

y00: Suppose(m0
1;m

0
2) is sent in stateθ0 andy0 = y(m0

1;m
0
2) : Similarly, suppose(m00

1;m
00
2) is
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sent in stateθ00 andy00 = y(m00
1;m

00
2) : Observe that sincey0 andy00 are equilibrium actions

y0 � y� (1) andy00 � y� (1) :
Now suppose that expert 1 deviates and sends messagem0

1 in θ00: Now if expert 2 sends
m0

2; then actiony0 occurs and, sinceθ00 > θ; it follows that

U
�
y00;θ00;bi

�
<U

�
y0;θ00;bi

�

for i = 1;2 sincey0 � y� (1) : Thus expert 2’s best response tom0
1 in stateθ00 must yield him

at leastU
�
y0;θ00;b2

�
: SinceU1

�
y0;θ00;b2

�
> 0 this best response, saym000

2 ; cannot result in
an actiony(m0

1;m
000
2 )< y0: Thusy(m0

1;m
000
2 )> y0 and sinceU1

�
y0;θ00;b1

�
> 0;

U
�
y
�
m0

1;m
000
2

�
;θ00;b1

�
>U

�
y0;θ00;b1

�
:

Thus it is profitable for 1 to deviate tom0
1 in stateθ00 and we have obtained a contradiction.

�

For the uniform-quadratic case, we can extend Lemma 2 so that the assumption of
monotonicity is unnecessary.

Lemma 4 In the uniform-quadratic case with like biased experts, there are a finite number
of equilibrium actions in any PBE.

The proof is tedious and offers no new insights on the problem, so it is omitted. It is
available upon request from the authors.

Lemma 5 In the uniform-quadratic case, suppose that Y has a downward jump atθ; that
is, limε#0Y (θ� ε) = y� > limε#0Y (θ+ ε) = y+: Then

y��y+ � 2jb2�b1j :

Proof. Let θ be the largest state at which there is a downward jump inY: Such aθ exists
sinceY is eventually monotone (Lemma 3) and there are only a finite number of equilibrium
actions (Lemma 4).

Supposeb1 < b2: As before, in what follows, we will denoteθ� ε by θ� andθ+ ε by
θ+:

First observe that there does not exist a stateσ > θ such thatY (σ) = y�: To see this
note that ifτ = supft : Y (t) = y+g then by Lemma 1U (y+;τ;b1) �U (y�;τ;b1) (where
we use the fact that the conclusion of Lemma 1 holds as long asY is monotonic on the
interval [θ;1]): Hence there is anε > 0 small enough so that in stateθ�; U

�
y+;θ�;b1

�
>

U
�
y�;θ�;b1

�
: If in stateθ�; expert 1 were to send the messagem1 = µ1

�
θ+

�
then expert

2 cannot do better than to send the messagem2 = µ2

�
θ+;µ1

�
θ+

��
: This is a profitable

deviation for 1:
Thus we know thaty� � y� (θ) since otherwise the actiony� could not be a best re-

sponse to any beliefs held by the decision maker. Thus,U (y�;θ;b1)>U (y+;θ;b1) :

28



Suppose in some stateθ+ expert 1 were to send the messagem1 = µ1

�
θ�

�
: Then

there must be a messagem2 such thaty(m1;m2) = z (say) is such thatU
�
z;θ+;b1

�
<

U
�
y+;θ+;b1

�
and so by continuityU (z;θ;b1) � U (y+;θ;b1) : In the uniform-quadratic

case this reduces to
z� (θ+b1)� (θ+b1)�y+ (8)

But for m2 to be a best response for expert 2 in stateθ+ requires thatU
�
z;θ+;b2

�
�

U
�
y�;θ+;b2

�
:On the other hand, the equilibrium condition impliesU

�
z;θ�;b2

�
�U

�
y�;θ�;b2

�
:

Thus,U (z;θ;b2) =U (y�;θ;b2) : In the uniform-quadratic case, this reduces to

z= 2(θ+b2)�y� (9)

Combining (8) and (9) yields the required inequality.
The proof for the case whenb1 > b2 is similar.�

Using Lemma 4, we are now in a position to state a sufficient condition for monotonic-
ity of all PBE in case of like biases. We show that if the first expert is more biased than is
the second,all equilibria are monotonic.

Proposition 5 In the uniform-quadratic case, if b1 � b2 > 0 then all PBE are monotonic.

Proof. Let θ be the largest state at which there is a downward jump inY: Such aθ exists
sinceY is eventually monotone (Lemma 3) and there are only a finite number of equilibrium
actions (Lemma 4). Definey� andy+ as follows:

lim
ε"0

Y (θ� ε) = y� > lim
ε#0

Y (θ+ ε) = y+

As before, in what follows, we will denoteθ� ε by θ� andθ+ ε by θ+:
There are two cases to consider. First, suppose thatU (y�;θ;b1)�U (y+;θ;b1). Then

for ε > 0 small enough,U
�
y�;θ+;b1

�
>U

�
y+;θ+;b1

�
. In stateθ+ if 1 sends the message

m1 = µ1

�
θ�

�
; then 2 cannot do better than to sendm2 = µ2

�
θ�;µ1

�
θ�

��
resulting iny�:

This is a profitable deviation for 1:
Next, suppose thatU (y�;θ;b1)<U (y+;θ;b1) : Defineτ = supfσ : Y (σ) = y+g : No-

tice thatτ < 1 and there exists aσ > τ such thatY (σ) = y�: If U (y�;τ;b1)>U (y+;τ;b1)
then sending messageµ1

�
θ�

�
in stateτ induces actionY

�
θ�

�
= y� which is a profitable

deviation. IfU (y�;τ;b1) �U (y+;τ;b1) ; then sincey� (τ) � y+ and thusy� (τ;b1) > y+;
we have in the uniform-quadratic case

y��y+ � 2b1

But this contradicts Lemma 5 and thusY has no downward jumps.�
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