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Abstract

The winner of a battle for a throne can either execute or spare the loser; if the loser

is spared, he contends the throne in the next period. Executing the losing contender

gives the winner an additional quiet period, but then his life is at risk if he loses to

some future contender. The trade-off is analyzed within an infinite-time complete in-

formation game. Conditions which govern equilibrium behavior of agents are identified.

Our theory predicts that we would witness more killings along the succession lines in

countries where a ‘circle of potential contenders’ is limited and that executions of the

predecessor are autocorrelated. In particular, with a dynastic rule in place, incentives

to kill the predecessor are much higher than in a non-hereditary dictatorships, e.g.

in 19th century Latin America. Our analysis of historical material demonstrates that

long succession lines indeed exhibit patterns as predicted by our model.
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“[Domitian] used to say that the lot of princes was most unhappy,

since when they discovered a conspiracy, no one believed them

unless they had been killed.”

Suetonius “Life of Domitian”

1 Introduction

On December 23, 1989, Nicolae Ceauşescu, a Romanian communist leader for 22 years, fled

his residence in the presidential palace in Bucharest and was captured by army troops that

revolted after mass protests against his rule erupted the day before. On December 25, after

a two-hour military trial, he and his wife, a former first deputy prime minister and the

President of Romanian Academy of Science, faced a firing squad.1 What did those who

captured and executed Ceauşescu have in mind? Why would not they wait for a regular

process of justice, which might have very likely ended the same way? This kind of perfectly

real problems involved in leadership dynamics (Bueno de Mesquita et al., 2003, Gallego and

Pitchik, 2004, Acemoglu and Robinson, 2003) outside the democratic world (Olson, 1993,

Tullock, 1987, Acemoglu and Robinson, 2005) enables us to attempt to assess fundamental

theoretical issues: what is reputation and what is knowledge in historical perspective, and

what are their workings in generation of history-dependence (North, 1981).2

What is the downside of executing the enemy when it is possible and then enjoying a

period of quietness? The downside is that in that case, the current decision-maker might

1Though not a necessary consequence of a coup d’etat, a violent death of the fallen leader in a short period

after the coup is definitely not an isolated phenomenon. Examples of countries that have witnessed at least

two killings of the fallen leaders during the last 50 years include Afghanistan (Mohammad Daoud, 1978,

Mohammad Taraki, 1979, Hafizullah Amin, 1979), Bangladesh (Mujibur Rahman, 1975, Khalid Musharaf,

1975, Ziaur Rahman, 1981), Iraq (Faisal II, 1958, Nuri as-Said, 1958, Abdul Karim Kassem, 1963), Nigeria

(Abubakar Tafawa Balewa, 1966, Johnson Aguiyi-Ironsi, 1966, Murtala Ramat Muhammad, 1974), Comoros

(Ali Soilih, 1978, Ahmed Abdallah Abderemane, 1989), and Liberia (William Tolbert, 1980, Samuel Doe,

1990). For numerours historical examples see Section .4.
2Recent theoretical models of dictatorships include Bueno de Mesquita et al (2003), Wintrobe (1998),

Grossman and Noh (1990), Acemoglu, Robinson and Verdier (2004), Galetovic and Sanhueza (2000), Over-

land, Simmons, and Spagat (2000), and Restrepo and Spagat (2001). Empirical investigation of military coup

dynamics include Longredan and Poole (1990) and earlier works by Luttwak (1979), Ferguson (1978), and

O’Kane (1978). Domínguez (2002) contains an excellent overview of descriptive political science literature

on modern dictatorships (see also Linz and Chehabi, eds., 1998).
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be executed himself once removed from power. Sparing the life of a person who lost a fight

against the incumbent makes his rule more troubling in the short-run (he will for certain

have a powerful enemy alive), but then he will enjoy a higher probability of being spared

himself once he loses a fight in the future. Formally, any decision by a rational agent

incorporates future enemies’ opinion of him as a result of his actions. If dictator A executed

his predecessor, then dictator B, who eventually takes over A, is likely to kill A, being

concerned about bloody reputation of A. This reputation would indeed matter for B, the

decision-maker at the moment, since if A is spared then, upon taking power back from B,

A would likely execute B. (Or, more precisely, this is what B would most naturally expect

from A basing on A’s reputation.) One immediate result is that once somebody takes over

a bloody dictator, he might be ‘bound’ to become a bloody dictator himself.

Economists are often concerned with problems that could be conceptualized best in classic

economic terms. E.g., games of reputation are analyzed as games of a long-term monopoly

against players who play only once but observe the entire previous history (Kreps andWilson,

1982, Milgrom and Roberts, 1982, Fudenberg and Kreps, 1982, Fudenberg and Levine, 1989,

Sorin, 1999, and Ely, Fudenberg, and Levine, 2004). The game setup we consider has a

political science origin and has no straightforward IO parallel; still, the machinery developed

within economic theory is most suitable for our analysis. And while economic theorists’

assumptions are often stylized to the point where they hardly approximate real decision-

making problems, in reality people do face the binary problem we investigate. As General

Gelu Voican Voiculescu, appointed by the Romanian revolutionary government to supervise

the trial and burial of the Ceauşescus, testified in 1995: “The decision to try the couple was

dictated by desire to survive — either them, or us.”

What definitely makes our theory a part of the ‘reputation’ literature is that the cost

of executing a certain action is associated with the equilibrium response of a future player.

There is a long tradition in economic science to study reputation in games with incomplete

information, starting from seminal contributions of Kreps and Wilson (1982) and Milgrom

and Roberts (1982). We depart from this tradition and argue that many behavioral aspects of

reputation could be successfully studied in a complete information environment. Fudenberg

and Kreps (1987) compare a standard reputation-building model (in which prior reputations

are fixed) to a model in which the opponents do not observe how the long-term player played
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against other opponents.3 Another departure from the economic tradition in our model is

that we have an infinite number of (potentially) long-term players, though at each moment

only two of them interact.

What social traits should be captured by a general theory of reputation? First, reputation

is something that changes over time. Second, a proper conceptualization of reputation

requires some sort of monotonicity: the more incidents of a certain action are committed

by the reputation-builder, the stronger is his reputation.4 However, reputation makes little

sense unless we allow at least one of the two actions (the one that enhances reputation and

the one that ruins it) to be verifiable someway. In the situation we focus on, it is easy to

pretend to be bloody (e.g. by revealing a dead body), and hard to pretend to be enlightened

(unless one is truly enlightened). Once we have introduced this asymmetry, it becomes

reasonable to focus exclusively on equilibria in which contenders do not ‘believe’ in actions

that can be faked. In our model, this rules out equilibria where the dictator can reduce

the probability of being executed by committing more killings. This brings the intuitively

appealing monotonicity with respect to decisions players make.

Though there is indeed a certain similarity between classic ‘reputation’ literature and

this model, we stress that here, reputation concern is more important for the players. In

contrast with the model of a long-term player facing a sequence of short-term ones, in our

model every agent cares about his reputation. Moreover, he needs to take into account the

effect of his actions as an input into future players’ decision processes. Indeed, the decision

to kill or to spare the current loser requires understanding of not only the loser’s strategy (if

he is spared), but also of future contenders’ strategies. In the long-term monopoly models,

the short-term players need to think about future short-term players’ strategies, since this

might affect the current monopoly’s incentives to maintain reputation, but they do not care

about their own reputation.

Of course, in the real world, the same reputation might be good in countering some types

of threats and detrimental in other situations. For example, a reputation of ‘toughness’ or

3In economic theory, strategic dynamic interaction is most often modeled as a repeated game with a fixed

number of participating agents. In our setup, in every decision node the deciding agent could always leave

forever the interaction with this particular opponent. Lagunoff and Matsui (1995, 2004) introduce a concept

of an ‘asynchronously repeated game’. Our model is an example of such game.
4Of course the consequences of reputation might be non-monotonic as, e.g., in Diamond (1991) or, most

recently, in Ely and Valimaki (2004).

4



‘cruelty’ has at least two effects for a ruler: First, potential contenders might be less willing

to become actual ones. Second, if potential contenders might be either strong or weak, the

reputation for toughness makes the selection of actual contenders more strong. The balancing

effect of a tough reputation on the incumbent’s tenure is, therefore, unclear. In our model,

this complication does not arise, since the ‘supply side’ of contenders is exogenous.

Recently, Acemoglu and Robinson (2001) and Acemoglu (2003) (see also Bueno de

Mesquita et al., 2003 and Lagunoff, 2004a) have developed a workable framework for dynamic

analysis of political transitions. However, the reliance on Markov-type dynamic models limit

their ability to focus on path-dependence, a key concept in North (1989) institutional ap-

proach to history.5 Our focus on reputational concerns allows us to go beyond the existing

models of path-dependence.

For our analysis, we restrict the set of equilibria by letting each agent’s strategy to de-

pend on the number of killings committed by participants who are active at the moment

rather than on the entire history of the game. (See, e.g., Maskin and Tirole, 1998, who argue

that it is plausible to restrict the set of perfect equilibria in such a game by allowing agents’

strategies to depend on ‘pay-off relevant’ histories only.) Our focus is on perfect equilibria:

in any decision node, each agent’s strategy is optimal given strategies of other agents. Fur-

thermore, we require that all equilibria are ‘fake-murder proof’: effectively, this requirement

imposes monotonicity with respect to killings of losers. In any such equilibrium, each addi-

tional murder implies a higher probability of being punished (so there is no forgiveness or

indulgence), until the probability of punishment reaches one. Once it does, fear of additional

chance of being punished is no longer in effect, and the agent opts to execute every time.

It appears that these relatively mild restrictions on equilibria allow to get meaningful

comparative statics even though the number of equilibria is still large. We define ‘maximum

patience’ of equilibria as the maximum number of killings a dictator can commit while still

facing a non-zero probability of being spared if overthrown. This value is well defined (it is

always a finite number) and has intuitive properties. The maximum patience is increasing

in the probability that a new contender appears in the next period despite execution of the

previous one, and is decreasing in the incumbent’s survival rate. It also increases in the cost

of losing life and decreases in the utility of being in power.

5Another approach that allows to go beyond Markov-type dynamic models is suggested in Section 5.7 of

Acemoglu and Robinson (2005) and Acemoglu (2005).
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Historically, understanding of idea of reputation for executions manifested itself in various

laws and constitutional clauses. The idea of restraint in killing defeated political opponents

might be the most basic of all constitutional constraints. The problem is addressed in the

Hittite Telipinu Proclamation (pp. 194—198, The Context of Scripture I, edited by W.Hallo),

which may be the world’s oldest existing document of theWest. After discussing the excessive

number of revolts and civil wars, King Telipinu stipulates that high nobles should not be

killed in secret, but should only be killed after a trial before the Council of the realm.

Also, when someone is convicted of a treason, his innocent family members should not be

killed, and his property should not be confiscated. The reason for the first rule is apparently

to avoid provoking pre-emptive revolts, and the second rule could prevent forcing rebel’s

family members to support his rebellion (which would spur a sequence of reputation-based

killings). Abolishment of confiscations might also be aimed at eliminating an incentive for

palace bureaucrats to falsely accuse a noble of a treason.

We illustrate the existence of different equilibrium paths and comparative statics results

by drawing upon historical examples, including detailed descriptions of the Osmanli dynasty

of the Ottoman Empire in 1281—1922 and military dictatorships in Venezuela in 1830—1964.

Methodological concerns about analyzing historical narrative and historical data are dis-

cussed in detail in a companion paper Egorov, Nye, and Sonin (2005). The dictators’

desire to survive and its impact on the quality of government is analyzed in Egorov and

Sonin (2004). Acemoglu and Robinson (2005) provide, alongside with numerous historical

illustrations, a most up-to-date analytical account of relationship between democracy and

dictatorship.

The rest of this paper is organized as follows. In Section 2, we introduce the formal

game. Section 3 contains analysis of the game. In Section 4 we illustrate our theory, e.g.,

the possibility of two pure-strategy equilibria, with historical examples. Section 5 concludes.

2 Formal Setup

2.1 Players, Payoffs, and Timing

We assume time to be discrete, t = 1, 2, . . .∞. Each player comes and fights with the
incumbent; the fight is modeled as a lottery. If a player is the winner, he decides what to
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do with the loser, kill or spare. The spared loser becomes the contender in the next period.

If the loser is executed, there might be no contender in the next period. However, in two

periods, a new contender arrives with certainty. We formalize this as follows: there is an

infinite sequence of identical players i = 1, 2, . . .∞, each of which joins the active part of the
game sequentially. In each period t, there is one player (the identity of this player is Dt ∈ N)
who is the incumbent dictator in this period. In each period, there may be a player Ct ∈ N,
the contender (we write Ct = 0 if there is no contender in period t).

In period t, Dt = 1 and Ct = 2. For each period t, let Nt denote the identity of player

with the least number who had not joined the active part of the game yet. For example,

N1 = 3. For each period t, let Wt and Lt denote the winner and the loser, respectively.

Denote the instantaneous utility player i receives in period t by Ut (i). We assume that

if i 6= Dt and i 6= Ct, then Ut (i) = 0. In other words, only actively participating players can

get a non-trivial utility in the current period. At each period, agent i (actually, only agent

Wt) maximizes his life-time utility U (i) =
∞P
τ=1

βτUτ (i), where β < 1 is the discount factor.

In each period t, the sequence of actions and events is as follows.

1. If Ct 6= 0, then the contender attempts to become the dictator. If Ct = 0, then

Wt = Dt, Lt = Ct = 0, Ct+1 = At, and At+1 = At + 1, and in this case steps 2 — 4 are

skipped.

2. The fight breaks out, and the contender wins with probability 0 < p < 1. In other

words, P (Lt = Dt) = P (Wt = Ct) = p, and P (Wt = Dt) = P (Lt = Ct) = 1− p.

3. Wt decides on his action At, whether to execute (At = E) or spare (At = S) the loser

Lt.

4. If At = E, then Ut (Lt) = −D, and with probability µ < 1 there is still a successor in

the next period (Ct+1 = At and At+1 = At+1), and with probability 1− µ there is no

successor (Ct+1 = 0). If At = S, then Ut (Lt) = 0, and Ct+1 = Lt.

5. The winner gets Ut (Wt) = Y , and becomes the next dictator, i.e. Dt+1 =Wt.

2.2 Strategies

First, we introduce the history ht of period t, which is the 6-tuple ht = (Dt, Ct,Wt, Lt, Nt, At).

Also, we denote the projection of ht on its first 5 components by ĥt, so ĥt =
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(Dt, Ct,Wt, Lt, Nt). By the time Wt has to make his decision on At, he knows Ht =µ
t−1
×
k=1

hk

¶
× ĥt. We call history Ht feasible if it can be a result of some path of the game.

The set of feasible histories is denoted by Ξ. For history ξ ∈ Ξ, let |ξ| denote the number of
periods in the history (so |Ht| = t), and let Dξ

t , C
ξ
t etc. denote the dictator, contender etc. of

period t in history ξ. A strategy of player i is an element of ×
ξ∈Ξ

Aξ, where Aξ ∈ ∆ ({E,S})

if the last winner in this history W ξ
|ξ| = i and Lξ

|ξ| 6= 0, and Aξ ∈ {N} otherwise.
The case we are most interested in is where in equilibrium, players pursue strategies from

a narrower set. Namely, denote the number of actions A = E chosen by agent i in history

ξ by Eξ (i). Mathematically, Eξ (i) =
|ξ|−1P
t=1

I
³
W ξ

t = i, Aξ
t = E

´
, where I (·) is an indicator

function.

In this paper, we focus on perfect equilibria: in any decision node, each agent’s strategy

is optimal given strategies of other agents. We further restrict the set of equilibria by letting

agents strategies depend on the number of killings committed by participants who are active

at the moment. (Similarly, Maskin and Tirole, 1998, restrict the set of perfect equilibria

in a dynamic duopoly game by allowing agents’ strategies to depend on ’pay-off relevant’

histories only.) Specifically, we call a strategy A ∈ ×
ξ∈Ξ

Aξ stationary, if for any two histories

ξ, η ∈ Ξ such that Eξ

³
W ξ
|ξ|

´
= Eη

³
W η
|η|

´
and Eξ

³
Lξ
|ξ|

´
= Eη

³
Lη
|η|

´
the equality Aξ = Aη

holds.

Denote the expected future utility of winner W ξ
|ξ| of the last period of history ξ by

US
ξ

³
W ξ
|ξ|

´
if he spares, and by UE

ξ

³
W ξ
|ξ|

´
if he executes. Denote the expected future utility

of the loser by Uξ

³
Lξ
|ξ|

´
(note that he does not determine his own fate).

In the case of stationary equilibria, we can simplify the notation. For n ∈ N ∪ {0},
denote n+ ≡ n+1. For m,n ∈ N∪{0} such that mn = 0, let UE

mn = UE
ξ

³
W ξ
|ξ|

´
, if ξ satisfies

W ξ
|ξ| = m and Lξ

|ξ| = n. This definition is correct, in the sense that UE
mn does not depend

on the history, and there exists at least one history that satisfies these properties. Similarly,

denote US
mn = US

ξ

³
W ξ
|ξ|

´
, and Vnm = Uξ

³
Lξ
|ξ|

´
(the latter is the utility of a loser who has

just lost the fight, so index n is the first one to reflect that it is the loser who gets this

utility). Denote Umn = max
¡
UE
mn, U

S
mn

¢
. Let Wmn = (1− p)Umn + pVmn, which is simply

the expected utility of an incumbent dictator before engaging in a fight. Finally, let αmn

be such that Aξ = αmnE + (1− αmn)S if ξ satisfies the properties stated above (evidently,

this is just the probability of being executed, as perceived by the loser). Since numbers αmn
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Figure 1: Switching of States of the Game.

define stationary strategies uniquely, we will refer to a stationary strategy by α.

Since with stationary strategies everything depends on the number of executions per-

formed by the current dictator and the current opponent, we will say that the game is in the

state (m,n) if the current dictator killed m times and his opponent killed n times. In that

case, the switching of the game between different states is summarized on Figure 1 (note

that neither sparing nor winning changes the state, and corresponding arrows are not shown

for the sake of simplicity).

Definition 1 We say that a stationary equilibrium satisfies the single-crossing condition

(Milgrom and Shannon, 1994) if for any histories ξ, η ∈ Ξ such that Eξ

³
W ξ
|ξ|

´
= Eη

³
W η
|η|

´
,

Eξ

³
Lξ
|ξ|

´
< Eη

³
Lη
|η|

´
, and US

ξ

³
W ξ
|ξ|

´
< UE

ξ

³
W ξ
|ξ|

´
, the inequality US

η

³
W η
|η|

´
< UE

η

³
W η
|η|

´
is satisfied. Equivalently, for any m ≥ 0, UE

m0 > US
m0 implies U

E
m+0 > US

m+0.

Definition 2 A stationary equilibrium is called monotonic if for any m ≥ 0, αm0 ≤ αm+0.

Definition 3 A stationary equilibrium is said to have non-increasing (with additional mur-

der) utility, if for any m ≥ 0, Um0 ≥ Um+0.

Suppose now that at any time a player makes a decision whether to spare or execute,

he can commit a incidental murder M , instead of playing E or S. This action yields the

same payoffs in that period as action S (the loser is not executed, and therefore the winner

gets no period of safe rule). However, action M counts against the number of murders he
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Figure 2: Switching of States as Perceived by the Winner.

committed, i.e. Eξ (i) is defined as
|ξ|−1P
t=1

I
³
W ξ

t = i, Aξ
t ∈ {E,M}

´
and gives him no extra

utility for any m ≥ 0, Um0 ≥ Um+0.

Definition 4 A stationary equilibrium is said to be fake murder-proof, if for any m ≥ 0,
US
m0 > UM

m0, i.e. if a murder yields no direct utility, it is unprofitable to commit it.

The rest of the paper is devoted to study of symmetric equilibria in single-crossing sta-

tionary strategies. In particular, we shall prove the following general result: Single-crossing,

monotonic, non-increasing utility, and fake murder-proof conditions define the same set of

symmetric stationary equilibria (Theorem 1).

3 Analysis

3.1 Necessary Equilibrium Conditions

Suppose that the winner of the fight finds himself in state (m,n). On Figure 2, we depict,

what the state of the world after the next battle will be depending on the action chosen and

the result of the next battle.
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The analogs of the Bellman equation for our problem look as follows:

Umn = max
¡
UE
mn, U

S
mn

¢
(1)

Wmn = (1− p)Umn + pVmn (2)

UE
mn = Y + β ((1− µ) (Y + βWm+0) + µWm+0) (3)

US
mn = Y + βWmn (4)

Vmn = (1− αmn) β ((1− p)Vmn + pUmn)− αmnD (5)

We start with deriving necessary conditions to characterize equilibria that consist of

stationary strategies. The purpose of the analysis is twofold. First, it is a prerequisite to full

description of equilibria. Second, this will allow us prove the equivalence of equilibria with

single-crossing, monotonic, non-increasing utility, and fake murder-proof strategies.

Lemma 1 Suppose X is one of variables Umn, U
S
mn, U

E
mn, Vmn,Wmn. Then −D ≤ X ≤ Y

1−β .

Proof. X is the expectation of a discounted sum of numbers, each of which is equal to

either −D, 0, or Y ; the negative term −D may occur only once in this sum. The sum of any

series that satisfies this property lies between −D and Y
1−β .

Now consider the function

S (α) ≡ Y (1− (1− α)β (1− p))− βαpD

(1− β (1− p))− (1− α)β (1− β (1− p)− (1− β) p)
.

As we will prove, this function is the lower bound for the incumbent’s life-time utility.

Lemma 2 S (α) is a strictly decreasing function.

Proof. Compute the derivative:

dS (α)

dα
= − βp (βpY +D (1− β) (1− β + 2βp))

((1− β (1− p))− (1− α)β (1− β (1− p)− (1− β) p))2
< 0.

We will need the following information on the values of the function S (α) later on.

S (0) ≡ Y (1− β (1− p))

(1− β) (1− β + 2pβ)
,

S (1) ≡ Y − βpD

1− β (1− p)
.

The next lemma states its relation to the utility of an agent who opts to spare.
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Lemma 3 Umn ≥ S (αmn). Moreover, if US
mn ≥ UE

mn, then

Umn = S (αmn) . (6)

Proof. First of all, from (5) it follows that

Vmn =
(1− αmn)βpUmn − αmnD

1− (1− αmn)β (1− p)
.

Also, we use (2) to find that

Wmn =
1− p− β (1− αmn) (1− 2p)
1− (1− αmn)β (1− p)

Umn −
αmnpD

1− (1− αmn)β (1− p)
. (7)

Therefore, from (4) we get

US
mn = Y + β

1− p− β (1− αmn) (1− 2p)
1− (1− αmn)β (1− p)

Umn −
βαmnpD

1− (1− αmn) β (1− p)
.

Taking into account inequalities Umn ≥ US
mn and

β
1− p− β (1− αmn) (1− 2p)
1− (1− αmn)β (1− p)

< 1,

we obtain

Umn ≥
Y − β αmnpD

1−(1−αmn)β(1−p)

1− β 1−p−β(1−αmn)(1−2p)
1−(1−αmn)β(1−p)

= S (αmn) (8)

(the last equality is proved by multiplication of both the numerator and the denominator by

1− (1− αmn)β (1− p)). This proves the first part of the statement.

If US
mn ≥ UE

mn, then Umn = US
mn. In that case, the inequality (8) turns into equality, and

yields Umn = S (αmn).

The next two lemmas establish that the ‘talion law’ holds in any equilibrium: for any

number of previous killings n, a person who has executed contenders n times is executed

by one who has no killings in his record with probability one if and only if he executes a

newcomer.

Lemma 4 For any n ≥ 0, αn0 = 1 implies UE
n0 > US

n0, and α0n = 1 implies U
E
0n > US

0n.

Proof. Assume the contrary. Consider the case where αn0 = 1, but UE
n0 ≤ US

n0 (the remaining

case may be treated in a similar way). Therefore, Un0 = S (1). If, however, he chooses to

kill once, then he gets UE
n0 = Y + β ((1− µ) (Y + βWn+0) + µWn+0) = (1 + β (1− µ))Y +

β (β (1− µ) + µ)Wn+0. Observe that

Wn+0 = (1− p)Un+0 + pVn+0 ≥ (1− p)S (1)− pD.
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Here, we used inequalities Un+0 ≥ S (αn+0) ≥ S (1), which holds because S (α) is a decreasing

function, and Vn+0 ≥ −D by lemma (1). Therefore,

UE
n0 − Un0

≥ (1 + β (1− µ))Y + β (β (1− µ) + µ) ((1− p)S (1)− pD)− S (1)

=
βp (1− µ) (Y +D (1− β))

1− β (1− p)
> 0.

However, in an equilibrium, Un0 ≥ US
n0 must hold. This contradiction completes the proof.

Lemma 5 In a stationary equilibrium, for any n ≥ 0, four conditions UE
n0 > US

n0, U
E
0n > US

0n,

α0n = 1, and αn0 = 1 are equivalent.

Proof. Evidently, UE
n0 > US

n0 implies α0n = 1, and UE
0n > US

0n implies αn0 = 1. The

remaining implications are proved in lemma 4.

3.2 The Monotonicity Theorem

Theorem 1 For any symmetric stationary equilibrium, the following four conditions are

equivalent:

(i) equilibrium satisfies the single-crossing condition: if the winner strictly preferred to

kill the loser rather than to spare when the number of killings he committed before was m,

he still strictly prefers to kill when the number of killings he committed is m+ 1;

(ii) equilibrium strategies are (weakly) monotonic with respect to the number of murders

committed by the winner: the larger is the number of killings already committed, the higher

is the probability that he executes the newcomer;

(iii) equilibrium satisfies non-increasing utility conditions;

(iv) equilibrium is fake murder-proof: if the winner is allowed to make fake killings, which

do not remove contenders, but count toward his reputation, he finds this option no better than

sparing.

Proof. (i) =⇒ (ii) Any stationary fake murder-proof equilibrium is a stationary monotonic

equilibrium.

Assume the contrary, i.e. αm+0 < αm0. This implies αm+0 < 1, and thus α0m+ < 1,

therefore US
m+0 ≥ UE

m+0. In that case, Um+0 = US
m+0 = S (αm+0). Obviously, that’s also equal

13



to UM
m0, for U

M
m0 = Y + βWm+0. Fake murder-proofness implies US

m0 ≥ S (αm+0) > S (αm0)

(the latter holds because αm+0 < αm0). Therefore, UE
m0 > US

m0, for otherwise U
S
m0 = S (αm0).

This, in its turn, implies Um0 > S (αm0), which contradicts Lemma 3.

(iii) =⇒ (ii) Any stationary non-increasing utility equilibrium is a stationary monotonic

equilibrium.

Assume the contrary, i.e. αm+0 < αm0. As above, we obtain Um+0 = US
m+0 = S (αm+0).

Non-increasing utility condition implies Um0 ≥ Um+0 ≥ S (αm+0) > S (αm0). As demon-

strated in the proof of the previous claim, this leads to a contradiction.

(ii) =⇒ (i)Any stationary monotonic equilibrium satisfies the single-crossing condition.

Suppose that UE
m0 > US

m0. Then, by lemma 5, αm0 = 1. Monotonicity condition implies

αm+0 = 1, and we use lemma 5 once again to get UE
m+0 > US

m+0,

We showed that any of the three refinements (ii)-(iv) leads to equilibria satisfying single-

crossing condition. Now we establish some lemmas about the properties of such equilibria,

which are important per se and will allow us to demonstrate that these equilibria are fake

murder-proof, non-increasing utility and monotonic. This would complete the proof of equiv-

alence of these refinements. Proofs of these lemmas are relegated to Appendix.

Lemma 6 If αn0 = 1, then αn+0 = 1. In particular, αm0 = 1 for all m > n.

Lemma 7 There exists ε > 0 such that if αn+0 < 1, then S (αn0) > S (αn+0) + ε (which

implies αn0 < αn+0).

Lemma 8 There exists k ≥ 0 such that α0n = 1 and αn0 = 1 for n ≥ k, and α0n < 1 and

αn0 < 1 for n < k.

The two previous lemmas imply that the ‘reputation’ sequence {αn0} is strictly increasing
until it reaches 1, and once it does, it stabilizes. Intuitively, it means that in any equilibrium

under consideration, each additional murder implies a higher probability of being punished

(so there is no forgiveness or indulgence), until the probability of punishment reaches its

maximum. Once it does, fear of additional chance of being punished is no longer in effect,

and the agent opts to execute every time (and so α0n = 1 once αn0 = 1).

Another corollary is that in the sequence {αn0}, only the first term α00 may equal 0.

Other terms are strictly positive. This means that in the equilibria under consideration, no

murder can be completely forgiven, and anyone who has executed at least once is subject to

a non-zero probability of punishment.

14



Lemma 9 Assume that 0 < αm0 < αm+0 < 1. Then α0m = α0m+.

Denote

A ≡ (1 + β (1− µ))Y − β (β (1− µ) + µ) pD

1− β (β (1− µ) + µ) (1− p)
.

Lemma 10 If m is such that αm0 = 1, then Um0 = UE
m0 = A. Moreover, A > S (1).

Lemma 11 If m is such that αm+0 = 1, then UE
mn = A.

Now we are ready to finish the proof of Theorem 1.

(i) =⇒ (iii) Any stationary single-crossing equilibrium satisfies the non-increasing utility

property.

For any m ≥ 0, either αm+0 = 1 or αm+0 < 1. In the first case, UE
m0 = A, and also

αm++0 = 1, which implies UE
m+0 = A as well. Since αm+0 = 1, Um+0 = UE

m+0 = A =

UE
m0 ≤ Um0. In this case, non-increasing utility property is satisfied. In the latter case,

Um+0 = S (αm+0), while Um0 = S (αm0), since αm0 < αm+0 < 1. Therefore, in this case,

Um+0 = S (αm+0) < S (αm0) = Um0.

(i) =⇒ (iv) Any stationary single-crossing equilibrium is fake murder-proof.

For any m ≥ 0, either αm+0 = 1 or αm+0 < 1. In the first case, α0m+ = αm++0 =

1, and therefore UM
m0 = Y + β ((1− p)Um+0 + pVm+0) = Y + β ((1− p)A− pD) ≤

Y + β ((1− p)Um0 + pVm0) = US
m0 (because Vm0 ≥ −D). In the latter case, UM

m0 =

Y + β ((1− p)Um+0 + pVm+0) = S (αm+0) < S (αm0) = Y + β ((1− p)Um0 + pVm0) = US
m0.

In both cases, fake-murder proof condition holds.

As for monotonicity condition in stationary single crossing equilibria, it trivially follows

from lemmas 6 and 7. This completes the proof of equivalence of all four equilibria refine-

ments.

3.3 Best Responses

To analyze best responses, we introduce mapping T : R→ R given by

T (x) = (1− µ)Y + (β (1− µ) + µ)x.

Evidently, this mapping is contracting to the point Y
1−β . For x < Y

1−β we have T (x) > x.

Denote T n = T ◦ . . . ◦ T| {z }
n times

. Similarly we denote T 0 to be the trivial mapping, and T−n to be
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such that T−n ◦ Tn ≡ T 0. Evidently, mapping T satisfiesµ
Y

1− β
− T n (x)

¶
= (β (1− µ) + µ)n

µ
Y

1− β
− x

¶
(9)

for any x.

Before proceeding, we prove a theorem which distinguishes between two main cases:

where there is only one equilibrium, where players choose to execute at every decision node,

and where there are multiple equilibria (the most interesting case).

Theorem 2 Set of strategies αmn = 1 for all m and n always constitutes an equilibrium.

Moreover, if S (0) < A, it is the only equilibrium. If S (0) ≥ A, there are at least two

different equilibria.

Proof. By Lemma 5, it is always rational to execute in the state (m,n), because αnm = 1.

This proves the first part of the proposition.

If S (0) < A, then there exists another equilibrium, where α00 = 0, and αmn = 1 for

m + n > 0. The rational for execution is literally the same. However, if S (0) ≥ A, then

the player who chooses to spare gets S (0) by definition, while he who opts to execute gets

UE
m0 = A ≤ S (0). Therefore, at (0, 0) it is best response to spare, and thus this constitutes

an equilibrium.

Note that if S (0) < A, there is also a third equilibrium, given by α00 = S−1 (A), and

αmn = 1 for m+n > 0. In this case, a person in state (0, 0) is indifferent between executing

and sparing.

Now, in order to characterize equilibria, it is useful to summarize best responses on

strategies played by other people. Of course, we may restrict ourselves to strategies that

satisfies the necessary conditions obtained in the previous subsection. Furthermore, as usual

in dynamic games, it is sufficient here to consider one-shot deviations only, i.e. every player

considers his future actions as given by the profile of strategies under consideration.

Lemma 12 Let α be a profile of strategies satisfying lemmas of the previous subsection. If

αmn < 1, then in the state (m,n), best response to strategies played by other people is

BRmn (α) =

⎧⎪⎪⎨⎪⎪⎩
{E} , if S (αmn) < X;

{S} , if S (αmn) > X;

∆ ({E,S}) , if S (αmn) = X,

(10)
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where X = T (S (αm+0)) if αm+0 < 1, and X = A if αm+0 = 1. If αmn = 1, then BRmn (α) =

{E} (i.e. the above formula holds).

Proof. If αmn < 1, then US
mn = S (αmn). If αm+0 = 1, then by Lemma 11 UE

mn = A. If

αm+0 < 1, then from (4) we get S (αm+0) = US
m+0 = Y +βWm+0; eliminatingWm+0 from this

and from (3), we get UE
mn = T (S (αm+0)). Therefore (10) simply means that a player chooses

the action that yields higher utility. If αmn = 1, then by Lemma 4 UE
mn > US

nn, i.e. best

response is to execute. Note that it satisfies (10), forX is either equal toA or to T (S (αm+0)),

and both A > S (1) and T (S (αm+0)) > S (αm+0) ≥ S (1), since S (αm+0) <
Y
1−β .

The last statement lays out some necessary equilibrium conditions.

Definition 5 Suppose that profile α constitutes an equilibrium. Denote π (α) =

max {n | αn0 < 1}. (If there is no such n, i.e. α00 = 1, we write π (α) = −∞). We

call this number the patience of equilibrium.

In this interpretation, patience is the maximum number of murders one can commit to

still have a non-zero chance of being spared in the future.

Lemma 13 In any equilibrium given by α, π (α) satisfies

T π(α) (A) ≤ S (0) . (11)

Proof. For any m ≤ π (α), αm0 < 1, and thus α0m < 1. Therefore, S ∈ BRm0 (α), and

by Lemma 12, S (αm0) ≥ T (S (αm+0)) for m < π (α), and S (αm0) ≥ A for m = π (α).

Combining these inequalities, we obtain S (0) ≥ T π(α) (A). This completes the proof.

Evidently, this implies that the equilibrium patience function, π (α) , is bounded from

above. The following theorem gives the exact boundary.

Theorem 3 Denote

π̄ = log 1
β(1−µ)+µ

Ã
Y
1−β −A
Y
1−β − S (0)

!
. (12)

Let M = bπ̄c, where brackets mean rounding down to the nearest integer. Then for any
equilibrium α we have π (α) ≤M .

Proof. Substituting x = A and n = π (α) in the equation (9), we find (using (11)) that³
Y
1−β − S (0)

´
≤ (β (1− µ) + µ)π(α)

³
Y
1−β −A

´
. Since 0 < β (1− µ) + µ < 1, we have

π (α) ≤ π̄. Now π (α) ≤M follows from the fact that π (α) is an integer.
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3.4 Equilibria

Our next step is to characterize all stationary equilibria. In particular, we demonstrate that

if M ≥ 0, then there exists an equilibrium α such that π (α) = M , i.e. this boundary is

always achieved. Thus, we can callM maximum patience for a given set of parameters. Note

that if S (0) ≥ A, which is the case if and only if there are multiple equilibria (Theorem 2),

then M ≥ 0. We characterize equilibria with a given level of patience m ≤M . We consider

it useful to discuss m < 1 (a simple case) and m ≥ 1 (an interesting case) separately.

Theorem 4 (i) Profile α such that αmn = 1 for everym,n always constitutes an equilibrium

such that π (α) = −∞.
(ii) If M ≥ 0, then there exist one or two equilibria with patience π (α) = 0. In these

equilibria, αmn = 1 for all (m,n) except for (0, 0); α00 is either 0 or S−1 (A). If S−1 (A) > 0,

these equilibria are different, otherwise they coincide.

Proof. (i) This was actually proved as part of Theorem 2; it is anyway easy to check that

if one’s opponents play such strategy, best response is to execute (Lemma 12).

(ii) The fact that all αmn’s should equal to 1, while α00 should not, follows from definition

of patience. If α00 > 0, then BR00 (α) includes both E and S, and then by Lemma 12,

S (0) = A. Consequently, α00 is either 0 or S−1 (A) (the latter is not equal to 1, for that

would imply S (1) = A, which violates Lemma 10). It is easy to check, using Lemma 12,

that for any of the two α00’s, we obtain an equilibrium. Of course, if both numbers are equal

(which is the case if and only if π̄ =M = 16), equilibria coincide.

Now consider the case m ≥ 1. In this case, in particular, 0 < α10 < 1, and α01 < 1. On

the other hand, αn0 = α0n = 1 for n > m. We consider cases α01 6= 0 and α01 = 0 separately.

Theorem 5 Assume M ≥ 1 and 1 ≤ m ≤M .

(i) If S−1 (Tm (A)) > 0, then there are two and only two equilibria that satisfy π (α) =

m and α01 6= 0. In both of them, for 1 ≤ n ≤ m, αn0 = S−1 (Tm−n (A)), and α0n =

S−1 (Tm (A)). In one equilibrium α00 = S−1 (Tm (A)), while in the other one α00 = 0. If,

however, S−1 (Tm (A)) = 0 (which is the case if and only if m = π̄ =M7), there are no such

equilibria.

6This is discussed in the proof of Theorem 5 in a more general case.
7This is a degenerate case, since this requires, in particular, π̄ (found from (12) to be integer.
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(ii) There always exists at least one equilibrium such that π (α) = m and α01 = 0. In

any equilibrium satisfying these conditions, for 0 ≤ n ≤ m, α0n = 0 (in particular, α00 = 0),

and α10 = S−1 ◦ T−1 ◦ S (0). As for αn0 for 1 < n ≤ m if m ≥ 2, these can be any numbers
satisfying αm0 ≤ S−1 (A) and αn0 ≤ S−1 ◦ T ◦ S (αn+0) if n < m. Any α satisfying these

conditions constitutes an equilibrium. If m = π̄ = M or m = 1, then this series yields a

unique equilibrium. Otherwise, there are continuum equilibria in this series.

Proof. (i) All probabilities α0n, 1 ≤ n ≤ m, are equal (Lemma 9). If α01 6= 0, they are

non-zero (but not equal to one either, by Lemma 5 and the assumption that π (α) = m),

and therefore for 1 ≤ n ≤ m, BRn0 (α) includes both E and S. Hence, it is easy to prove

by induction, using Lemma 12, that for 1 ≤ n ≤ m, αn0 = S−1 (Tm−n (A)). Since π (α) ≥ 1,
α10 < 1, and hence, by the same Lemma, α0n = S−1 (Tm (A)) for 1 ≤ n ≤ m. If α00 6= 0, then
by Lemma 9 it equals S−1 (Tm (A)). It is straightforward to check that for both α00 = 0 and

α00 = S−1 (Tm (A)), equations (10) are satisfied. Evidently, these equilibria differ in α00. If

S−1 (Tm (A)) = 0, then α01 should equal 0, which violates α01 6= 0. Finally, S−1 (Tm (A)) = 0

is equivalent to Tm (A) = S (0), which is only possible if m = π̄ (and thus equals M = bπ̄c);
similarly, m = π̄ implies π̄ is integer and Tm (A) = S (0).

(ii) By Lemma 9, α0n = 0 for 1 ≤ n ≤ m. Similarly, α00 = 0 (because if it is not the case,

by the same lemma, α00 = α01 = 0). Since 0 < α10 < 1, BR01 (α) includes both E and S,

which implies S (0) = T (S (α10)), and therefore, α10 = S−1 ◦ T−1 ◦ S (0). Furthemore, since
S ∈ BRn0 (α) for 1 ≤ n ≤ m, we conclude (recalling that S (α) is a decreasing function)

that αn0 ≤ S−1 (A) for n = m, and αn0 ≤ S−1 ◦ T ◦ S (αn+0) for n < m. It is straigtforward

to check that any such profile constitutes an equilibrium. Evidently, there is at least one

set of numbers αn0, 1 ≤ n ≤ m satisfying these conditions: αn0 = S−1 ◦ T−n ◦ S (0) (it
is easy to check, as before, that αm0 ≤ S−1 (A)). These numbers are determined uniquely

either if m = 1 (so there is no ambiguity), or if m = π̄ = M (so all inequalities for αn0,

2 ≤ n ≤ m, become equalities). If neither is the case, then there are continuum equilibria

with π (α) = m ≥ 1, and α01 = 0.

3.5 Comparative Statics

Substituting A and S (0) into (12), we can rewrite π̄ as

π̄ =
ln (1−(1−µ)(1−β))(1−β(1−2p))(1+(1−β)R)

1−β(1−p)(1−(1−µ)(1−β))

ln 1
β(1−µ)+µ

,
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where R = D
Y
. Evidently, M is affected by changes in π̄ only if π̄ is a non-negative number.

The denominator is always positive, so when we analyze comparative statics, we may consider

the numerator to be non-negative as well.

Now we can analyze comparative statics of π̄ andM . Empirical support for these results

is provided in Section 4.

Theorem 6 The maximum equilibrium patienceM is increasing in D
Y
and µ (the probability

that a new contender appears in the next period despite execution of the previous one), and

decreases in p (incumbent’s survivorship rate). In particular, M increases with D (the cost

of losing life) and decreases with Y (incremental utility of being in power).

Proof. Since natural logarithm is an increasing function, the proposition is evident as far as

R (and, therefore, D and Y ) is concerned. Variable p does not appear in the denominator.

Differentiating the fraction of which the logarithm in the numerator is taken, we obtain

β (1− β) (1 + (1 + β) (1− µ)) (1− (1− µ) (1− β)) (1 +R (1− β))

(1− β (1− p) (1− (1− µ) (1− β)))2
> 0.

As for µ, it is necessary to consider both the numerator and the denominator. Differentiation

of the same expression in the numerator yields

(1− β) (1− β (1− 2p)) (1 + (1− β)R)

(1− β (1− p) (1− (1− µ) (1− β)))2
> 0.

At the same time, ln 1
β(1−µ)+µ is obviously decreasing with respect to µ. Since both the

numerator and the denominator are positive, we obtain the necessary comparative statics

with respect to µ.

In other words, patience increases with the size of punishment, which is very intuitive,

since a harder punishment makes a person more fearful of it, and increases incentives to

spare. A higher p implies less stability of the dictator’s position and less expected time until

losing the fight, which also decreases incentives to execute. Finally, a higher µ means that

one is less likely to experience a period of safe rule in the case of execution. This also makes

execution less profitable.

3.6 Comparing Equilibrium Paths

In this subsection, we characterize equilibrium paths of various equilibria in the game. In

most interesting cases agents play mixed strategies, so the actual game path is random. Still,

it is possible to derive a number of general comparative statics results.
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Theorem 7 (i) Consider two equilibria E and E0 given by {αmn} and {α0mn}. If for any
m,n we have αmn ≥ α0mn

8, then for any m,n the following inequality holds: Umn ≤ U 0
mn.

In other words, a less violent equilibrium yields higher utility for all the dictators along the

equilibrium path.

(ii) At any equilibrium, if αm0 < 1, then Um0 ≥ Um+0 (and if αm+0 < 1, then Um0 >

Um+0). In other words, an additional murder will decrease utility as measured from the period

where a new enemy will emerge (but increases instantaneous next period’s expected utility.

If αm0 = 1, then these utilities are equal.

Proof. (i) If αmn < 1, then α0mn < 1, and hence Umn = S (αmn), U 0
mn = S (α0mn). The

necessary inequality follows from monotonicity of function S (α). If αmn = 1, then there are

two possible cases. If n = 0, then by Lemma 10 Umn = A. At the same time, U 0
mn is either

equal to A or to S (α0mn) (if the latter is the case, then α0mn ≤ S−1 (A)), so in both cases

U 0
mn ≥ A = Umn. Finally, if m = 0, n > 0, it is sufficient to demonstrate that W 0

10 ≥ W10,

for that would imply (from (3)) U 0
mn ≥ U 0E

mn ≥ UE
mn = Umn. BothW10 andW 0

10 may be found

from (7). Its right-hand side increasing with respect to Umn (that’s trivial), and decreasing

with respect to αmn (differentiation yields

−p (D (1− β) + pβ (Umn +D))

(1− (1− αmn)β (1− p))2
< 0,

since Umn ≥ −D). However, α010 ≤ αmn, and we have already proved that U 0
10 ≥ U10.

Therefore, W 0
10 ≥W10, and hence U 0

mn ≥ Umn in the remaining case, too.

(ii) If αm0 < 1, then Um0 = S (αm0). At the same time, if αm+0 < 1, then αm+0 > αm0

(Lemma 7), and hence Um+0 = S (αm+0) < S (αm0) = Um0. If, however, αm+0 = 1, then

UE
m0 = A (Lemma 11) and Um+0 = A (Lemma 10), and we get Um0 ≥ UE

m0 = Um+0. Finally,

if αm0 = 1, then αm+0 = 1 (monotonicity), and hence both Um0 and Um+0 are equal to A.

Despite the multiplicity of equilibria, equilibrium paths of the game may be naturally split

into two major groups. Evidently, all equilibria where α00 = 0 lead to a trivial equilibrium

path, which is depicted on Figure 3. The winner always spares, and even if he loses, the

game returns back to the state (0, 0).

8This is the case, for example, if α00 ≥ α000 > 0. This follows from full description of equilibria (Theorems

4 and 5).
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0,0 Spares
Loses

10,0 Spares
Loses

1

Figure 3: Equilibrium Path If α00 = 0.

In other words, the state (0, 0) remains forever.9 The average duration of each rule is

given by Theorem 8.

Theorem 8 If α00 = 0, then on the equilibrium path players 1 and 2 always spare each other,

and replace each other on the dictator’s position. The mean duration of each subsequent rule

equals 1
p
.

Proof. The first part of the statement is evident, since the game is stuck in the state (0, 0).

The mean duration is calculated as

1 +
∞P
n=1

n (1− p)n−1 p = p
∞P
n=0

n (1− p)n−1 = −p d

dp

∞P
n=0

(1− p)n = −p d

dp

µ
1

p

¶
=
1

p
.

Conversely, if α00 6= 0, there may be a variety of paths, parametrized by patience of

equilibrium m ≤ M . In general, the switching of states along such paths is depicted on

Figure 4. In the picture, the probabilities of different actions (executing or sparing) in each

state are shown. However, the winner of the current period may lose with probability p in

the next battle, and thus with probability p the game does not follow the arrow chosen by

the winner, but rather turns to a dotted line.

It is also informative to depict probabilities of committing a murder and being murdered

as considered by a person who committed n murders in the past, when facing an innocent

9One can also consider the situation where α00 = 0, but the game (for any reason, say, a deviation of

any player) comes to the state other than (0, 0). In that case, if α01 6= 0, then the game evolves as if the

corresponding equilibrium with α00 = S−1 (Tm (A)) was played (m is the patience of the equilibrium), and

the latter will be considered later in this subsection. If, however, α01 = 0, then the following happens. If

the state of the game is (n, 0), then the incumbent executes until he eventually loses to the contender, which

brings the game to the state (0, k), k ≥ n. In such states, the contender eliminates the violent dictator,

bringing the game to the state (0, 1). If the game is at the state (n, 0) or (0, n), where 1 ≤ n ≤ m, then it

evolves as follows. The dictator who killed at least once before never kills again. However, he is killed by

the contender who never killed before with probability αn0 > 0. If this happens, the game again moves to

the state (0, 1), and the contender who just killed never kills again, but is subject to a murder.
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Figure 4: Equilibrium Path If α00 6= 0.

opponent. We choose a certain set of parameters (Y = 10, D = 5, p = 0.5, β = 0.95,

µ = 0.2), in that case, maximum patience M = 6. On Figure 5, we show probabilities α0n

and αn0 as functions of n (the number of murders committed in the past) for m = 2 and

m = 5.

As one can see from Figure 5, in equilibria with non-trivial equilibrium paths, the proba-

bility that a bloody dictator will execute is a function that has two values, one of which is 1.

In the beginning, bloody dictators execute and spare with constant probabilities (depending

on parameters of the model and the patience of equilibrium, of course), being aware that

every additional murder increases their chance to be executed (since probabilities of being

murdered by innocent contenders) are monotonically increasing. When this fear is no longer

in effect, both probabilities of murdering and of being murdered simultaneously reach 1 and

stabilize there.

It is easy to see from Figure 5 that bloody dictator’s probabilities of being executed are

convex functions (until they reach 1). This can be justified formally, and the intuition behind

this observation is very plain. What we need is to understand, why a greater increase in

probability of revenge is needed to prevent fifth murder (i.e. to make one indifferent whether

to commit it or not) as compared to preventing second murder. But it is of course easy to

understand that a certain increment of the probability of being murdered is more dangerous

for a person who committed one murder than to one who committed four murders before,
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Figure 5: Probabilities of Executions for Different Patience Parameters.

because this ‘Sword of Damocle’ would hang upon him for a longer time, thus decreasing

his expected utility by the same amount, but for a longer time. The reason for that is of

course that a person who already committed four murders is more likely to be murdered

soon anyway.

To finish our discussion of equilibrium paths and compararison between them, we give a

reference to a paper where a similar (yet simpler) game is used to analyze agency problems

along different paths. Egorov and Sonin (2004) analyze a static game, where a dictator hires

an agent of a certain competence, trading off benefits of having a smart vizier and costs

of a possible betrayal. (A more competent agent is more able to distinguishing the enemy

type, and, therefore, less loyal in equilibrium.) Egorov, Nye, and Sonin (2005) demonstrate

how this static game may be built into a particular type of the killing game considered here.

In particular, it appears that the more killings happen along the equilibrium paths (which

essentially correspond to the pure-strategy equilibria in this paper), the lower is the quality

of governance.
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4 Historical Illustrations10

What does our theory say about cross-country comparison of dictatorships?11 To illustrate

the existence of two paths with markedly different characteristics, which correspond to the

only pure-strategy equilibria in our model, we first discuss general patterns in Europe and

Latin America, and then focus on two particular examples, Venezuela, 1830—1970 and the

Ottoman Empire, 1230—1922. One difference between the two examples is of course that

the Ottoman Empire was a hereditary monarchy and Latin American countries were not.

However, an Ottoman Empire was not a place where succession was automatic. Often,

there were brothers succeeding the deposed dictator; the fact that most of sultans had many

children made competition for succession serious. The difference which can be predicted by

our comparative statics is that in a monarchy, the set of potential contenders is limited and

pre-defined (e.g., all brothers, sons, and nephews); accordingly, it really makes sense to try

to eliminate all potential contenders.

European monarchies of the era witnessed significantly fewer executions and killings of

kings, though it was not impossible. (And, of course, the fate of numerous contenders was

very often miserable.) E.g., Richard III of England was immortalized by Thomas More

and William Shakespeare for slaying the baby-king Edward V and his brother Richard in

an attempt to secure the crown for himself.12 The young princes, sons of the previous king

Edward IV of England, were declared illegitimate by the Act of Parliament known as Titulus

Regius; however, the act of parliament was legally reversible, which make them a potential

10In this preliminary version, this Section is based partially on Egorov, Nye, and Sonin (2005).
11Footnote 1 provides a list of rulers killed after being ousted from power in countries that witnessed at

least two such incidents during the last fifty years. Other rulers killed during this period include Melchior

Ndadaye in Burundi (1993), Carlos Castillo Armas in Guatemala (1957), Thomas Sankara in Burkina Faso

(1987), Salvatore Allende in Chile (1973), Long Boreth in Cambodia (1975), Sylvanus Olimpio in Togo (1963),

François Tombalbaye in Chad (1975). Violent deaths of leaders not associated with a serious attempt to

change the regime, e.g. of Anwar as-Sadat in Egypt (1981), Indira Gandhi in India (1984), René Moawad

in Lebanon (1989), Yitzhak Rabin in Israel (1995), or Loran Kabila in Congo (2001) are not such examples.

Both samples are truncated since they do not take into account unsuccessful contenders that were killed

during a coup or executed thereafter.
12Historians do not universally take More’s account as authentic. Still, there is no doubt that the ‘Princes

of the Tower’ were killed, and the primarily motive was elimination of potential heirs to the throne, either

for the benefit of Richard III, Henry VII, or even of Duke of Buckingham, also an Edward III descendant.
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threat for Richard III.13 Execution of Mary Stuart of Scots by Elizabeth I of England was

apparently aimed at reducing the possibility of a pro-Stuart coup. In 1685, James Crofts,

Duke of Monmouth, a bastard child of Charles II of England, was executed within nine days

after capture (cf. typically long trials of other British royals in 17th century). The apparent

reason for that was he proclaimed himself James II, the king of England, thus endangering

the power of the existing king, also James II, his uncle.14 Even executions of kings committed

by revolutionaries (e.g. Charles I of England, Louis XVI of France, and Nikolai II of Russia,

whose mere existence — even after abdication — made them contenders to power), were in

part motivated by consideration highlighted by our theory.15

In a fundamental study of patterns of political succession in England, Bartlet (2002)

notes that “between the 11th and early 14th, defeated political opponents of high birth were

... scarcerly ever maimed or killed in cold blood.” However, in the Celtic part of British

Isles, “the kings and princes of Wales, Ireland, and Gaelic Scotland continued to employ

blinding, maiming, and killing in their conflicts with rivals from both with-in and with-out

their families” (Bartlet, 2002). Bartlet and earlier medieval studies such as Pollock and

Maitland (1898) contrast the virtual absence of royal-member executions in Norman and

Angevin England with the bloodiness of the later Middle Ages and Tudor period. Figure

6 at the end of the paper demonstrates that, by 1486, the last year of the War of Roses,

the only surviving male from both houses of York and Lancaster was the king, Henry VII.

Both chronological (in 1455—1485) and geographical (in 1075—1225) concentration of killings

support the idea of history-dependence highlighted by our theoretical model.

To further illustrate how different degree of security affected the winner’s attitude to

the mere presence of potential contenders, compare accessions of two young and vivacious

women, Elizabeth I of Russia in 1741 and Catherine II (the Great) in 1762.16 Each of them

was brought to power by a military coup organized by young officers of elite guard divisions.

13Bartlet (2002) provides an example of situation when, against all odds, King Stephen did not kill 6-years

old William Marshal (a future regent of England), given to Stephen as a hostage by his father John.
14As in the case of Princes of the Tower, being a bastard (a legal term at that time) does not automatically

exclude the person from the set of legitimate contenders.
15A famous example of the ‘elimination strategy’ is the Slaughter of Innocent. Upon hearing the prophecy

that he would be dethroned by the just-born ‘King of the Jews’, King Herod ordered to kill all male children

under two years of age in Bethlehem.
16Women occupied the Russian throne for more than a half of the 18th century, and half of them were

brought to power by a military coup.
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Elizabeth I removed the one-year old tsar, Ivan VI, and his parents, who were the regents

designated by the predecessor, Empress Anna, Elizabeth’s cousin. Upon Elizabeth’s acces-

sion, Ivan VI was not killed but isolated and guarded in different fortresses, and his parents

were exiled. Catherine II removed from power her husband, Emperor Peter III, who was

designated as a successor by Elizabeth. Though Peter III was not executed immediately after

the removal from power, he was assassinated within six months by people Catherine sent to

‘watch him’. Archives contain a hand-written note by one of the assassins, where he proudly

reports the death of Catherine’s husband. Furthermore, Ivan VI, who had been spared by

Elizabeth and kept in prison for 22 years, was killed soon after Catherine’s accession by the

guards, fearful of a plot to rescue him.

The crucial difference in attitude of Elizabeth and Catherine to those whom they removed

from power and who could have been expected to become if not the center, but at least a

focal element of opposition, might be in that Elizabeth was a daughter of Peter the Great,

the Russian tsar in 1696—1725, and thus was a heir at least as legitimate as those whom she

replaced. In contrast, Catherine was a daughter of an obscure count in Prussia (Germany),

and was ‘imported’ to marry Peter III, who was a great-grandchild of Peter the Great and

a nephew of the reigning Empress Elizabeth. Thus, Catherine, the ‘illegitimate’ ruler, had

to take much more care of contenders’ fates than Elizabeth.

4.1 Dynastic Succession

The House of Osman ruled the Ottoman Empire from 1281 to 1922; officially, the sultan

was the sole source of governmental authority in the empire. During more than six centuries

covered in the list of the Ottoman sultans, there was almost no hostile comebacks. The

main reason for this was that, after a coup, the loser, be it the incumbent or the contender,

was usually executed.17 Still, by many standards, the Ottoman Empire resembled European

17The first ‘comeback’ in the Ottoman Empire was not a result of a hostile fight between the predecessor,

Murad II, and his son, Mehmed II. Indeed, During his first reign, seeing the upcoming Battle of Varna,

Mehmed sent for his father, Murad II, asking him to claim the throne again to fight the enemy, only to

be refused. Enraged at his father, who was then retired to rest in southwestern Anatolia, Mehmed in his

famous letter wrote to his father: “If you are the sultan, come and lead your armies. If I am the sultan I

hereby order you to come and lead my armies.” It was upon this letter that Murad II led the Ottoman army

in the Battle of Varna in 1444. The second ‘comeback’ (1622) also appears to be very specific, as Mustafa

I, reportedly mentally retarded (Alderson, 1982), was merely a ‘façade’ king.
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monarchies. Alderson (1982) notes that average duration of an Osmanli sultan’s reign (17

years), compares favorably with Roman emperors (7 years), Byzantine emperors (12), Ab-

basid caliphs (12) and is close to European monarchies such as Russia (18), France (21) and

Britain (23).18

Executions of predecessors, failed contenders, or just potential contenders such as younger

brothers, was indeed wide-spread. Of the 36 sultans, 16 abdicated or were disposed. Among

these 16, 11 were killed during or soon after a hostile disposition from power. Of 5 sultans

that were not killed upon the accession of a new sultan, four were the last sultans of the

Empire in the period of 1876—1922; one of them, Murad V, ruled for only 93 days in 1876

and was widely believed to suffer mental illness. Therefore, it is safe to conclude that killing

the predecessor was a typical strategy in the Ottoman Empire.

Another course of actions, typical for the Ottoman Empire and all but unseen in

Venezuela, was killing of potential heirs to the throne. Beyazid I (1389—1402), Mehmed

I (1413—1421), Mehmed II (1444—1445, 1451—1481) Murad II (1421—1444, 1445—1451), Selim

I (1512—1520), Suleiman I, (1520—1566), Mustafa IV (1807—1808), Mahmud II (1808—1839)

put some of their brothers or sons (and often other relatives) to death. Of course Mehmed III

(1595—1603) stays notorious even in this long list for having his sixteen brothers killed upon

his accession. His son, Ahmed I (1603—1617) broke with the pattern, refusing to execute his

mentally retarded brother Mustafa I (1617—1618, 1622—1623).

The tradition to kill potential contenders persisted even in 19th century. In 1808, a janis-

sary revolt brought to power Mustafa, a son of Abd-ul-Hamid I. Mustafa ordered execution

of his brother Selim, the disposed sultan, as well as his another brother, Mahmud. Selim

was killed, but Mahmud, the only remaining male member in line for succession, escaped,

revolted against Mustafa, and had him executed upon succession to the throne.

It is plausible again to juxtapose the Ottoman Empire experience with that of the Russian

Empire. As in the Ottoman Empire, the Russian Empire has had a well-defined sequence of

absolute rulers for a prolonged period, since early 14th century, and the difference in average

durations is minimal (17 and 18, respectively). In Russia, we witness both (i) less deaths of

predecessors and (ii) more examples of people being removed from power, but spared. There

might be only single execution of a heir by the current ruler (prince Alexei, who was accused

of conspiring in the plot against his father Peter the Great; the ultimate circumstances of

18Alderson (1982), McCarthy (1997), Palmer (1992), Morby (2001).
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Alexei’s death are unknown, e.g., Massie, 1980)19 and a single episode of a son successfully,

though passively, participating in a plot against his father (Alexander I against his father

Pavel I in 1801). There were examples that people were removed from power or succession

line and not executed (Vasily Shuisky, Sophia, a half-sister of Peter the Great, Peter the

Great himself, Ivan VI, Konstantin).20

The Russian history provides another example of the sparing equilibrium, a power strug-

gle of two boyar clans each of which has a boy contender to the throne (chronology: Massie,

1980). In 1669, Maria Miloslavskaya, the first wife of tsar Alexis died, survived by 4 chil-

dren, including her ailing sons Fedor and Ivan. Two years later, in 1671, Alexis married

Natalya Naryshkina, and the whole clan of Miloslavskys, including Maria Miloslavskaya’s

father, but not Fedor and Ivan, went into exile. In 1672, son Peter is born. In 1676, Alexis

died, Fedor was proclaimed tsar, and Miloslavskys (including grandparents of Fedor) were

returned, while Naryshkins were exiled (but not killed).

In 1682, tsar Fedor died, and his half-brother Peter, aged ten, was proclaimed tsar.

Fedor’s brother Ivan, 16, who was burdened with several chronic illnesses, conceded to Peter’s

accession and was kept in the Kremlin palace unharmed, while the Naryshkins (including

the former first minister Artamon Matveev, tsarina Nataliya’s guardian) were returned from

exile. In a few days, most impotant Naryshkins, including Artamon Matveev, were killed in a

military uprising, Sophia Miloslavskaya became regent, officially on behalf of Ivan and Peter.

Though Peter, a single royal male in the Naryshkins clan, was in hands of Miloslavskys, his

life was not threatened. In 1689, Peter acceded to power in bloodless coup; Sophia is kept

under home arrest for rest of her life (until 1704). The essence of the story is that, despite

very strong incentives and excellent opportunities on each side to kill the heir representing

the rival clan, they deliberately abstained from that.

19Ivan the Terrible’s son Ivan was killed by his father in a quarrel; however, there is a lot of evidence that

it was accidental.
20In contrast with the Ottoman Empire, killing of non-rivaling siblings was near-taboo in Russia since the

very early years: in 1217, Prince Gleb Vladimirovich of Ryazan was thrown out by citizens of his state after

ordering to kill his brothers, princes of neighbouring states, at a dinner table. The first Russian saints of the

Orthodox Church were young and innocent princes Boris and Gleb, killed by their brother Svyatopolk. Of

course, Russian princes have had less legitimate consanguineous brothers than Ottoman rulers.
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4.2 Nonhereditary Succession

The history of Venezuela since early 19th century — we start with the year of 1830, the first

year of full state independence — serves us as a vivid example that dozens of dictators that

come and go need not be necessarily harsh on their predecessors.21 One reason for relative

exsanguinity at the very top was, as we argue, the equilibrium behavior of winners. Correctly

anticipating a high probability to be removed from power, they opted for a mild treatment

of their predecessors. Another reason was the absence of a royal family and/or aristocratic

tradition, which made it impossible to significantly reduce the set of contenders (µ is high,

in terms of the model). It could be argued that Venezuela in 1830—1964 provides a typical

example of a Latin American country and polity; we identified comeback military rulers in

almost every Latin American country.

For example, of 54 presidents and provisional rulers of Mexico in the 19th century, 17

have held this positions more than one time, and 7 came back to power at least two times

(Cahoon, 2004). General de Santa Anna, “the Napoleon of Mexico”, came back at least

5 times (and 11 by some accounts).22 In Chile, General Ramon Freire came back 5 times.

In Cuba, the last comeback dictator was Fulgencio Batista, who came to power twice (in

1933 and 1952) by means of a military coup (Domínguez, 1998). In Venezuela, among 56

changes in leadership (this figure includes all constitutional leaders — elected, military, and

provisional), there were 14 comebacks by 10 leaders who had previously been constitutional

leaders of the country. Needless to say, a comeback is the most visible sign that the person

had not been executed after removal from power the previous time. On the other hand,

some of the rulers indeed died in office or shortly after removal from power.

Among the generals that ruled Venezuela during 20 years after 1830, there are Jose

Paez (1830—1835 and 1839—1843, president, 1861—1863, supreme dictator), Carlos Soublette

(1837—1839, provisional president, 1843—1847, president, 1858, provisional president), Jose

Tadeo Monagas (1847—1851, 1851—1855, 1868) and Pedro Gual (1859, provisional president,

1861, president). In 1837, 1848, 1858, 1859, 1861 (twice), 1863, and 1868, transition of power

21Our brief overview of Venezuelan leadership in historical perspective is based primarily on Munro (1950),

Levine (1978), and Rudolph and Rudolph (1996). For modern military coups in Latin America, see Linz

and Stephen, 1978; empirical patterns are analyzed in Luttwak (1979), Ferguson (1978), O’Kane (1978), and

Farcau (1994).
22This would not be surprising if General de Santa Anna were a democratic politician, coming back and

forth via elections. However, most of power changes were military coups.
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was hostile. Still, even in the exceptionally bloody 1858 turmoil that started the Federal

War, the outgoing dictator Monagas, who had forced Paez in exile, was allowed to find a

refuge first in the French embassy, and then to retire to France (only to come back in ten

years).23 Julian Castro, the president that removed Monagas in 1858 and was removed by

Gual in 1859, was convicted for treason, but absolved. Páez staged unsuccessful coups in

1848 and 1849 against Monagas and was exiled (1850—58). In 1861, Páez returned to become

the supreme dictator.

The end of the Federal War brought General Antonio Guzman Blanco in to the center

of Venezuelan political arena. He first became president in 1870 (before that he was acting

president temporarily replacing General Falcon, his military principal during the Federal

War, and the president in 1864—1868), ousting José Ruperto Monagas, a son of José Tadeo

Monagas (the Monagas who was President in 1847—1851 and 1855—1858), who brought to

power by the coup of 1868. In 1877, Guzman left the office and went to France. In 1880,

after the death of President Linares (in 1878) and ouster of his short-lived successor Jose

Gregorio Varela, Guzman returned to Venezuela and took power by a coup again. Another

comeback, Joaquin Crespo, was president first in 1884—86 (replacing Guzman Blanco who

left for Paris only to be back in 1886) and from 1892 to 1898, when he was killed during a

revolt against his desired successor. Joaquin Crespo appears to be the only ruler of Venezuela

in two centuries to be killed during or shortly after a coup; there has been no evidence that

he was executed rather than killed in a fight.

The first half of the 20th century was the era of Juan Vincente Gomez, who took power

in 1908 and was formally a president or a provisional president in 1908—1914, 1915—1929

and 1931—1935. However, this might not be an illustrative example of a comeback president,

since historians agree that, whatever has been his official position, he was the undisputed

ruler of Venezuela since 1908 until his death in 1935.

The second half of the 20th century has changed the patterns of dictatorship, though

the phenomenon of ‘comeback rulers’ persisted even with democracy gaining a more solid

ground since the presidency of Rómulo Betancourt, who himself was a comeback military

leader. After taking power in 1945, he was ousted by a military coup in 1948, was returned

by another coup in 1958 and voluntarily left presidency in 1964. Since 1964, two Venezuelan

23It would be only fair to note that his younger brother, Jose Gregorio Monagas, who was president in

1851—1855, was put to jail after the coup of 1858 and died the same year.
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politicians were presidents twice (they were barred from running for a second consecutive

term by constitution), but each time they were elected in a democratic election.24

5 Conclusion

Most advanced analysis of political and economic history draws insights from studies of

large-scale institutional change. The challenge we took upon in this paper is to reconcile

big historical processes with micro decisions made by significant decision-makers at critical

points in history. In this paper, we study reputation and knowledge in a complete information

game with an infinite number of players. The rational winner in a power struggle determines

the fate of the loser. His choice of equilibrium strategy decisions is motivated by two basic

considerations: first, he is willing to increase the probability of survival by reducing the

set of potential contenders. Second, he fears that a bad reputation would serve him poorly

should he in turn become the loser. One conclusion that we are able to illustrate employing a

historical narrative is the existence of markedly different equilibria paths. Between 1830 and

nowadays, Venezuela witnessed a larger number of successful hostile comebacks of leaders

that were disposed earlier. In a drastic contrast, in the Ottoman Empire, a hereditary

monarchy, a typical move by a new ruler was to try to kill all the potential contenders to

the throne.
24Still, Carlos Andres Pérez, who was president in 1974—1978, and was elected again in 1989, survived two

military coups during his second term, and was finally suspended from the office under charges of corruption.
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6 Appendix

Proof of Lemma 6. αn0 = 1 implies α0n = 1. From the proof of lemma 5 it follows that

UE
n0 > US

n0 (because U
S
n0 ≥ UE

n0 leads to a contradiction). By the single-crossing condition,

we find that UE
n+0 > US

n+0. This implies α0n+ = 1, and hence αn+0 = 1. This completes the

proof.

Proof of Lemma 7. Since αn+0 < 1, αn0 < 1 as well. Therefore, Un0 = S (αn0) and

Un+0 = S (αn+0). Consider, however, UE
n0. We have

UE
n0 = Y + β ((1− µ) (Y + βWn+0) + µWn+0)

= (1− µ)Y + ((1− µ)β + µ) (Y + βWn+0)

= (1− µ)Y + ((1− µ)β + µ)US
n+0.

Assume that S (αn0) ≤ S (αn+0) + ε, we obtain

UE
n0 − Un0 = (1− µ)Y + ((1− µ)β + µ)S (αn+0)− S (αn0)

≥ (1− µ)Y + ((1− µ)β + µ)S (αn+0)− S (αn+0)− ε

≥ (1− µ) (Y − S (αn+0) (1− β))− ε

≥ (1− µ) (Y − S (0) (1− β))− ε

≥ (1− µ)βpY

(1− β + 2pβ)
− ε.

Therefore, if we take ε < (1−µ)βpY
(1−β+2pβ) , assertion that S (αn0) ≤ S (αn+0) + ε would lead to a

contradiction. Then S (αn0) > S (αn+0) + ε, and, since S is strictly decreasing, αn0 < αn+0.

This observation completes the proof.

Proof of Lemma 8. By previous lemmas, it is sufficient to demonstrate that αn0 = 1 for

some n. If it were not true, however, then we would find that S (α00)− S (αN0) may be an

arbitrarily large number. This contradicts the fact that both numbers lie between S (1) and

S (0).

Proof of Lemma 9. An agent in the states (0,m) and (0,m+) is indifferent whether to

execute or spare if UE
0m = US

0m and UE
0m+ = US

0m+. The utility from execution on either of

these states are equal to

UE
0m = Y + β ((1− µ) (Y + βW10) + µW10) = UE

0m+.

Therefore, S (α0m) = US
0m = US

0m+ = S (α0m+). Since S (α) is a strictly decreasing function,

α0m = α0m+.
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Proof of Lemma 10. Since αm0 = 1, the agent at least does not strictly prefer to spare,

and thus Um0 = UE
m0. Since αm+0 = 1,

Wm+0 =
1− p− β (1− αm+0) (1− 2p)
1− (1− αm+0) β (1− p)

Um+0 −
αm+0pD

1− (1− αm+0)β (1− p)
= (1− p)Um+0 − pD,

and hence

Um0 = UE
m0 = (1 + β (1− µ))Y + β (β (1− µ) + µ)Wm+0 (13)

= (1 + β (1− µ))Y + β (β (1− µ) + µ) ((1− p)Um+0 − pD) .

Let us demonstrate that Um0 = Um+0. If we substitute Um+0 in (13) for

(1 + β (1− µ))Y +β (β (1− µ) + µ)
¡
(1− p)U(m+2)0 − pD

¢
etc., then after n iterations (de-

note γ = β (β (1− µ) + µ) (1− p)) we will get

Um0 = ((1 + β (1− µ))Y − β (β (1− µ) + µ) pD)
1− γn

1− γ
+ γnU(m+n)0.

Similarly,

Um+0 = ((1 + β (1− µ))Y − β (β (1− µ) + µ) pD)
1− γn

1− γ
+ γnU(m+n+1)0.

Therefore,

|Um0 − Um+0| = γn
¯̄
U(m+n)0 − U(m+n+1)0

¯̄
≤ γn

µ
Y

1− β
+D

¶
.

Since 0 < γ < 1, and n can be chosen arbitrarily large, we conclude that Um0 − Um+0 = 0.

Substituting in (13) Um+0 for Um0, we will find Um0 = A.

To prove that A > S (1), simply subtract these values.

A− S (1)

=
(1 + β (1− µ))Y − β (β (1− µ) + µ) pD

1− β (β (1− µ) + µ) (1− p)
− Y − βpD

1− β (1− p)

=
βp (1− µ) (Y +D (1− β)) (1− µ) pβ

(1− β (β (1− µ) + µ) (1− p)) (1− β (1− p))
> 0.

This completes the proof.

Proof of Lemma 11. Evidently,

UE
m0 = (1 + β (1− µ))Y + β (β (1− µ) + µ)Wm+0

= (1 + β (1− µ))Y + β (β (1− µ) + µ) ((1− p)A− pD) = A.

The last equality follows from definition of A.
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Figure 6: `Killing’ equilibrium in the War of Roses (1455 – 1485)

killed in battle                    ,    executed


