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Abstract

We develop and apply a set of hypothesis tests with which to study changes in the angular

distribution of points in delay space. Crack and Ledoit (1996) plotted daily stock returns

against themselves with one day's lag. (This might be described as a plot in \delay space").

The graph shows these points collected along several rays from the origin. They correctly

attribute this \compass rose" pattern to discreteness in the data. Asset prices move in discrete

ticks. Our testing procedures allow one to test for changes in Crack and Ledoit's compass

rose pattern. Our case study gives an example of such a change in distribution being caused

by a change in regime. We plot the number of points along a given ray of the compass rose

against the angle of that ray. This creates a \theta histogram" which describes the angular

distribution of the points in delay space. We compare this distribution to a standard theta

histogram created by a simple bootstrap procedure. The �2 test is then performed in order to

estimate quantitatively the consistency of the actual data with the standard theta histogram.

Extensions of this technique are discussed.

We apply our technique to an important episode of Russian monetary history. In the late

nineteenth century, the \credit ruble" was a oating currency unlinked to precious metals.

Generally, the �nance ministry actively intervened to inuence the ruble exchange rate. The

one exception was during Nicolai Bunge's tenure as �nance minister. Bunge's successor, Ivan

Vyshnegradsky, was an unusually vigorous interventionist. The shift in regime from Bunge

the non-interventionist to Vyshnegradsky the interventionist produced a marked change in the

behavior of the ruble exchange rate. The angular distribution in delay space of the ruble's

exchange rate against the German mark shifted dramatically under Vyshnegradsky. Hypothesis

tests support the view that Vyshnegradsky's activism caused a disproportionate number of

points of the compass rose to accumulate on the main diagonals in delay space. The theory

of \Big Players" (Koppl and Yeager 1996) helps to explain why. Our results are consistent

with those of Broussard and Koppl (1996) who use a GARCH(1,1) model.



I Introduction

Crack and Ledoit (1996) plot daily stock returns against themselves with one day's lag. Doing

so produces the \compass rose" pattern of Figure 1. This pattern \is indisputably present in

every stock". It \cannot be used for predictive purposes", however, because \it is an artefact of

market microstructure" (p. 751). The existence of a non-zero tick size produces discreteness

in the data which, in turn, generates the compass rose.

Crack and Ledoit view the compass rose as important for several reasons. First, it suggests

the value of research into \the economic determinants of price discreteness" (p. 762). Their

results also show that, because discreteness in the data produces a pattern, tests for various

forms of autoregressive conditional heterskedasticity (ARCH) are likely to be biased as is the

BDS test for chaos. Some standard tools of time-series analysis may be inapplicable to the

discretized data of most asset markets.

Surprisingly, Crack and Ledoit do not call for new tools of time-series analysis speci�cally

suited to the existence of ticks and of the compass rose pattern. Perhaps they doubt the

possibility of applying algorithmic logic to the \subjective" compass rose pattern. Their ex-

planation of the compass rose pattern uses \subjective language", they report, \because the

above statement `the compass rose appears clearly' is itself subjective" (p. 754). We show

by example that new tools speci�cally suited to the compass rose and discretized data can be

constructed. Our tools include hypothesis tests that are highly algorithmic (and thus \rigorous

and objective"). We apply our techniques to a case study. We believe the results of our case

support the view that our techniques are useful and worthy of further development.

II Hypothesis Testing and the Compass Rose Pattern

The compass rose was discovered by Crack and Ledoit (1996). They illustrate the compass

rose with daily returns on Weyerhauser stock from December 6, 1963 to December 31, 1993.

(See Figure 1.) Crack and Ledoit list three conditions for the compass rose pattern to emerge:

1. Daily price changes are small relative to the price level;

2. Daily price changes are in discrete jumps of a small number of ticks; and

3. The price varies over a relatively wide range.
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The explanation of these three conditions is straightforward. Following their notation, let

Pt and Rt be the price and return of some stock on day t. If price changes are small relative to

price level ((Pt � Pt�1)� Pt), and ignoring dividends and splits, the following approximation

holds:

Rt+1=Rt =
(Pt+1 � Pt)=Pt

(Pt � Pt�1)=Pt�1

=
Pt+1 � Pt

Pt � Pt�1

�
1� Pt � Pt�1

Pt

�
�

� Pt+1 � Pt

Pt � Pt�1

=
nt+1h

nth
=

nt+1

nt
; (1)

where h is the tick size and nt = (Pt � Pt�1)=h is the day-t price change calculated in ticks.

Equation (1) shows that the ordered pairs (Rt; Rt+1) will be close to the rays through the

origin that pass through (nt; nt+1). If prices usually change by a small number of ticks, then

most points will accumulate along the major directions of the compass rose.

Finally, Crack and Ledoit explain, if the price varied only slightly around the value Pt, a

grid pattern would result, not the compass rose. \On any given ray (m;n) data points would

cluster at discrete distances from the origin: (mh=Pt; nh=Pt), (2mh=Pt; 2nh=Pt), and so on"

(754). Price variations produce \centrifugal smudging" which, in turn, produces the compass

rose pattern.

Crack and Ledoit describe the compass rose pattern as \subjective". It is possible, however,

to transform the data of the compass rose and apply analytically rigorous techniques to the

transformed data. The transformation we propose might best be thought of as the result of

a two step procedure. In the �rst step one expresses the points of the compass rose in polar

coordinates. The point (Rt; Rt+1) is expressed as (rt; �t) where

rt =
q
R2

t +R2

t+1

�t =

8>>>>><
>>>>>:

arctan(Rt+1=Rt) if Rt � 0

arctan(Rt+1=Rt) + � if Rt < 0; Rt+1 � 0

arctan(Rt+1=Rt)� � if Rt; Rt+1 < 0

(2)

(arctan conventionally range from ��=2 to �=2).

The second step is to associate each �t, not with any of the corresponding rt values, but

with the number of such values corresponding to a narrow interval ����. We �nally normalize

by � in order to plot histograms in the interval [�1; 1]. The result may be called a \theta

histogram". A theta histogram represents the angular distribution of asset returns in delay

space. Figure 2 illustrates.
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The theta histogram just described might be called the \empirical theta histogram". Be-

fore we can engage in hypothesis testing, we need a benchmark with which to compare it. We

propose a simple bootstrapping procedure to create such a benchmark. To construct a boot-

strapped theta histogram, one takes the observed relative frequency of each return in the data

under study. Assume each period's return was draw from this distribution, and assume every

period's return is independent of every other period. Repeated sampling from the empirical

distribution of asset returns allows one to generate a bootstrapped theta histogram. Figure 3

gives an example.

Hypothesis tests can be conducted by comparing the empirical and bootstrapped theta

histograms. In the proposed tests described below, we test H0, the null hypothesis that the

R(t) are independent. If the R(t)=R(t � 1) ratios are distributed in a su�ciently improbable

manner (given H0), then we infer some sort of dependence exists. We can say things such as

\this theta has too many points" or \those thetas have too few points". The dependence we

may infer is statistical dependence. It may be in the �rst moment, the second moment, or the

83rd moment. It may be linear or nonlinear.

Let us consider just one narrow interval of theta, �=� = ! � �!. Let n be the number of

observations. That is, n is the number of R(t)=R(t � 1) ratios in our original data. Let p!

be the fraction of points that should be on angle ! � �!. If the R(t) are independent, the

average theta histogram will have the fraction p! of its point at ! � �!. Thus with a sample

of size n, the expected value for the number of points in the interval ! � �! is np!. Denote

the observed value k!. We are now ready to build the quantity

�2obs �
X
!

(k! � np!)
2

np!
(3)

where
P

! k! = n. In the limit of a large number � of ! partitions, such quantity has

P (�2j�), the incomplete gamma function, as cumulative distribution (Press 1992). Selecting

an arbitrary con�dence level, say 0.05, as with any hypothesis test, one is able to reject H0 if

P (�2 � �2obs) � Q(�2j�) � 1� P (�2j�) = 1

�(�2obs)

Z
1

�
e�tt(�

2

obs
�1) dt < 0:05 ; (4)

where �(x) is the gamma function.

The previous �2 test is meant to probe the empirical distribution as a whole. If some speci�c

theta value is of interest because \has too many points", one can consider the interval !� �!

and ask \What is the relative frequency of theta-histograms of size n in which k! � kobs"? We
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have a sequence of Bernoulli trials in each of which the probability of a hit is p!. For every k,

with 0 � k � n, there are C(k; n) � n!=[k!(n� k)!] ways in which you could get k hits. The

probability of exactly k hits is C(k; n)pk!(1� p!)
(n�k). Thus, the probability P (k! � kobs) is

P (k! � kobs) � Q(kobs) =
nX

k=kobs

C(k; n)pk!(1 � p!)
(n�k) : (5)

Again, H0 is rejected if P (k! � kobs) > 0:05.

III An Application of our Technique

We apply our technique to an important episode in nineteenth-century Russian monetary

history. From the Crimean War of 1853-56 to 1897, Russian had a paper currency which

oated against other currencies, including the Germany mark, a gold-standard currency. This

was the period of the \credit ruble". During most of this period, the Russian �nance ministry

actively intervened in the foreign exchange market, hoping to inuence the ruble's exchange

rate. A notable exception was the period of Nicolai Bunge's tenure as �nance minister. Bunge

served from May 18, 1881 to January 13, 1887. He was a convinced and principled non-

interventionist. Bunge's successor, Ivan Vyshnegradsky, was very di�erent. He served from

January 14, 1887 to September 11, 1892. (His stroke of April 7, 1892, however, put him

largely out of the action). Vyshnegradsky was a highly active interventionist who meddled

frequently in the Berlin market. Vyshnegradsky seemed to derive great pleasure from getting

the better of the Berlin speculators in the ruble.

The contrast between Bunge and Vyshnegradsky is an unusually clear case of a change

in regime from a simple policy rule of non-intervention to an activist, discretionary policy. It

is thus a test case for the \Big Player" theory developed by Butos and Koppl 1993, Koppl

1996, Koppl and Langlois 1994, and Koppl and Yeager 1996. (See also Ahmed et al. n.d.,

Butos 1994, and Butos and Koppl 1995). According to this theory, the presence of a big,

discretionary actor who is relatively insensitive to the discipline of pro�t and loss will induce

herding in asset markets. Nicolai Bunge was not a Big Player because he maintained a

principled non-interventionist stance; he did not exercise his discretion. Vyshnegradsky did use

his discretion and was thus a Big Player.

The root cause of the increased herding under Big Players is ignorance. By scrambling

market signals, Big Players reduce the value of the market information little players use to make
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their choices. In this reduced state of knowledge, little players are more likely to study past price

changes as a clue to the future course of prices. But that may create bandwagon e�ects. (See

Figure 4.) Broussard and Koppl (1996) extend the point. They argue that GARCH e�ects are

likely to be stronger under Big Players. \By reducing the value of all information", they explain,

\Big Players increase the relative value of information about an asset's recent price behavior".

An unusually large price change becomes the object of competing interpretations. \Some will

see a trend, others will expect reversal. Whichever view happens to gain more adherents, the

exaggerated attention paid to the price movement encourages another large movement" to

follow. They �t a modi�ed GARCH(1,1) model to the data and �nd an increase in GARCH

e�ects under Vyshnegradsky. (See Figure 5). We use the same data to �nd a complementary

pattern. Under Vyshnegradsky, a larger fraction of the points of the compass rose accumulated

around the two main diagonals. Big price changes today produce big price changes tomorrow,

though not always in the same direction.

Our data is constructed from a series created by Leland Yeager. Yeager used two contem-

porary German newspapers to �nd the ruble exchange rate in German marks per 100 rubles of

bank notes. His data cover the period from January 02, 1883 to March 31, 1892. We created

a return series from this data by taking the forward �rst di�erences of prices and normalising

by the price (i.e. Ri � (Pi � Pi�1)=Pi�1). From this return series we calculated empirical

and bootstrapped theta histograms as described above. The total number of samples in the

bootstrapped histograms was 1000 times the length of the original series. The data points

have been binned into 201 partitions with a resolution of �=� = 0:01. The probability asso-

ciated with each bin is estimated to be p! = k=N with an error given by the corresponding

bernoullian standard deviation �p! =
q
p!=N .

Figures 6 and 8 show the empirical theta histograms from the Bunge and Vyshnegrad-

sky periods. Figures 7 and 9 show their corresponding bootstrapped theta histograms. For

the Bunge period, the empirical and bootstrapped histograms are almost identical. For the

Vyshnegradsky period, they di�er. The asymmetry in the Vyshnegradsky period is evident.

Especially evident is the large number of points accumulated at �=� = �0:5. Days in which

the ruble's exchange rate did not change tended to be followed by days in which its value fell.

We don't know why this would be true.

For each period, we tested the hypothesis that the probability of a point at �=� = �0:5 is
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equal to the relative frequency of such points when returns are independent. The results are

reported in Table 1.

For the Bunge period, the number of points n in the sample was 1224. If returns were

independent, the probability of a point at �0:5 (�0:005) would be p! = 0:0307 and the

expected value of the number of points would be k! = np! = 37:6. The actual number was

kobs = 37, well within the standard deviation for a bernoullian (� =
p
np! = 6:1). We are

therefore unwilling to reject the hypothesis of independence. In other words, for the Bunge

period, under the assumption of independence, we do not have so improbably large or small

number of points accumulating at -0.5 that we wish to reject the null hypothesis that returns

are independent.

For the Vyshnegradsky period, the number of points in the sample was n = 1581. If

returns were independent, the probability of a point at �0:5 (�0:005) would be p! = 0:0244

and the expected value of the number of points would be k! = 38:5. The actual number

was kobs = 50. From equation (5) we calculate the probability to get such k or higher. This

probability is Q(kobs) = 0:041. Since Q(kobs) is less than 0.05, our con�dence level, we

reject the hypothesis of independence. For the Vyshnegradsky period, under the assumption

of independence, we have an improbably large number of points accumulating at -0.5. Our

hypothesis test supports the conclusion one is likely to draw from looking at Figure 8: days

in which the ruble's exchange rate did not change tended to be followed by days in which its

value fell. (Unfortunately, it gives us no economic intuition about why).

The Big Players theory suggests we should �nd another di�erence between the Bunge and

Vyshnegradsky periods. Under Vyshnegradsky, there should be a greater tendency for points

to accumulate at �=� = �0:25 and �=� = �0:75. These are the values corresponding to

the two main diagonals of the compass rose pattern. We expect the Big Player inuence of

Vyshnegradsky to encourage traders to pay more attention to price history, because all sources

of information have been degraded by the Big Player's discretionary interventions. A large

price change today will become the subject of interpretation in which some see a trend and

other expect \correction". Whichever theory becomes more popular, a large-magnitude return

today is likely to be followed by a return of similar magnitude, though not necessarily in the

same direction.

Our con�dence in this result is strengthened by an inspection of Figures 10 and 11. These
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�gures show the compass rose pattern for the absolute value of returns. Since absolute values

are non-negative, all points appear in the positive quadrant. Under Bunge, no ray is obviously

accumulating too many or too few points. Note that the graph shows something close to a

grid, with little centrifugal smudging. This is because the ruble exchange rate did not vary

widely during Bunge's tenure as �nance minister. (This is exactly the result predicted by

Crack and Ledoit.) Under Vyshnegradsky, the 45-degree line seems to have collected more

points than it would have if returns were independent. This di�erence between the Bunge and

Vyshnegradsky periods is con�rmed by hypothesis tests reported in Table 2.

In this case, in the Bunge period the compound probability for �=� being within the

intervals �=� = �0:25 (�0:005) and �=� = �0:75 (�0:005) is p! = 0:0610, if returns were

independent. Accordingly, the expected number of points is k! = 74:6, while we observe

kobs = 88. From equation (5) we calculate the probability to get such k or higher. This

probability is Q(kobs) = 0:065. Since Q(kobs) is more than 0.05, we are unwilling to reject the

hypothesis of independence. For the Bunge period, under the assumption of independence, we

do not have so improbably large or small number of points along the 45-degree line of Figure

10.

For the Vyshnegradsky period, p! = 0:0312 and k! = 49:4, while we observe kobs = 73.

Again from (5) we obtain Q(kobs) = 0:0008, a value much smaller than our level of con�dence.

We can therefore reject the hypothesis of independence. For the Vyshnegradsky period, under

the assumption of independence, we have an improbably large number of points accumulating

at �0:25 and �0:75. Our hypothesis test supports the conclusion one is likely to draw from

looking at Figure 11: large changes in the exchange rate on one day tend to be followed

by similarly large changes the next day, though not necessarily in the same direction. This

tendency is consistent with the theory of Big Players.

Finally, for each period, we tested the hypothesis of independence among returns using the

�2 test. In order to avoid e�ects related to the number of points in the sample, we choose

n = 998 for each series. A \mixed" series has been studied, taking the end of the Bunge

period and the beginning of the Vyshnegradsky period of tenure, in equal proportions. The

number of degrees of freedom � coincides in our case with the number of bins, i.e. 201.

Since � is so large, we were able to use an asymptotic result to calculate the probability

P (�2 > �2obs) � Q(�2obsj�) (4). In fact, Q(�2obsj�) � Q(x) where x =
q
2�2obs�

p
2� � 1 is a
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reduced variable normally distributed and Q(x) � 1=
p
2�
R
1

x exp(�t2=2) dt (Abramovitz and

Stegun, 1972, formula 26.4.13).

The �2 test results are reported in Table 3. The test is in agreement with the previous

tests on speci�c �=� values. For the Bunge period �2obs = 203:7, very close to the expected

value h�2i = � = 201. Therefore Q(x) is quite large and well within the con�dence level. For

the Vyshnegradsky period �2obs = 251:5 and Q(x) = 0:008 < 0:05, therefore we can reject the

hypothesis that Vyshnegradsky's empirical theta histogram is distributed as the corresponding

i.i.d. returns histogram. This conclusion is even more probable for the \mixed" series, with

�2obs = 291:1 and Q(x) = 0:00002.

IV Discussion

Building on Crack and Ledoit 1996, we have described and applied some new techniques of

time-series analysis. We believe several considerations suggest that our techniques and others

like them may be of fairly general interest in economics and �nance.

Our techniques give us another way to look at GARCH phenomena. In the case studied in

this paper, for example, we found evidence that GARCH e�ects may be due mostly to points

accumulating along the two main diagonals of the compass rose. This gives us information

on the dependence among returns that is not reected in GARCH coe�cients. Crack and

Ledoit suggest that GARCH estimates may be biased by the same discreteness in time series

data that produces the compass rose pattern. If this is true, then it may be desirable to

have another technique of analysis capable of getting at volatility dynamics. We might even

hope that pursuit of our techniques may eventually lead to progress in developing theoretical

explanations for volatility dynamics.

Our techniques provide another engine for the discovery of new facts. In our case study,

for example, we found that the Big Player inuence of Vyshnegradsky produced a tendency for

zero-return days to be followed by negative-return days. This discovery did not come from any

statistical test, but from a graph, Figure 8. This method of discovery is the ancient technique

of graphically based interocular trauma (GBIT). GBIT is often disparaged in econometrics

classrooms, but it is useful for the discovery of facts. Mandebrot �nds the distain of GBIT to

have \become destructive" (p. 21). In his view, \the search for new concepts and conjectures
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are both helped by �ne graphics. : : : A formula can relate to only a small aspect of the

relationship between model and reality, while the eye has enormous powers of integration and

discrimination" (pp. 21-22). Of course, as Mandelbrot reminds us, \the eye sometimes sees

spurious relationships" (p. 22). For this reason, we have attempted to devise hypothesis tests

to complement GBIT. (A comment relating to F.A. Hayek's theory of mind is relagated to a

footnote.)

Our techniques are non-parametric. They require fewer maintained hypotheses. They

allow us to avoid several assumptions that may sometimes be inappropriate. At least four

questionable assumptions frequently made in the time-series analysis of economic data. These

are (i.) the assumption of unbounded symmetric distributions, (ii.) the assumption of smooth

price changes, (iii.) the assumption of ergodicity and (iv.) the assumption of linearity in

intertemporal dependence. We discuss each in turn. We do not mean to deny that these

assumptions are ever appropriate, only that they are always or necessarily so.

(i.) The assumption of unbounded symmetric distributions. An asset's price cannot fall

below zero. It's return is bounded from below by -1. It is also bounded from above. The return

cannot be so high, for instance that twice the total money stock would be required to pay it.

Strickly speaking, returns cannot have normal or Levy-stable marginal distributions. Moreover,

if the greatest lower bound to returns exceeds the least upper bound, the distribution will not

be symmetric.

(ii.) The assumption of smooth price changes. Mandelbrot speaks against the assumption

of continous price movements (1983, pp. 324-336). His comments, however, do not reveal

an appreciation of the discretization imposed by a non-zero tick size. To assume a normal

distribution of returns, a Levy-stable distribution, or any other continous distribution, is to

assume that prices may move in any increment rather than by an integer number of ticks.

Strickly speaking, this is a false assumption.

(iii.) The assumption of ergodicity. This assumption grows less common. Nevertheless,

it is still commonly invoked. But much evidence points to persistence in the �rst and second

moments of return series. (See Koppl and Yeager 1996 and Diebold and Lopez 1995). Our

techniques look only for short-term dependence. But because they are nonparametric, they

are not biased by the undetected presence of long memory.

(iv.) The assumption of linearity in intertemporal dependence. Typically the only kind
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of dependence considered among asset returns is linear dependence in the �rst and second

moments. Our technique lets us test for statistical dependence without regard to the linear or

nonlinear character of that dependence.

The use of the sort of non-parametric techniques we discuss in this paper allows us to

aviod some of these potentially inappropriate assumptions. The use of such techniques also

allows us to take advantage of falling costs of calculation. We can substitute computation for

assumptions and derivations. (See Leijonhufvud 1993.)

Finally, techniques of the sort we have discussed are moments independent. By using tools

such as the compass rose and theta histogram, we can examine our data without employing

the potentially constraining categories of \�rst moment", \second moment", and so on. In

our case study, this seems to have been a useful option. The accumulation of an improbably

large number of points at �=� = �0:5 would be hard to describe in terms of moments.

We believe the techniques of time-series analysis we have discussed are likely to be useful

in economics and �nance. They may be developed in several directions and adapted to the

special needs of di�erent applications. It is our hope that other researchers will seek out and

�nd innovative extensions and applications.
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Table captions

1: Hypothesis tests for �=� = �0:5 (�0:005). In this and the following table, n is

the number of points in the empirical distribution, p! is the probability that �=� belongs

to the interval considered according to the bootstrapped histogram, k! = np!, kobs is the

observed number of points in the interval considered, �k=� = jkobs� k!j=� is the normalized

uctuation observed, and �nally Q(kobs) =
Pn

k=kobs
Pk (where Pk is the Bernoulli probability

of k observation in the bin) is the probability P (k � kobs).

2: Hypothesis tests for �=� = �0:25 (�0:005) and �0:75 (�0:005).
3: �2 hypothesis tests. The empirical series include n = 998 observations histogrammed

in � = 201 bins. x =
q
2�2obs �

p
2� � 1 is the reduced variable which is asymptotically

distributed normally, Q(x) is the corresponding probability P (x0 � x). The reduced variable

x� corresponding to the 0.05 con�dence level, i.e. Q(x�) = 0:05, is 1.645.

Figure captions

1: Crack and Ledoit's \compass rose" graph (scatter plot in delay space) for IBM daily

stock returns, January 1, 1980 to October 8, 1992.

2: \Theta histogram" (angular distribution in delay space) of percent changes in the

Russian Ruble's exchange rate against the German mark. The data used are daily prices from

January 2, 1883 to March 31, 1892.

3: Bootstrapped theta histogram created using the same data used to construct the

empirical theta histogram of Figure 2.

4: From Koppl and Yeager 1996 (ruble's exchange rates in German marks per 100 rubles).

5: From Broussard and Koppl 1996 (ruble's price percent changes).

6: Empirical theta histogram, Bunge period.

7: Bootstrapped theta histogram, Bunge period.

8: Empirical theta histogram, Vyshnegradsky period.

9: Bootstrapped theta histogram, Vyshnegradsky period.

10: Compass rose in absolute values, Bunge period.

11: Compass rose in absolute values, Vyshnegradsky period.
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series n p! k! kobs �k=� Q(kobs)

Bunge 1224 0.03072 (�0:00016) 37.60 (�0:20) 37 0.10 > 0.5

Vyshnegradsky 1581 0.02436 (�0:00012) 38.51 (�0:19) 50 1.85 0.041

Table 1

series n p! k! kobs �k=� Q(kobs)

Bunge 1224 0.06099 (�0:00022) 74.66 (�0:27) 88 1.54 0.065

Vyshnegradsky 1581 0.03123 (�0:00014) 49.38 (�0:22) 73 1.85 0.0008

Table 2

series �2 x Q(x)

Bunge 203.696 0.159 0.436

Vyshnegradsky 251.501 2.403 0.0082

mixed 291.102 4.104 0.00002

Table 3
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