
Learning in Cournot Oligopoly - An Experiment

Ste®en Huck

Department of Economics

Humboldt University, Berlin

Hans{Theo Normann

Department of Economics

Humboldt University, Berlin

JÄorg Oechssler¤

Department of Economics

Humboldt University, Berlin

July 22, 1997

Abstract
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1 Introduction

The Cournot oligopoly model is one of the most widely used concepts in ap-

plied industrial organization. While it is unlikely that inexperienced players

would immediately coordinate on an equilibrium, there is a general intuition

that over time players would learn to play according to the Cournot{Nash

equilibrium. This dynamic story has a long tradition going back to Cournot

(1838) who already suggested what is now known as the best reply dynamic.

According to the best reply dynamic players adjust their quantities simul-

taneously to the best reply against other players' previous outputs.

Recently, it has been shown that adaptive learning dynamics in a broader

class (see e.g. Milgrom and Roberts, 1991) converge to Nash equilibria if

they converge. There are, however, dynamics which converge to di®erent

outcomes even in a simple Cournot oligopoly with a unique equilibrium.

An example is the imitation dynamic suggested by Vega{Redondo (1997).

According to this dynamic players `imitate the best', i.e. they choose the

strategy of the player who had the highest pro¯t last period. Vega{Redondo

shows that this dynamic converges to the competitive outcome where price

equals marginal cost.

This paper reports on an experiment which was designed to test various

learning theories in the context of a Cournot oligopoly. But since those

learning theories are generally applicable, the experiment should contribute

to the understanding of learning processes in all normal form games. In

particular, we are interested in the role of imitation versus learning rules

which are based on some form of best replies.

While it is generally known that best reply dynamics do not converge in

oligopolies with three or more ¯rms (Theocharis, 1960), we show that a best

reply process with inertia (see e.g. Kandori et al., 1993) does converge to

the Nash equilibrium. Together with the imitation result we have thus two

theories making distinct predictions for convergence, which allows to test

them experimentally. While we focus on best reply learning and imitation,

we also consider alternative learning approaches like directional learning

(Selten and Stoecker, 1986), ¯ctitious play, reinforcement learning (Roth

and Erev, 1995), trial and error learning and `imitate the average'. The

latter two were not much discussed in the literature previously but they

were suggested by the data of our experiment.
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We attempt to test these theories experimentally by reproducing as

closely as possible the conditions assumed in these processes. E.g. in order

to match the theoretical setup, which requires inertia in the adjustment of

strategies, we introduce a randomization device which determines whether

players can change their quantities from the previous period.

To di®erentiate between the di®erent learning theories we vary the infor-

mation provided to subjects. For example, if subjects follow the imitation

strategy, all information they need consists of the quantities and pro¯ts of all

players. For a best reply process to work subjects need to know the demand

and cost conditions in addition to the total quantity of the other ¯rms last

period, but they need not to know the individual quantities of other players.

Surprisingly given the standard use of the Cournot model in Industrial

Organization, there are relatively few experimental studies on oligopoly with

three or more quantity setting ¯rms. Previous experiments found average

quantities that lie between Nash and collusive outcomes for duopoly exper-

iments (see e.g. Holt, 1985) and around the Nash outcome for experiments

with three or more ¯rms. Fouraker and Siegel (1963) conduct a number

of experiments of which their tripoly experiments are most closely related

to our study. More recently, Rassenti et al. (1996) ran several Cournot

experiments with ¯ve ¯rms. We will discuss these experiments in Section 4.

The paper is organized as follows. In the next section we describe the

design of the experiment. We conducted ¯ve di®erent treatments, which are

partly nested in terms of the information provided to subjects. In Section

3 we derive theoretical predictions for several learning processes. Section 4

contains the experimental results for the aggregate (group) level as well as for

the individual level. Section 5 concludes with a summary. The instructions

for the experiment are printed in Appendix A, followed by screen shots of

the computer program in Appendix B.

2 Experimental design

In a series of computerized1 experiments we studied a homogenous multi{

period Cournot market with linear demand and cost. There were four sym-

metric ¯rms in each market. Quantities could be chosen from a ¯nite grid

between 0 and 100 with .01 as the smallest step. The demand side of the

market was modelled with the computer buying all supplied units according

1We thank Abbink and Sadrieh (1995) for letting us use their software toolbox

\RatImage".
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to the inverse demand function

pt = maxf100¡Qt; 0g (1)

with Qt =
P

4

i=1 q
t
i denoting total quantity in period t. The cost function

for each seller was simply

C(qti) = qti :

Hence, pro¯ts were

¼ti = (pt ¡ 1)qti : (2)

The number of periods was 40 in all sessions and this was commonly known.

We chose 40 periods as a compromise. On the one hand there is a need

for a relatively long time horizon as we wanted to study learning with time

series methods and some learning processes may take quite some time to

converge (if at all). On the other hand there is the danger that if there are

too many periods, subjects might get bored and take nonsensical decisions

only to make something happen.

For theoretical reasons we introduced some inertia.2 After round one

chance moves, which were independent across individuals, determined in

each period whether a subject was allowed to revise its quantity. This was

done by a \one{armed bandit" which appeared on the screen showing three

equiprobable numbers \0",\1", and \2". If \0" occurred no adjustment was

allowed. Hence, the probability for allowing revision was 2/3.

There were ¯ve treatments which di®ered by the information provided to

subjects (the design of treatments is summarized in Table 1). In treatment

Best subjects possessed all essential information about the market, i.e. they

were informed about the symmetric demand and cost functions in plain

words.3 Furthermore, the software was equipped with a `pro¯t calculator',

which served two functions. A subject could enter some arbitrary `total

quantity of other ¯rms'. Then she could either enter some amount as her

own quantity in which case the calculator informed her about the resulting

price and her resulting personal pro¯t. Or, she could press a \Max"{button

in which case she was informed about `the quantity which would yield her

2Best reply dynamics would not converge without inertia and Vega{Redondo's (1997)

imitation dynamic also assumes inertia. However, in another experiment (Huck, Normann,
and Oechssler, 1997) we show that behavior is not signi¯cantly di®erent with or without

inertia.
3Since we recruited many non-economic students as subjects we were careful not to use

any formulas or technical terms in the instructions.
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Table 1: Information in treatments

Market information

Information about others complete partial absent

no Best Noin

yes Full Imit+ Imit

the highest payo® given the total amount of others'.4 Additionally, the

calculator computed price and pro¯t for this best response.5 The usage of

the pro¯t calculator was recorded.

After eachmarket period subjects were informed about the total quantity

the others had actually supplied, about the resulting price and their personal

pro¯ts. Additionally, they were reminded of their own quantity. When

deciding in the next period this information remained present on the screen.

Results of earlier periods were, however, not available, but subjects were

allowed to take notes and a few did.

Treatment Full was essentially the same as Best, with the important

di®erence that subjects were additionally informed after each period about

individual quantities and pro¯ts. This information also remained present on

the screen while subjects decided in the next period.

In treatments Noin and Imit subjects did not know anything about the

demand and cost conditions in the market nor did the instructions explicitly

state these would remain constant over time. All they knew was that they

would act on a market with four sellers and that their decisions represented

quantities. In treatment Noin subjects were informed after each period only

about the pro¯ts they made with the quantity they had chosen.

In treatment Imit subjects were at the end of each period additionally

informed about quantities and pro¯ts of the other three sellers. After run-

ning this treatment we suspected that subjects had problems understanding

the situation as they made losses in almost all periods. We have added

therefore another treatment, Imit+, in which some information about the

market was given. In the instructions subjects learned that the market was

symmetric, that demand and cost would remain constant over time and that

4While the pro¯t calculator provides the same information as the usually used payo®
tables, it certainly focuses attention on the best reply. By this we tried to give the

Cournot equilibrium the best shot. If play deviates from Cournot nevertheless, this only

strengthens our results.
5In the experiments we did not use the phrase `best response.'
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the price would be inversely related to the total quantity supplied.

The experiments were conducted in April and May 1997 in the computer

lab of the economics department of Humboldt University. All subjects were

recruited via posters from all over the campus. Almost half of the subjects

studied ¯elds other than economics or business and had no training in eco-

nomics at all. Among the economics and business students almost none had

any prior knowledge in oligopoly theory.

In each session eight subjects participated. Subjects were randomly al-

located to computer terminals in the lab such that they could not infer with

whom they would interact in a group of four. For each treatment we had

six groups of subjects | making a total of 120 subjects who participated in

the experiments.

Subjects were paid according to their total pro¯ts. Pro¯ts as in (2)

where denominated in `Taler', the exchange rate for German Marks (500:1)

was known. Additionally, subjects earned a ¯xed payo® of Taler 150 each

round. This ensured that no losses could be made. Since we expected the

Walrasian output (in which pro¯ts are zero) as a possible outcome in some

treatments, we wanted to make sure { besides the usual bankruptcy problems

{ that subjects would not be frustrated by low or negative payo®s.6

The average payo® was about DM 25 which is roughly $14.50. (The

payo® for playing the static Cournot equilibrium every period would have

been about DM 43). Experiments lasted between 45 (Noin) and 90 (Full)

minutes including instruction time.

Instructions (see Appendix A) were written on paper and distributed in

the beginning of each session. After the instructions were read, we conducted

one trial round in which the di®erent windows of the computer screen (see

Appendix B) were introduced and could be tested. When subjects were

familiar with both, the rules and the handling of the computer program, we

started the ¯rst round.

3 Theoretical predictions

The experiment described in the previous section was designed to test whether

and how subjects learn to play an oligopoly game. In this section we will

derive theoretical predictions for several simple boundedly rational rules.

6See Holt (1985, p. 317) for the argument that the usual promises in the instructions

that one can earn a \considerable amount of money" might bias subjects against zero{
pro¯t outcomes.
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We are mainly interested in two well studied simple rules, namely the best

reply dynamic and imitation dynamics. Those rules yield quite di®erent

predictions. Before we de¯ne those learning rules we will shortly discuss the

static stage game solution and the dynamic solution of the game.

Consider again four ¯rms I = f1; ::; 4g which play repeatedly an oligopoly

game with quantity setting. For the demand function (1) and constant

marginal cost of 1, the unique Cournot Nash equilibrium of the stage game

is given by

q
N
i =

100¡ 1

5
= 19:8; i 2 I;

yielding a price of pN = 20:8:

Of interest is also the symmetric Walrasian (or competitive) outcome

where price equals marginal cost, pW = 1,

q
W
i =

100¡ 1

4
= 24:75; i 2 I:

The collusive or joint pro¯t maximizing outcome would be at

q
C
i = 12:375; i 2 I;

with a corresponding price of 50:5:

We assume that ¯rms exhibit inertia in the sense that each period each

¯rm may revise its strategy only with (independent) probability µ = 2

3
.

Fully rational subjects would realize that since they are matched with

the same opponents for the entire game, they should analyze the game as a

dynamic game. It is well known that in ¯nitely repeated games for which

the stage game has a unique equilibrium the unique subgame perfect equi-

librium consists of repeating the stage game equilibrium. However, due to

the inertia our game is not a repeated game. While it is true that playing qNi
every period remains a Nash equilibrium, it is not sequentially rational to

do so. It turns out that due to the inertia there is a slight tendency towards

Stackelberg behavior. This can be seen by solving recursively a game with

two periods.7 Solving the game for 40 periods becomes extremely cumber-

some as this entails taking account of 839 endnodes in the extensive form

game.

7The solutions for games up to 4 periods can be obtained from the authors upon

request.
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Two qualitative features of the dynamic solution can be stated, however.

First, all subjects should start with the same quantity q1i in period 1. Second,

q1i is somewhere between q
N
i and qWi . Third, quantities never increase above

q1i during the game. Whether one thinks that subjects in an experiment can

perform such enormous calculations does not seem relevant given that actual

play was hardly ever even close to those three qualitative features. It seems

safe to assume that rather than solving the game right at the beginning,

subjects learned to play during the 40 periods.

To trace out the implications of the learning processes we will at ¯rst

allow for longer time horizons than 40 periods. In line with the experi-

mental setup we require that outputs must be chosen from a ¯nite grid

¡ := f0; ±; 2±; :::; v±g, for arbitrary ± > 0; v 2 N:We assume that qW ; qN 2 ¡:

3.1 Best reply dynamics

First, we consider the best reply dynamic suggested already by Cournot

(1838). Players myopically choose every period a best reply to the other

players' total output from last period. Let ¦(qti ; q
t
¡i) denote ¯rm i's pro¯t

in period t given its quantity qti and the total quantity of its opponents qt
¡i:

Assumption 1 (myopic best reply): If a ¯rm has the opportunity to revise

its strategy, it chooses a best reply against the pro¯le of the other ¯rms'

previous output, i.e. a strategy from the set

BR
t¡1
i :=

©
q 2 ¡ : 8q0 2 ¡; ¦(q; qt¡1

¡i ) ¸ ¦(q0; qt¡1
¡i )

ª
;

according to some probability distribution with full support.

We can specify BRi (suppressing the time index t) in more detail by noting

that ¦(qi; q¡i) is symmetric around r(q¡i), where

r(q¡i) := arg max
qi2R+

¦(qi; q¡i)

would be i's reaction function if he could choose qi continuously. Symmetry

follows since

¦(r(q¡i) + ¢; q¡i) =

µ
99¡ q¡i

2

¶2

¡¢2
:

Since the slope of r(q¡i) is ¡
1

2
and qN 2 ¡, the grid points closest to r(q¡i)

are either r(q¡i) itself or r(q¡i)+±=2 and r(q¡i)¡±=2: That is, BRi is either

the singleton fr(q¡i)g or the set fr(q¡i) + ±=2; r(q¡i)¡ ±=2g.
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Note the informational requirements to play myopic best replies. (1) One

needs to know the demand and cost functions. (2) One needs to know q
t¡1
¡i ,

i.e. last period's total output of the remaining players. And (3) one needs

to know how to calculate a best reply. All three requirements are met in the

experimental treatments Best and Full. In the three remaining treatments

players do not have su±cient knowledge to calculate best replies.

It is well know (see Theocharis, 1960) that the best reply dynamic is

generally unstable for oligopolies with four ¯rms. However, the next propo-

sition shows that with inertia the best reply dynamic is stable and converges

to the static Nash equilibrium.

Proposition 1 The best reply dynamic with inertia converges globally in

¯nite time to the static Nash equilibrium.

Proof The best reply process de¯ned by Assumption 1 yields a ¯nite Markov

process on the state space ¡4 with a unique absorbing state !N = (qN
1
; qN

2
;

qN
3
; qN

4
). To prove convergence it su±ces to show that all remaining states

are transient, i.e. the probability of the process returning to such a state is

zero.

From any state with qi = 0, some i, there exists a transition to another

state with qi > 0;8i. Now consider the game with the restriction that

qi > 0;8i. Let P (q1; q2; q3; q4) := (p ¡ 1)
Q

4

i=1 qi, where p is de¯ned as

in (1). Since P (q1; q2; q3; q4) is an ordinary potential function, by Lemma

2.3 of Monderer and Shapley (1996) every improvement path is ¯nite. An

improvement path is a sequence (!0; !1; !2; :::); such that for each t ¸ 1

there is a unique player i who by choosing quantity qt strictly improves

his payo®, i.e. !t = (qti ; q
t¡1
¡i ) and ¦i(q

t
i ; q

t¡1
¡i ) > ¦i(q

t¡1
i ; q

t¡1
¡i ): Note that

the best reply process gives rise to an improvement path if in each period

exactly one player gets to adjust his strategy, which occurs with positive

probability. Along an improvement path the value of the potential function

strictly increases. Hence, the process cannot return to a state it has visited

before. Thus, all states other than !N are transient and the Proposition

follows.2

The question of course arises how long the process will take to converge.

To answer this question we have conducted a series of simulations for µ = 2

3
.

For randomized starting values (uniformly between 0 and 100) the process

converges to a 1%{neighborhood of the Nash equilibrium on average in 26.5

periods. For starting values closer to the equilibrium convergence is even

faster.
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3.2 Imitate the best

An alternative learning procedure is to simply imitate the quantity of the

player with the highest pro¯t last period.

Assumption 2 (imitate the best) If a ¯rm has the opportunity to revise its

strategy, it chooses one of those strategies which received the highest payo®

last period, i.e. a strategy from the set

IB
t¡1 :=

½
q 2 ¡ : 9i 2 N , s.t. q = q

t¡1
i

and

8k 2 N; ¦(qt¡1
i

; q
t¡1
¡i

)) ¸ ¦(qt¡1
k

; q
t¡1
¡k

)

¾
;

according to some probability distribution with full support.

Furthermore, every period each ¯rm \mutates" (makes a mistake) with

independent probability " > 0 and chooses an arbitrary q 2 ¡ (all q are

chosen with some strictly positive probability).

The information required for \imitate the best" is a list of last period's

quantities and pro¯ts for each ¯rm. No information about market or cost

conditions is needed. Though, of course, the rule is more sensible if one

knows that market conditions are constant and the same for all ¯rms. The

list of quantities and pro¯ts was provided in treatments Full, Imit and

Imit+. Additionally, players in treatments Full and Imit+ were explicitly

told that the market conditions are constant and symmetric.

The following proposition was proved by Vega{Redondo (1997).

Proposition 2 In the long run for "! 0 the Walrasian outcome (qW
1
; qW

2
;

qW
3
; qW

4
) will be observed almost always if players \imitate the best".

The intuition for this result is straightforward. Whenever price is higher

than marginal cost, the ¯rm with the highest quantity makes the largest

pro¯t and vice versa if pro¯ts are negative. Hence, as long as pro¯ts are

positive, the largest output gets imitated which drives up total output until

price equals marginal cost. Note that this also explains why the Cournot{

Nash equilibrium is not a stable rest point of \imitate the best". If one ¯rm

deviates to a higher quantity, pro¯ts of all ¯rms decrease but pro¯t of the

deviator decreases by less.

Simulation results on the convergence time of this process are not very

meaningful since they depend too much on the assumed mutation process.

A high rate of mutations clearly shortens the time until the competitive

outcome is ¯rst reached.
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3.3 Other learning processes

There are many other learning processes which could be relevant in our

experiment. Some of those (e.g. ¯ctitious play) yield similar predictions

as the best reply process, i.e. convergence to Nash equilibrium, and are

therefore di±cult to di®erentiate from each other.8 One qualitative theory

that can be tested within our setup is Selten's learning direction theory

(see Selten and Stoecker, 1986). The theory assumes that players have

enough knowledge of the game to determine myopically the direction in

which better actions can be found. In our context better actions are always

in the direction of the best reply r(qt¡1
¡i ): In its weak form the theory leads

to qualitative predictions of the form: if qt¡1
i

? r(qt¡1
¡i

) then qti Q q
t¡1
i

, i.e.,

players do not move in a direction away from the best reply: In its stronger

form (replacing Q by 7), the process has a unique restpoint which is the

Cournot{Nash equilibrium. The information required is as in treatments

Best and Full.

Even though subjects in the Best treatment were not able to \imitate

the best", they can still use some form of imitation. Maybe driven out of

a desire for conformity they can imitate the average as they know the total

quantity of the three other ¯rms. If all subjects were to follow this rule,

clearly the process is bounded above and below by the highest and lowest

initial quantities. Without inertia the process would converge simply to the

average of all starting values as the following equation shows,

qti =
Q1

4
+
3q1i ¡ q1

¡i

4

µ
¡
1

3

¶t
:

With inertia the process depends on the realizations of the randomization

device and is therefore path dependent.

Finally, we consider a learning process which works even if subject have

as little information as in treatment Noin.9 We call it trial and error learn-

ing. It simply says that a subject would not repeat a mistake, i.e. if pro¯ts

last period have decreased due to an increase in quantity, then one would

not increase quantity again. On the other hand, if pro¯ts had increased fol-

lowing an increase in quantity, one would not decrease quantity next period.

8While we did not provide subjects with a history of play, some subjects took notes

and could have played ¯ctitious play.
9Another learning process which works with this little information is reinforcement

learning (Roth and Erev, 1995). However, since the grid in quantities is so ¯ne, the number

of actions in our game is about 10000 which makes reinforcement learning extremely slow.
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Interestingly this process yields outcomes close to the collusive outcome.

We have simulated a process in which ¯rms follow with probability 0.95 the

following equation

q
t
i = q

t¡1
i + sign(qt¡1i ¡ q

t¡2
i )£ sign(¼t¡1i ¡ ¼

t¡2
i )£ 0:01 (3)

and with probability .05 they experiment and choose a quantity from the set

fqt¡1i ¡0:01; qt¡1i ; q
t¡1
i +0:01g each with equal probability: The simulations

show that after an initial phase the process °uctuates around an average

quantity of about 14.35.10 The intuition is simple: if all ¯rms happen to

lower their quantity simultaneously, pro¯ts increase as long as Qt is higher

than the collusive outcome, and so ¯rms will lower their quantity further.

However, if Qt is close to the collusive outcome, an increase in qti by a single

¯rm will be pro¯table driving Qt back up again.

4 Experimental results

Probably the best summary of our results can be obtained from looking at

Figures 1 through 5 which show the time path of total quantities in all 6

groups and for all 5 treatments. In each graph the upper line corresponds

to the Walrasian total output of QW = 99 and the lower line corresponds

to the Cournot{Nash output of QN = 79:2. As can be seen in Figure 1,

quantities in treatment Best converge fairly well to QN .11 Total quantities

in treatment Full are clearly higher than in Best, somewhere between QW

and QN .

[place Figures 1-5 about here]

In the remaining three treatments subjects started with very high quan-

tities as they did not have any information about demand or cost. However,

in Imit+ and Noin subjects learn to adjust to reasonable quantities.12 As

10If (7) is chosen with probability 1, the process converges to the collusive outcome.
11The reason that group Best3 looks di®erent is that there was one subject who played

a limit pricing strategy. She would raise periodically her output to 100 and reap almost

monopoly pro¯ts after the other players had reduced their quantities.
12In treatment Imit+ group 2 (see the upper right graph in Figure 4) has to be consid-

ered a clear outlier. What happened was the following. In the last 20 periods one subject

chose the maximum quantity qi = 100 or qi = 99 in 18 out of 20 rounds. Two other
subjects reacted to this by supplying zero in the last 17 rounds. We chose to exclude

this group from all further analysis. However, our main results are unchanged even if this

group is included.
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Table 2: Summary Statistics

Treatment Mean35 Mean20 SDev35 SDev20 Gini35 Gini20

Best
84.32

(4.56)

82.56

(2.48)

13.11

(11.94)

10.00

(10.64)

.23

(.15)

.20

(.13)

Full
90.68

(5.77)

91.60

(6.48)

9.69

(4.30)

9.58

(4.46)

.16

(.07)

.17

(.08)

Noin
102.14

(19.79)

93.55

(14.73)

30.07

(13.72)

23.20

(10.83)

.43

(.11)

.39

(.13)

Imit
146.70

(34.17)

138.85

(31.62)

48.24

(9.35)

40.94

(16.70)

.49

(.11)

.48

(.13)

Imit+
105.12

(13.64)

96.43

(5.35)

26.47

(14.57)

14.90

(11.03)

.23

(.13)

.19

(.11)
Note: Standard deviations in parentheses.

mentioned above, we suspect that some subjects in treatment Imit might

have had problems understanding the situation, which resulted in very high

quantities. In fact, subjects in treatment Imit made losses in all but a few

periods.

Table 2 gives the corresponding summary statistics. We report summary

statistics for the last 35 and the last 20 rounds. The ¯rst 5 rounds cannot

be seen as representative as subjects in treatments Imit, Imit+ and Noin

were not given enough information to ¯nd a reasonable starting value.

We have computed the following six measures:

² Mean35 (Mean20) is the average total quantity over the last 35 (20)

periods and over all six groups in one treatment. E.g.

Mean35 =
1

6

6X
j=1

1

35

40X
t=6

Q
t
j :
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² SDev35 (SDev20) is the average standard deviation of total quantities

in the last 35 (20) periods over all six groups in one treatment.

SDev35 =
1

6

6X
j=1

vuut 1

35

40X
t=6

Ã
Qt
j ¡

P
40

t=6Q
t
j

35

!
2

:

² Gini35 (Gini20) is the average Gini coe±cient of individual quantities

within a period over the last 35 (20) periods and over all six groups in

one treatment.

Gini 35 =
1

6

6X
j=1

1

35

40X
t=6

1

6Qt
j

4X
i=1

4X
h=1

¯̄
qtji ¡ qtjh

¯̄
:

Mean35 and Mean20 may be compared to the theoretical predictions

about total quantities derived in Section 3. We report on non{parametric

tests in the next section. But two observations can be made already. First,

in treatments Best and Full, that is, in treatments in which subjects

had complete information about the market, there does not seem to be a

noticeable trend in total quantities as Mean35 and Mean20 are virtually the

same in both treatments. Second, we have also computed means for periods

21 through 37 and compared them with the respective means for periods 38

through 40 to check for possible end game e®ects. End game e®ects could be

present since we announced the length of the game in advance. It turned out,

however, that in none of the treatments there were any signi¯cant di®erences

between the last 3 rounds and the 17 rounds preceding them.

SDev35 and SDev20 index the variability of total quantities over time

and can therefore be interpreted as a measure for the stability of aggregate

behavior. Furthermore, a comparison of the two numbers can be used to

get a rough impression about the rate of convergence. In all treatments

the variability of total quantities seems to decrease over time, though the

di®erences are not signi¯cant.

Finally, the average Gini coe±cients measure the intra{group inequality

in the distribution of quantities and, because pro¯ts are linear in quantities,

they also measure the income distribution. The lower the Gini coe±cients,

the more symmetric is ¯rms' behavior. The Gini coe±cients will be analyzed

further in Section 4.2.
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4.1 Information and competition

Two important results about the relationship between information and quan-

tities can be obtained from reading Table 2. The treatments can be ordered

in a partly nested way as displayed in Figure 6 in terms of the information

available to subjects.

NOIN

BEST
IMIT

FULL

IMIT+

NOIN > BEST
at .019

FULL > BEST
at .023

IMIT > NOIN
at .007

IMIT > IMIT+
at .009

IMIT+ > FULL
at .009 more info about others

more info about market

Figure 6: Signi¯cance levels of Mann{Whitney{U tests for di®erences in

means based on last 35 periods, one{tailed.

To measure the e®ect of additional information about the market we test

Noin vs. Best, Imit vs. Imit+, and Imit+ vs. Full. Taking each group

as a single observation we applied the Mann{Whitney{U statistic to test

for di®erences in means (based on the last 35 periods, one{tailed).13 In

13Results are essentially the same for the last 20 periods.
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each case total quantities are signi¯cantly lower in the treatment with more

information about the market. The signi¯cance levels are .019 for Noin

vs. Best, .009 for Imit vs. Imit+, and .009 for Imit+ vs. Full. Thus,

increasing the information about the market decreases total quantities.

To measure the e®ect of additional information about individual quan-

tities and pro¯ts we test Best vs. Full and Noin vs. Imit. It shows

that total quantities are signi¯cantly higher in the presence of information

about others. The signi¯cance levels are .023 for Best vs. Full and .007

for Noin vs. Imit. Thus, providing additional information about individual

quantities and pro¯ts increases total quantities.

The latter results are especially interesting with respect to the theoreti-

cal predictions about imitation. We have shown in Section 3 that imitation

yields more competition than behavior based on myopic best replies or other

rules discussed. The data reveal that if the information which is necessary

to imitate successful behavior is available, competition indeed becomes more

intense. Of course, the data do not coincide with the exact prediction ob-

tained by studying imitation dynamics. For the above mentioned reasons

treatment Imit yields quantities in excess of the theoretical predictions. The

Imit+ results, however, are remarkably close to the theoretical prediction,

which is QW = 99: One cannot reject the hypothesis that the average to-

tal quantities in treatment Imit+ are drawn from a normal distribution

with mean 99.14 Furthermore, some groups (see Figure 4) converge nearly

perfectly to the competitive outcome.

In treatment Full average total quantities are somewhere in between

the competitive output and the Cournot output. But quantities in Full are

signi¯cantly higher than those in Best, which indicates that imitation plays

the predicted role. When looking at other players who receive higher payo®s

due to higher quantities, the temptation to match the higher quantities

apparently is hard to resist even if own pro¯ts are reduced by doing so.

On the other hand, quantities in Full are signi¯cantly lower than in Imit+

which shows that at least some individuals follows best reply considerations.

In general, one has to take into account that Vega{Redondo's (1997)

theorem is based on the notion of stochastic stability and, therefore, makes

a prediction only for the very long run. Obviously, one should not expect

to observe the stochastically stable state as the outcome of an experiment

14The appropriate Kolmogorov{Smirnov test shows that rejection is not even possible

at a 20% level of signi¯cance. The corresponding tests for treatments Full and Imit lead
to rejections at the 5% level. The same is true for testing whether the total quatities in

Best could have been drawn from a normal distribution with mean 79.2.

15



lasting only 40 periods. However, qualitatively our aggregate data support

Vega{Redondo's result quite well. Whether this is also true on the individual

level will be addressed in Section 4.3.

The fact that competition is more intense when ¯rms know more about

the individual quantities and pro¯ts of their rivals provokes traditional views

on competition policy. For example, Green and Porter (1984) show that

¯rms behave less competitive when they can observe their rivals' quantities

immediately. For a similar reason anti{trust authorities like the European

Commission often allow trade associations to publish only aggregate indus-

try data.15 Our result, however, indicates that it would be better to inform

all ¯rms about their rival's quantities and pro¯ts.

In this context it is also interesting to note that in none of the groups

there has been any successful attempt to establish collusion. The averages

of total quantities are above the static Cournot solution (QN ) in all groups,

and only occasionally total quantities fell below QN . The collusive price of

50.5 was exceeded in exactly 12 out of 1200 observations.16

The main observations can be summarized as follows.

Result 1 More information about the market yields less competitive out-

comes.

Result 2 More information about behavior and pro¯ts of others yields more

competitive outcomes.

Result 3 There were no successful attempts of collusion.

Result 2 con¯rms a result obtained earlier by Fouraker and Siegel (1963).

They ¯nd that quantities in their \complete information" treatment, which

is comparable to our Full treatment, are higher than in their \incomplete"

information treatment, which is roughly comparable with our Best treat-

ment. One should note, however, that Fouraker and Siegel only report

quantity choices of the second to last period of each session, which makes it

impossible to say anything about the average quantities in their experiments.

Hence, nothing can be concluded concerning learning of players.

15See e.g. the \Seventh Report on Competition Policy" by the Commission of the

European Community, Luxemburg, 1978.
16Occasionally there have been individual attempts to establish cooperation by sup-

plying quantities close to 12. But this was always exploited by other ¯rms so that the

cooperators eventually gave up.
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Rassenti et al. (1996) ran several oligopoly experiments with ¯ve ¯rms.

Their central issue is whether repeated play in such a setting converges to

the unique static Nash equilibrium. Surprisingly, and in contrast to previous

studies and our own, they observed no convergence at all, neither to the

Cournot equilibrium, nor to any other rest point. Moreover, this result does

not depend on the amount of information subjects had about the other ¯rms

in the market.

Several di®erences between their design and ours could account for this.

Most importantly, they introduce large di®erences in cost. The marginal

cost parameter of the least e±cient ¯rm was nine times higher than that

of the most e±cient ¯rm. This implied that the lowest Nash equilibrium

output was only a little larger than the half of the highest Nash output. In

addition, ¯rms were not told how big the di®erences in costs were. As we

show in the next section, one reason for the high volatility in Rassenti et

al. (1996) could be the unequal distribution of quantities (and pro¯ts) in

equilibrium.17

4.2 Inequality and stability

Table 2 suggests that there is a correlation between the standard deviations

of total quantities and the Gini coe±cients. In fact, when observing the

experiments we had the impression that the volatilities of both, individual

and total quantities, were related to the di®erences in individual quantities

and pro¯ts. To test this in a more rigorous fashion we estimated whether

the total changes of quantities from one round to another can be explained

by inequality as measured by the Gini coe±cients. Table 3 shows the results

of an OLS regression for the following equation.

TV art = ¯0 + ¯1Gini
t¡1 + ¯2Q

t¡1 + ¯3Z
t: (4)

Total variation in a given period t, TV art =
P

4

i=1

¯̄
qti ¡ q

t¡1
i

¯̄
; is regressed

on last period's Gini coe±cient, Ginit¡1, on last periods total quantity, and

on Zt, the number of subjects who were allowed to revise their quantity in

period t. Clearly, the last variable should increase TV art and, unsurpris-

ingly, ¯3 is positive and signi¯cantly di®erent from zero in all treatments.

Neither is it surprising that ¯2 is positive and (with the exception of Imit)

signi¯cantly so in all treatments.

17Another di®erence was that Rassenti et al. did not have inertia in their experiment.

However, in Huck, Normann, and Oechssler (1997) we show that inertia does not have a

noticable in°uence.
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Table 3: Factors in°uencing the variability: OLS results

TV art = ¯0 + ¯1Gini
t¡1 + ¯2Q

t¡1 + ¯3Z
t

Best Full Noin Imit Imit+

¯1
32.91

(6.50)

46.52

(7.22)

53.66

(10.52)

30.31

(13.30)

71.91

(9.11)

¯2
.22

(.06)

.25

(.05)

.39

(.04)

.05

(.04)

.17

(.05)

¯3
4.37

(1.13)

2.86

(.66)

17.08

(1.99)

20.12

(2.68)

8.03

(1.78)

¯0
¡24:64

(5.42)

¡25:67

(4.91)

¡74:98

(8.91)

¡25:81

(14.08)

¡33:58

(7.44)

R2 .267 .327 .434 .210 .374

Note: Standard deviations in parentheses. Z denotes the number of

subjects who were able to adjust their strategies.

Our initial hypothesis concerning the impact of inequality on total changes

is clearly con¯rmed. The values of ¯1 are not only highly signi¯cant but also

very substantial. This may not be surprising for the treatments in which

subjects were informed about others' behavior. Naturally, subjects tried

to avoid being the market's sucker and, therefore, revealed a tendency to

imitate successful strategies. Such behavior obviously leads to greater ad-

justments when the Gini coe±cients are large as compared to a situation

in which quantities and pro¯ts are evenly distributed. But this cannot be

the only reason for the impact of inequality since ¯1 is also an important

explanatory variable in treatments Best and Noin, in which subjects could

not observe individual quantities and pro¯ts of others. In Best subjects

were able to compute best replies and average payo®s of others, and move-

ments toward either quantity could explain why total adjustments are larger

when quantities are more unevenly distributed. The real puzzle is the ques-

tion why the inequality also drives adjustments in Noin.

We suspect that the reason is more a matter of correlation rather than

causation. Recall that the unique Nash equilibrium is symmetric. When

quantities are all roughly the same, whether above or below qN , subjects
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could move together in the direction of qN and ¯nd their pro¯t increased

every time. Once the Cournot output is reached, no subject has individ-

ually success with changing his quantity, and total variability should be

low. In Figure 5 groups 2 and 3, which converged almost perfectly to the

Cournot equilibrium, have an average Gini coe±cient which is clearly below

the treatment average (.29 versus .39). On the other hand, if quantities are

very unequally distributed, subjects can never be close to the Nash equilib-

rium and adjustments will be large.

Result 4 The more unequal quantities are distributed, the higher is the

volatility of the adjustment process.

4.3 Individual learning behavior

While the analysis of group level behavior gives some insight as to the rela-

tive performance of the di®erent learning theories, a closer look at individual

behavior seems warranted. Since we suspected considerable heterogeneity

in learning behavior between subjects we ¯rst analyzed each subject's time

series data separately.

We have estimated with OLS the following equation

q
t
i ¡ q

t¡1
i

= ¯0 + ¯1
¡
r
t¡1
i

¡ q
t¡1
i

¢
+ ¯2

¡
ib
t¡1 ¡ q

t¡1
i

¢
+ ¯3

¡
i
t¡1
i

¡ q
t¡1
i

¢
(5)

where rt¡1
i

denotes subject i's best reply (i.e. reaction function) given the

other ¯rms' quantities in t¡1; ibt¡1 stands for \imitate the best" and denotes

the quantity of the ¯rm which had the highest pro¯t in period t¡ 1; ¯nally

i
t¡1
i denotes the average quantity of the other ¯rms' output in t¡ 1. Note,

that a subject who strictly played a myopic best reply every period would

have ¯1 = 1 and ¯k = 0; k 6= 1.18 Similarly, for someone who follows the

rule \imitate the best" or \imitate the average".

The choice of rt¡1
i

and ibt¡1 as explaining variables does not need an

explanation given our emphasis on those two learning rules. We chose to

include additionally i
t¡1
i

for a simple reason. In treatment Best subjects

are not able to observe the quantities or pro¯ts of individual other ¯rms.

Hence, they cannot imitate the best ¯rm. They may, however, imitate the

average. In fact, it¡1i turns out to be an important variable. In Tables 4 and

18Thus, one advantage of using the di®erences between the variables and q
t¡1

i
rather

than the absolute values in the regression is that the coe±cients have a nice interpretation.

The other advantage is that it avoids problems of serial correlation.
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Table 4: Subject speci¯c OLS regressions

H0

Number of subjects out of 24 (for Imit+: 20)

for which H0 is rejected at the 5% level

Best Full Imit Imit+

¯1 = 0¤ 16 16 - -

¯2 = 0¤ - 6 18 9

¯3 = 0¤ 18 11 9 11

¯0 = 0¤ 10 4 10 3

¯1 = ¯2 = 0 - 21 - -

¯1 = ¯3 = 0 21 20 - -

¯2 = ¯3 = 0 - 16 24 18

¯1 = ¯2 = ¯3 = 0 - 24 - -

¯1 = 1 23 22 - -

¯2 = 1 - 23 21 18

¯3 = 1 22 23 22 14
Note: Only periods in which subjects were allowed to adjust their quantities are

included. ¤ The alternative hypothesis was that ¯i > 0:

Table 5: OLS Regressions with pooled data

Best Full Imit Imit+

¯1
.430

(.038)

.366

(.044)
- -

¯2 -
.110

(.038)

.465

(.046)

.435

(.040)

¯3
.340

(.038)

.344

(.038)

.151

(.048)

.273

(.047)

¯0
1.42

(.377)

2.14

(.447)

8.70

(1.33)

1.08

(.643)

R2 .410 .507 .356 .439

DW 2.05 2.06 2.20 2.17

Obs. 610 631 620 533

Note: Standard deviations in parentheses. DW = Durbin Watson statistic. Sub-

ject dummies are used with the restriction that their coe±cients sum to zero: Only

periods in which subjects were allowed to adjust their quantities are included.
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5 we have included only variables in the regression which were observable to

the subjects.19

Running (5) for each subject separately we were able to perform hy-

pothesis tests which are shown in Table 4. For almost all subjects at least

one variable helped to explain the data, which is demonstrated by F{tests

for the null{hypothesis of all ¯k being zero. In all treatments \imitate the

average" seems to play a substantial role. Furthermore, two thirds of the

subjects in Best and Full adjust at least partially in the direction of the

best reply. However, only one or two, respectively, do so completely (i.e.

with ¯1 = 1). In Full there are 7 subjects for which both, best reply

and imitate the average are signi¯cant. But only one subject of those for

which imitate the best is important also takes best replies or the average

quantity into account. It seems that there is a minority of subjects who are

pure imitators of the best action and they may be responsible for the higher

quantities in Full vs. Best.

A similar picture emerged when we estimated equation (5) with pooled

data of all subjects in each treatment (see Table 5). The coe±cients yield an

indication about the relative importance of the explanatory variables. The

coe±cients of all three variables are highly signi¯cant and have the expected

sign. InBest and Full the best reply variable is the most important factor.

However, in Full imitation of both sorts becomes more important, which

is responsible for the di®erence in outcomes between those two treatments.

The records about the use of the pro¯t calculator have the same tendencies.

While the pro¯t calculator was used on average in 17.8 rounds in treatment

Best, it was used on average only in 15.4 rounds in Full. Given the inertia

subjects had the possibility to use the calculator on average in 27 rounds.

Thus, in more than half the rounds subjects consulted the calculator.

In both, Imit and Imit+ the \imitate the best" variable is the ma-

jor factor. In Imit+ the experimental results nicely match the theoretical

prediction, namely convergence to the Walrasian output. We suspect that

responsibility for the high quantities in Imit lies with the very high constant

term, which might hint that other, hidden factors are relevant.

Result 5 If subjects have the necessary information to play best replies,

most do so, though adjustment to the best reply is almost always

incomplete. If subjects additionally have the necessary information to

`imitate the best', at least a few subjects become pure imitators. In all

19Since none of the variables was observable in Noin we did not run the regressions for

this treatment.
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treatments in which this was possible subjects were partly in°uenced

by the average quantity of the other players.

Including other variables in equation (5) did not prove successful. We

have tried three other variables. The ¯rst was \imitate the average if bet-

ter", i.e. imitate the average only if average pro¯ts are higher than own

pro¯t. The second was \imitate the highest quantity". Both of these vari-

ables did not add any explanatory power. Finally, we have included lagged

versions of the variables in (5). Even though we did not provide subjects

with this kind of information, some were taking notes or might have had a

good memory. The use of lagged variables would be evidence for learning

theories like ¯ctitious play or regret type learning processes (see e.g. Hart

and Mas{Colell, 1997). However, lagged variables were not signi¯cant in

any treatment.

Another learning theory which has been used much recently is reinforce-

ment learning (Roth and Erev, 1995). Reinforcement learning assumes that

strategies are played with probabilities proportional to their accumulated

payo®s in the past. While Erev and Roth (1997) have generalized their

model by adding recency parameters, reference points and experimentation,

the model is not able to explain why factors matter which we found to be

of key importance. In particular, information about the market and infor-

mation about the individual play of others turned out to be very important

treatment e®ects (see Figure 6). Neither e®ect can be explained by rein-

forcement learning.

We have also tested the other two learning theories mentioned in Section

3.3. Directional learning requires a knowledge of the direction in which pay-

o® improvements can be found. Hence, it can be applied only in treatment

Best and Full. Table 6 shows the resulting hypotheses and the percent-

ages of cases for which each hypothesis was correct. Three observations are

apparent: (1) Directional learning does better in treatment Best than in

Full. (2) It performs better for upward adjustment than for downward ad-

justments. And (3) the performance with respect to the strong hypotheses is

very poor (note that the weak hypotheses count non{movement as success).

We take those relatively low success rates as evidence against directional

learning.

Finally, trial and error learning is a type of learning which is applicable

even in treatment Noin. Table 7 shows the theoretical predictions and

the number of times those predictions were correct. In its weak form the

hypotheses are correct for all 5 treatments in about 80% of the cases to which
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Table 6: Directional learning

Treatment hypothesis % of cases correct

Best

r
t¡1
¡i

> q
t¡1
i

) qti ¸ q
t¡1
i

r
t¡1
¡i > q

t¡1
i ) qti > q

t¡1
i

r
t¡1
¡i

< q
t¡1
i

) qti · q
t¡1
i

r
t¡1
¡i

< q
t¡1
i

) qti < q
t¡1
i

83.2

68.7

69.2

54.6

Full

r
t¡1
¡i

> q
t¡1
i

) qti ¸ q
t¡1
i

r
t¡1
¡i > q

t¡1
i ) qti > q

t¡1
i

r
t¡1
¡i

< q
t¡1
i

) qti · q
t¡1
i

r
t¡1
¡i < q

t¡1
i ) qti < q

t¡1
i

77.1

54.1

66.3

41.5
Note: Only periods in which subjects were allowed to adjust their quantities

are included.

Table 7: Trial and error learning

¢qt¡1 > 0 ¢qt¡1 = 0 ¢qt¡1 < 0

¢¼t¡1 > 0 ¢qt ¸ 0 ¡ ¢qt · 0

Predictions ¢¼t¡1 = 0 ¡ ¡ ¡

¢¼t¡1 < 0 ¢qt · 0 ¡ ¢qt ¸ 0

Best Full Noin Imit Imit+ Total

# of decisions 626 643 633 653 546 3093

Correct predictions 511 517 500 530 433 2488

Success in % 81.63 80.40 78.99 81.16 79.30 80.44
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they applied. Note, however, that there is a theoretical problem. If subjects

inNoin had really been playing according to trail and error, they would have

ended up near the collusive outcome, which is the theoretical prediction. But

they converged either to Nash or to even higher quantities. The theoretical

prediction, however, holds only if all subjects behave according to trial and

error. If just one subject in each group plays di®erently, then very di®erent

outcomes can result.

Result 6 Among the examined alternative learning theories only trial and

error learning performs reasonably well. Both, reinforcement learn-

ing and directional learning, fail to explain important features of our

results.

Since we have used many non{economic students as subjects, it might be

interesting how they fared as compared to the economic students who should

have (so one thinks) a superior understanding of the situation. In fact,

economics and business students did marginally worse than other students,

though the di®erence is not signi¯cant (24.71 DM for economics and business

students vs. 25.03 DM for other students).

5 Summary

In a series of experiments we investigated multi{period Cournot markets

under various information conditions. On an aggregate level the two main

results are that providing more information about quantities and pro¯ts of

the competing ¯rms increases competition whereas additional information

about the market structure decreases competition. The former result is

explained by individuals' propensity to imitate successful strategies, while

the latter is based on individuals' ability and willingness to adjust behavior

towards best replies. Competition, however, is always strong enough to

frustrate any attempts for collusion. Furthermore, we ¯nd that the stability

of behavior over time depends on the distribution of quantities and pro¯ts

with more symmetry inducing less adjustments. This is partly explained by

imitation and partly by the observation that if ¯rms adjust their quantities

in the same direction it is more likely that they ¯nd the static equilibrium

of the game fast.

The analysis of the individual data showed that none of the theoretical

learning processes which are discussed in Section 3 can on its own explain
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the observed behavior. Focussing on myopic best reply dynamics and im-

itation dynamics we ¯nd, however, that both adjustment rules play a role

for subjects' decisions provided that they possess the necessary information

to apply these rules. When subjects know the true market structure their

quantity adjustments depend signi¯cantly on the myopic best reply. When

subjects know individual pro¯ts their adjustments go signi¯cantly towards

the most successful strategy of the previous period. Furthermore, the data

indicate that whenever subjects can calculate the average quantities of their

competitors their adjustments also depend on these which hints at a taste for

conformity. These results are obtained for pooled data as well as for purely

individual data. Since individual quantity adjustments depend on the avail-

able information, the composition of the available information drives the

path of aggregate quantities or the intensity of competition.

Concerning alternative learning hypotheses we ¯nd that `learning direc-

tion theory' largely fails while a simple learning rule, which we called `trial{

and{error learning' and which demands that subjects do not make the same

mistake twice, performs quite well. Furthermore, we found no support for

¯ctitious play as lagged variables do not seem to matter. Likewise, rein-

forcement learning is not able to explain any of our signi¯cant treatment

e®ects.

Overall we ¯nd that learning plays an important role in our experiments.

However, learning takes place in a delicate manner and is highly information

sensitive. No examined learning theory is rich enough to account for all these

factors. This leads us to the view that there is need for new theoretical

learning models accounting for these phenomena.
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Appendix A: Translation of instructions

Welcome to our experiment. Please read these instructions carefully. In the

next 1 or 2 hours you will have to make some decisions at the computer. You

can earn some real money. But please be quite during the entire experiment

and do not talk to your neighbors. Those who do not follow this rule will

have to leave and will not get paid. If you have a question please raise your

arm.

You will receive your payment discretely at the end of the experiment.

We guarantee anonymity with respect to other participants and we do not

record any information connecting your name with your performance.

You can operate the computer with the keyboard or the mouse. Before

the experiment there is enough time to make yourself familiar with the

computer in a trial round. Money in the experiment is denominated in

\Taler". At the end we exchange your earnings into DM at a rate of 500 T

= 1 DM. The experiment is divided into several rounds. As said we start

with a trial round. The real experiment starts with round 1.

You represent a ¯rm which produces and sells a certain product. Besides

you there are 3 other ¯rms which produce and sell the same product. Your

task is to decide how much to produce of your good. The capacity of your

factory allows you to produce between 0 and 100 units each round. Produc-

tion cost are 1T per unit. All units (also those of the other ¯rms) are sold

on a market (like on a stock exchange or in an auction).

For this the following important rule holds: The price can be between This { only for

Best and Full.100T and 0T. The more is sold on the market in total, the lower is the price

one obtains per unit. To be precise the price falls by 1T for each additional

unit supplied. If { this is only an example { the other ¯rms supply together

10 units and your ¯rm supplies 3 units, then total quantity is 13. The

resulting price is 100 ¡ 13 = 87. If the total quantity were 90, the price

would be 100¡ 90 = 10: Pro¯t per unit is the di®erence between the price

and the cost per unit of 1T. Note that you make a loss if the price is lower

than the per unit cost. Your pro¯t in a given round results from multiplying

the pro¯t per unit with your supplied quantity.

For this the following important rule holds: The price can be between This { only for

Imit+.100T and 0T. The more is sold on the market in total, the lower is the price

one obtains per unit. Your pro¯t in a given round is then your revenues

minus your production costs. Market conditions are constant for all periods

and the same for each ¯rm.

In each round the quantities of all ¯rms are recorded and the resulting
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pro¯ts are calculated. In each round you will be told your pro¯t. Pro¯ts

from all periods are added and the sum is paid out to you in cash at the

end. Additionally you receive a ¯xed payment of 150T each round. This

will be added to your pro¯t each round.

In the ¯rst round you decide on a quantity you want to produce and sell.

In all further rounds chance decides whether you have the opportunity to

revise your quantity. The computer has a mechanism which is comparable

to a \one{armed bandit": If you draw a \1" or a \2", you may change your

quantity. If you draw a \0", you may not. That is, you may change your

quantity in 2 out of 3 cases.

With a \0" the quantity of last period is supplied automatically again.

Note, that your quantity might be ¯xed for several rounds. Following a \1"

or a \2" you may revise your quantity.

In this case you will receive the following information. You are told each This { only for

Full.¯rm's last period quantity, the total quantity of the other ¯rms last period,

last period's price, and the pro¯t of each ¯rm.

In this case you will receive the following information. You are told the This { only for

best.total quantity of the other ¯rms last period, and last period's price.

In this case you will receive the following information. You are told each This { only for

Imit & Imit+.¯rm's last period quantity and the pro¯t of each ¯rm.

Additionally, you have access to a pro¯t calculator. The pro¯t cal- This { only for

Best and Full.culator is shown on the last page of the instructions. It has two functions:

1. It calculates your pro¯t for arbitrary quantity combinations. That is,

you can enter two values, a total quantity for the others (button \A") and

a quantity for yourself (button \I"), and the machine tells you how much

you would earn. 2. You can let it calculate for arbitrary quantities of oth-

ers (button \A") the quantity at which you would make the highest pro¯t

(button \M"). You can use the machine as much as you want before each

decision. Before we start you will have enough time to get to know the pro¯t

calculator directly at the computer.

Everything we have explained to you holds for the other ¯rms as well.

In fact, you are all reading exactly identical instructions.

The experiment lasts for 40 periods in total. Afterwards you will receive

your payments in DM. We want to reassure you again that all data will be

treated con¯dentially.

[For Best and Full a screen shot followed as shown in Appendix B]
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Appendix B: Screen shots

Figure 7: Screenshot of treatment Best

Translation (from top to button, left to right):

Bar at top: Firm 3, Round 2, Balance: 341.88 T

Window at top: Result of round 1, Total quantity of other ¯rms: 71.10,

The price: 16.60, Your quantity: 12.30, Your pro¯t: 191.88 T, Fixed

payment: 150.00 T.

Lower left window: Pro¯t calculator, Enter total quantity of other ¯rms,

Enter your quantity, Price, Pro¯t, Exit pro¯t calculator: Esc.

Lower right window: Enter quantity, Please enter your quantity, open

pro¯t calculator.
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Figure 8: Screenshot of treatment Full

Figure 9: Sreenshot for Imit and Imit+
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Figure 10: Screenshot for Noin
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Figure 1: Treatment Best. Upper line = QW , lower line = QN :
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Figure 3: Treatment Imit.
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Figure 5: Treatment Noin.
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