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Abstract

Interest-rate derivative models governed by parabolic partial differ-
ential equations (PDEs) are studied with discrete-time recombining
binomial trees. For the Bihler-Kasler discount-bond model, the ex-
piration value of the bond is a limit point of tree sites. Representa-
tive calculations give a close approximation to the continuum results.
Next, situations are considered in which spatial inhomogeneity of the
drift velocity can cause binomial jump probabilities to become nega-
tive. When the continuous-time boundary conditions are applied near
the tree points at which this occurs, good agreement is obtained with
with Hull and White’s explicit-finite-difference treatment of the Cox-
Ingersoll-Ross model. Finally, to mimic the effect of a drift-velocity
divergence which prevents interest rates from becoming negative, Neu-
mann boundary conditions are applied in the Vasicek model. Discrete-
time computations are performed for a mean-reverting situation and
for a case with constant negative short-rate drift; the ensuing bond
values have nonnegative interest rates and forward rates. The results
are compared with the Vasicek solution and with the leading term in
a spectral expansion.

IDraft No. 2. Sections 3 and 4 on Neumann boundary conditions are new. Additional ref-
erences have been included, and some material from the previous draft has been moved to the
Appendix.



1. Introduction

This working paper applies binomial-tree models to calculate interest-rate
derivative valuations. Particular attention is paid to the interplay between bound-
ary conditions and the approach to the continuous-time limit. A natural variable
for modelling a stock of pric& is InS, which is unbounded—c < InS < ).

Since interest rates are in principle nonnegatieediscount-bond price B has an
upper bound and IB is confined to s half-space. The continuous-time valuations
considered here are described by parabolic partial differential equations (PDES);
the correct behavior near the half-space boundary must be built into a tree model’s
passage to the continuous-time limit.

The paper is organized as follows. Section 2 considers thideB-Kasler
discount-bond model[1]. The binomial tree has a limit point which makes the
boundary unattainable in a finite number of jumps. The Cox-Ingersoll-Ross (CIR)
model[2] is treated in Section 3. When CIR is mapped onto a model with con-
stant variance, Neumann boundary conditions (vanishing slope) hold in the new
variable. Although these boundary conditions are not explicitly stressed in Nel-
son and Ramaswamy’s binomial analysis[3], they can be applied naturally in the
binomial-tree formulation; it is argued that the Hull-White modification of the
explicit finite-difference method[4] converges to them. In Section 4, Neumann
conditions are applied to the Vasicek model[5] as a way of precluding negative
interest rates. The interest-rate-dependent mean-reversion term is suppressed, and
a computed example has nonnegative discount-bond rates for constgtive
drift velocity. Section 5 presents concluding remarks. The tree structure for a
nonconstant variance has been derived concisely by use of Ito’s lemmal4, 3], the
Appendix gives alternative derivations, one of which admits a simple multifactor
generalization[6].

1In practice, models permitting negative interest rates should produce a negligible probability
for such rates. For situations in which the predicted probability is not negligible, it is appropriate
to bar negative rates outright.



2. Inaccessible Boundary: Bihler-K asler

In the "direct” approach to bond valuation, the bond price is the fundamental
random variable. Rady and Sandmann’s article[7] reviews this line of effort, es-
pecially key contributions by Ball and Torous[8], by Briys, Crouhy anddbeth”

[9], and by Bihler and Kisler[1]. The simplest lattice for a discrete-time formu-
lation is a recombining binomial tree. The resulting picture has the same rela-
tionship to the continuous-time model as the Cox-Ross-Rubinstein binomial-tree
description[10] has to Black-Scholes[11].

Rady and Sandmann[7] caution that in bond-price direct models, an absorbing
boundary and nonzero probability of vanishing interest rate can arise. On a bi-
nomial tree, such behavior could be precluded if the boundary were a limit point
which is inaccessible in a finite number of steps. Figure 1 depicts such a tree, on
which computations can readily be performed. Representative numerical results
will be presented for the @iler-Kasler model, whose continuum limit has an eco-
nomic and probabilistic "clean bill of health”. Moreover, the tree structure can be
determined analytically.

Buhler and Kasler value bond derivatives by solving the PDE

of 1 ,0%f 1 ,0f
at2% 972 2950 (1)
with variance
0%(2) = 0§(1— €2, 2)

Equation (1) is the Black-Scholes equation with a price-dependent variance. Itis
solved in the half-space< 0 with the boundary condition

f(z=0,t)=f(z=0,T). (3)

Derivative securities assume their expiration value-at0.
The tree structure is found by inverting

z dZ
E:n\/f:/zoﬁ (4)

for the z-coordinate of theth node[3, 4]. For the Bliler-Kasler model, the solu-
tion is

z=—In [1+ g "%VT (e — 1)] : (5)
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Figure 1:Schematic diagram of a binomial tree.Time steps occur in the vertical
direction, and the horizontal direction depicts price. Hops occur between nearest
neighbors on adjacent time steps. The depicted tree becomes uniform to the left
and has a limit point on the right. Thus there is an infinite number of nodes both
to the left and to the right of any given node.



z=-.200000] z=-.214697
(n=0) (n=-10)
T-t=50 .995 .965
T—-t=100r 9975 990
T—t=200r .999 997

Table 1:Ratio of binomial calls to the Biihler-K asler value.The In of the strike
price ise = —%, and the node index is zero atzy = —%. The standard deviation

per time step gy = ngﬁﬂ’ and the time step is= 1.

For n — —oo, the nodes become evenly spaced, butrfer +o, z=0 is an
accumulation point of nodes. In random-interest-rate models like the Dothan[12]
and Black-Karasinski[13] models, an accumulation point would arise at vanishing
short-term rate.) The accumulation point would not exisy i (z) were integrable
nearz = 0; examples of such situations will be examined in the next two sections.
For constant, Rady and Sandmann show that the boundary conditions on the
PDE can be interpreted in terms of an absorbing boundary=a and a finite
probability for a vanishing interest rate; these are absent for tildeBKasler
model. The absence of an absorbing barrier is consistent with the limit point at
z=0.

Table 1 shows representative numerical results showing good agreement with
the Buhler-Kasler call value [7, 1]

f(zt) = (1-€)eN

1 (ln (1 ¢) +0%(T—t))}

Oov T —t (1-e)e 2
1 f(1-€) aj(T—t)
~a-en | (nfie -2 )] @

where the strike price i€ andT is the expiration time. For the given parameter
values, the at-the-moneyuBler-Kasler call is more than a factor of 5 less than the
Black-Scholes call. The difference is due to the price dependence of the variance.
This price dependence is captured by the nonuniform binomial tree.

3. Neumann Boundary Conditions: Cox-Ingersoll-Ross

Itis known that artificial negative jump probabilities can arise in literal discrete-
time treatments of models with large drift velocities. The Cox-Ingersoll-Ross
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(CIR) model provides an example. CIR is a one-factor model driven by a random
short-term interest whose variance is proportional to For vanishing price of

risk and a drift velocityy = a(b—r) with a,b > 0, the valuation equation for a
derivative security is[2]

of o2 0°f of
E+7rm+a(b—r)a—r—rf_0 (7)

The derivativef can be priced in terms of (a presumably complete set of) eigen-
functionsy generated by the substitutidn— e »T-Uy(r,A). The transforma-

tion of variablest, = 2,/r /o produces

102y 2ab 1\ 1 1__]oyp 1 5.0
e — — = | z—za| = —= AMy=0. 8
saer | (a7 2) e 2% 3+ (CaoE o)y ©

Values ofA are determined by the boundary conditions. These argitisategular

atr = 0 and vanishes at= «. Examination of the power series solution[14]

indicates that the term of ordéris absent. Thus, the regularity requirement at

r = 0 becomes the Neumann boundary condition

oy
08
Sincer 0 &2, this is satisfied by the CIR discount-bond vah(¢)e 8O,

How is the Neumann boundary condition to be implemented on the binomial
tree associated with the time-dependent version of equation 8? The nodes are at
§=nyT (n=0,1,2,...). Forn= 0 and perhaps some neighboring sites, and for
sufficiently large values afi, one hopping probability is negative (and the other
is greater than one). A natural procedure is to apply the boundary condition at
the values* of n at which the probabilistic interpretation breaks déwasing
the conditiond f (§ = 0,t) /0§ = O rather tharf (§ = 0,t) = O permitsf to remain
nonzero at finite. Table 2 shows a comparison with the exact CIR results and Hull
and White’s explicit-finite-difference solution[4]. The Neumann conditions are
given the formf(n*o/1,t) = f((n* + 1)0/1,t). This leads to two interleaving
binomial trees which interact at their boundaries. The time stefas chosen
identical to Hull and White’s, and th&-step size is 1v/3 smaller than that on
their trinomial tree; this is partially offset by the fact that computing a trinomial
jump requires fewer multiplications than computing a binomial one.

0 9)

2By no means is this the only choice. For exampleould be regularized, e.g. b‘%ﬁ —



r=.06 r=.08 r=.10 r=.12 r=.14
.6631 .6353 .6086 .5830 .5585
T—t=5yrs (.6631) | (.6353) | (.6086) | (.5830) | (.5585)
((.6624))| ((.6345))| ((.6078))| ((.5823))| ((.5578))
4091 .3898 3714 .3538 3371
T—-t=10yrs| (.4092) | (.3898) | (.3714) | (.3538) | (.3371)
((.4083)) | ((.3889))| ((.3705))| ((.3529))| ((.3362))
.2502 .2382 .2268 .2159 .2055
T—-t=15yrs| (.2502) | (.2382) | (.2268) | (.2159) | (.2055)
((.2494)) | ((.2374))| ((.2259))| ((.2151))| ((.2147))
.1528 1454 .1385 .1318 1255
T—-t=20yrs| (.1528) | (.1454) | (.1385) | (.1318) | (.1255)
((.1521))| ((.1448))| ((.1378))| ((.1311))| ((.12498))

Table 2:CIR Results. Hull and White’s parameters are adopted= .4, b = .1,

o = .06, andt = .05. The top entry in each box is the present calculation; linear
interpolation was used on the tree values. The second (in parentheses) is Hull-
White’s explicit-finite-difference result, and the third ((in double parentheses)) is
the exact CIR result quoted by Hull and White.



Actually, the Neumann boundary conditionrat O is virtually implicit in the
binomial formulation of CIR. Consider the continuous-time limi O; in this
limit, v(§& = ny/T)/T approaches a constant for fixeénd so do the correspond-
ing jump probabilities. Ignoring the/11+ rt) term which is of higher order i,
one sees that for adjacent tree sites

f(nyT,t) = p(n)f((n+1)VT,t41)
+(1—=p(n)), (10)

where p(n) is the jump probability at site. The point is thatf (r 0 &2,t) is
assumed regular and smooth near 0, but this cannot be true fqi(n) because
of the 1/& term in the drift velocity. Expanding abo§t= 0 to leading order in
/T, one finds

0f(E=01t) _ of(§=0,t+71)
For positive drift velocity,  — 1 > 0 holds, and, fop(n) < 1, under repeated
time steps a finitdf (§ ~ \/1,t) /0% is rapidly driven to zero.
Similar considerations hold for the Hull-White explicit-finite-difference treat-
ment of CIR. For example, consider the relation

f(nA@t) = pif((n+1)A@t+1)
+(1=py — pn) (At +1)
+p, f((n=1)A@,t+1), (12)
in which thepy’s are the probabilities of up or down jumps at sitandAgis the

&-step size. SincAgp= O(/T), for T — 0 at fixedn, this equation can be expanded
abouté = 0. At first order inAg, there ensues

nA(piaf(E(;O’t) ~ (n+pﬁ—p;)A(paf((nJr(l})EA(p’HT)(O,t+r) (13)

~ (N4 py — Pn)A® : (14)

0g

Sincep; approaches a constant in the limit considered, Neumann boundary con-
ditions hold if the Taylor expansion is vafid-not surprisingly, given the quanti-

VyT
3Equation (14) leaves open the possibility tAat& — 0,t) /0 grows under iteration. For the
functional form of Hull and White’s jump probabilities and their bounds on the variables in the

functions, it can be shown that this is not the case-amn®.
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tative success of Hull-White reproduced in Table 2.
4. Neumann Boundary Conditions: Vasicek

The power-series solution[14] of equations of the form (8) indicates that the
Neumann boundary condition describes the solution which is regular at the origin
when the drift velocity has a pole there. In effect, a pole with positive residue
prevents from becoming negative. It is natural to consider such a divergent
drift velocity in a constant-variance interest rate model, i.e. in the Vasicek model,
whose variants and generalizations[15, 16, 13] are used to infer derivative val-
uations from empirical term structure data. The robustness of the results is of
particular interest: when the residue of the pole is tuned toward zero, the limit-
ing case is a "regular” Vasicek model with Neumann boundary conditions. Also,
for constant, if Neumann conditions are adopted for the forward equa%{om

%023272 +v(r)g—: = 0, the adjoint boundary condition %—I —vf =0, which in-

dicates the conservation of probability—time-independent normalization—in the
backward (adjoint) equation 9 + %02‘327; — a"gr)f =0.

This section presents binomial-tree computations on the Vasicek model; the
results will be interpreted with the continuous-time theory. First, a standard sce-
nario with strong mean reversion will be considered; then, to highlight the role
of boundary conditions, a situation without mean reversion and natative
interest-rate drift will be analyzed. The intention (at least in the present draft)
is to demonstrate the procedure rather than to present a survey (@, the, 1)
parameter space.

The valuation equation is

2
%—I+:—2L02372+a(b—r)g—:—rf:0. (15)

This equation is usually analyzed in the domai® < r < o, where its behavior

simplifies[5, 17]. The mean reversion implied by the convergidn> 0O typically

keeps the contribution of negative rates small, but this need not be the case for

sufficiently volatile assets or for nonstandard valuea ahdb. The solution can

be expressed as an eigenfunction expansion:
f(r,t) = %w(r,xn>e—A”<T—‘>. (16)
n=
The eigenfunction terms are the solutions of equation (15) which vanish at;
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r=.04 r=.06 r=.08 r=.10 r=.12 r=.14
.8048 .7555 .7093 .6658 .6251 .5868
T—t=5yrs (.8163) | (.7390) | (.6688) | (.6052) | (.5477) | (.4956)
((.8047))| ((.7554))| ((.7091))| ((.6657))| ((.6249))| ((5866))
.6365 .5839 .5356 4913 .4507 4134
T—t=10yrs| (.6395) | (.5789) | (.5239) | (.4742) | (.4291) | (.3883)
((.6364))| ((.5836))| ((.5353))| ((.4910))| ((.4503))| ((.4130))
.5003 4552 4141 .3766 3425 3115
T—t=15yrs| (.5010) | (.4535) | (.4105) | (.3715) | (.3361) | ((.3042))
((.5003)) | ((.4550))| ((.4134))| ((.3762))| ((.3421))| ((.3111))
.3925 .3560 3229 .2928 .2654 2407
T—-t=20yrs| (.3925) | (.3553) | (.3216) | (.2910) | (.2633) | (.2383)
((.3926)) | ((.3559))| ((.3226))| ((.2924))| ((.2651))| ((.2403))

Table 3: Results for Mean-Reverting Vasicek. The following parameters are
adopted:a = .2, b= .05, 0 = .01, andt = .04. The top entry in each box is

the binomial calculation; linear interpolation was used on the tree values. The
second (in parentheses) is the one-mode approximation, and the third ((in double
parentheses)) is the Vasicek solution fap < r < oo,

the eigenvalues are determined by the boundary conditios-dd. They,’s can

be expressed in terms of confluent hypergeometric (parabolic cylinder) functions
or Airy functions[18]. Because (15) is not a Sturm-Liouville equation, a weight
factor must be used to orthonormalize thgs. Interest rates will be negative if

the smallesh appearing in the expansion is negative.

Table 3 presents a canonical case with strong mean reversion. Neumann con-
ditions are imposed at= 0 and at the value of at which a jump probability
becomes negative. The numerical results are in good agreement with the Vasicek
solution; the dynamics is driven by the mean reversion and boundary effects are
minor. The results are also consistent with a one-term truncation of the eigen-
function expansion; as expected, the agreement improves when time to maturity
increases and the leading transient dominates.

Next, a nonstandard situation will be considered in which the boundary condi-
tion is the only factor working against negative interest rates. Equation (15) will
be considered in the limita — 0,ab — v), and the interest-rate drift will be
taken as negative. Negative interest rates are not apparent in Table 4. In the set of
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r=.04 r=.06 r=.08 r=.10 r=.12 r=.14

.9059 .8356 .7600 .6883 .6231 .5640

T—t=5yrs (.9039) (.8202) (.7168) (.6036) (.4902) | (.3840)
((.9297)) | ((.8412)) | ((.7612)) | ((.6887)) | ((.6232))| ((.5639))

.8736 7974 .7007 .5978 4992 4120

T—-t=10yrs| (.8817) (.8001) (.6992) (.5888) (.4781) | (3746)
((2.2237))| ((.9200)) | ((.7537)) | ((.6167)) | ((.5049))| ((.4134))

.8505 7732 6771 5718 4666 .3691

T—-t=15yrs| (.8600) (.7804) (.6820) (.5743) (.4637) | (.3654)
((2.7883))| ((1.3248))| ((.9814)) | ((.7271)) | ((.5386))| ((.3990))

.8254 .7504 .6570 5544 4511 .3543

T—-t=20yrs| (.8389) (.7612) (.6652) (.5602) (.4549) | (.3564)
((3.7934))| ((2.5430))| ((1.7046))| ((1.1426))| ((.7659))| ((.5134))

Table 4: Vasicek Results for Constant Drift. The following parameters are
adopted:a=0,v=ab= —.01, 0 = .01, andt = .04. The top entry in each
box is the binomial calculation; linear interpolation was used on the tree values.
The second (in parentheses) is the one-mode approximation, and the third ((in
double parentheses)) is the Vasicek solutionfor < r < co.
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eigenfunctions

» (r-A+5
W(r,\) = e VA <g> : (17)

(o2t
the asymptotic properties of the Airy function in the Iimﬁ— — —oo, lead to the
estimate\ ~ 2M in good agreement with the Newton’s-method resu#t.00497.

(Forv =0, the leading\ is proportional to the Airy function’s largest root, which

is negative; fovw — +oo — A is proportional to the zero &i’(x), which is also
negative.)

1 202

The absence of negative eigenvalues for constant drift raises the issue for
v=a(b—r) and more general cases. For example, whenO0, the appropri-
ate eigenfunction is

M (c,%,%(r+0—2—b)2)

az

f(rA) = me'/?

r+or@3)
Ja_ o M(%Jrc,%,c%(wrg—;—b)z)
——(r+—2—b) 3 . (18)
o F(c)r(z)
where
1 02

andf — 0 asr — o; a similar solution exists foa < 0. The leading eigenvalue
2

A=Db- a2 in the Vasicek solution satisfies the equatma:- 0, which can be

shown to determine an eigenvalue, '-F"(-?) =0, in the limito — 0. Forb =

g—i, examination of thd -functions indicates that the solutions%(ra:rﬂ =0
must have negativeand positive\. At present, the spectrum associated with an
arbitrary value of(a,b) must be determined on an individual basis, although so
far all prospective negative roots 8?“;—0’)‘) = 0 have turned out to be weakly
positive or asymptotes.

Nevertheless, a qualititive argument about the spectrum can be made. Con-

°f @
sider the forward equation 2 S T 10220 57— Vgr) = 0 mentioned at the beginning
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of this section. Since the (adjoint) boundary conditions give conservation of prob-
ability, the equation is assumed to have well-behaved solutions with a nonnegative
spectrum. Therefore, the backward equation

of 1 ,0°f of
= éozﬁ +v(r)=-=0,
with Neuman boundary conditions, is also well-behaved.
Consider a binomial-tree treatment of this equation. If the initial value of the
solution is nonnegative, the properly bounded jump probabilities assure that it will
be nonnegative at all prior times. Introducing the damping faﬁiﬁrg 1 ateach
jump in equation (20) produces a binomial-tree formulation of

(20)

2

%—I+%OZZT; +v(r)g—:—rf =0, (21)
which is the equation of interest. If the temporal divergences associated with
negative eigenvalues are not present in (20), they will not arise in (21). Note that
this rationale breaks downiifis allowed to be negative.

5. Summary and Conclusion

Three things have been done in this paper. First, the discrete-tilleBKasler
discont-bond model has been studied on a binomial tree which turned out to have
a limit point. Second, it was noted that when the Cox-Ingersoll-Ross model is
mapped onto a constant-variance model, the appropriate boundary condition in the
new price variable is the Neumann condition; binomial-tree calculations are con-
sistent with, and clarify the success of, the Hull-White explicit-finite-difference
method. Third, as a heuristic way of modelling a short-range divergent drift which
keeps interest rates nonnegative, Neumann conditions were imposed in the Va-
sicek model. In a typical mean-reverting situation, the effects are minor. When
mean reversion is turned off and a constant negative interest-rate drift imposed,
the consequences in a sample case are dramatic: the discount-bond valuation ap-
pears well-conditioned, whereas the Vasicek solution is dominated by negative
rates. If mean reversion is not essential to obtaima facieacceptable results
from Vasicek, the model and its variants may accommodate a larger category of
fitting functions, and be applicable to securities with greater volatility, than would
be the case otherwise.
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Appendix

The tree structure has been concisely derived[3, 4] by use Ito’s lemma. This
Appendix derives it by formulating the appropriate continuous-time limit of a
binomial process. A check using the PDE commences after equation (44); it is the
starting point for a simple generalization to the multifactor case.

In the binomial processes of interest, the price of interest-rate derivatives de-
pends on the value of a random variabl@hich can be, for instance, an interest
rate or a bond price. Changesarccur in discrete time steps At timet and
z = 7y, z changes t@y + a, with probability p and tozy — a_ with probability
1— p. Derivative securities can be valued with price-of-risk methods[19, 20]. It
is convenient to adapt the terminology of Ref. [21]. The value of a derivative
securityf(zt) is determined from its values one time step closer to expiration by

(f(z+A0zt+1)p,— (L+R)f(21)
R [f]

whereA is the price of risk andR is the interest. In principle, these quantities can
depend on botla andt. The expectation value is

= AtY/2, (22)

(f(20)) = pf(z+a;)+(1-pf(z—a) (ar+a->0), (23

and the risk metri® is taken as quadratic:

RIf]] = ((f(z+b2)—(f)2)"? (24)
= VpA-p)lf(z+a,) - f(z—a) (25)

The Black-Schole® has the sign 00f/dz, and in the present situatioR, is
assigned the sign df(z+a) — f(z—a_). The solution to equation (22) is

fzt) = HLR A-n =Pt ara tn))+
P
(1-p)(1+A rp)f(z—a_,tJrr)] (26)
1 ~
= H—R[pf(z+a+,t+T))+(1—p)f(z—a,,t+r)]. (27)
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The functional form (27) remains valid irrespective of the sigRoflf the under-
lying security is a bond of pricB and the random variableis z= InB, p can be
eliminated by requiring tha¥ be a solution of the equation, which transforms to

(1+R—e®)f(z4+a,t+1) — (1+R—€?*)f(z—a_,t+1)
f(zt) = . (2
1) 1R —ea) (28)
For a market consisting of the bond B, its derivatives, and time-independent cash,
the above expression further simplifies to

(1-e&)f(z+a,t+1)+ (2 —1)f(z—a_,t+1)

(e —e ) |
after the interest rate is dropped. Equation (29) describes a binomial hopping
process with

f(zt) = (29)

l-e& e+ —1
e —e 2’ e+ —e 2
as transition probabilities.

As noted in Section 2, @iler and Kasler value bond derivatives by solving
the PDE

(30)

of 1 262f 1 ,0f
subject to
0%(z2) = 0%(1—é)? (32)
f(z=0,t) = f(z=0,T). (33)

Derivative securities assume their expiration value-at0.

Can a binomial process be constructed which reducesitbeBKasler in the
T — 0 limit? A recombining tree is sought. ¢f depends on price but not on time,
so will the lattice geometry. Let the price-dependent nodes of the tree be indexed
by an integemn. At a given time step, all values ofare even or odd; hops take
place from sitento sitesn+1. Accordingly, the quantities,. depend on the index
n. The constraint

ar(nj=a (n+1). (34)
holds because the tree structure is recombining and time-independent.
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A convenient feature of thewiler-Kasler model is that the variance approaches
a constant values for large negateThe tree becomes uniform in this domain
with a, (n) ~ a_(n) ~ a~ 0ot/ asn — —w andt — 0. For smallt, the replace-
ment

as(n) =a.t? (35)

is reasonable; the uniform-tree results suggest that the hopping probabilities should
be expanded t®(t%/2). Thus the drift velocity is

Vain T~ 0%zt~ —za. (nja () = —5a, (Wa,(n-1).  (36)

The first equality above comes from the PDE; the second is a smakpansion
of the tree model. If the variance rather than the drift velocity is computed, to
leading order irt the same relationship,

0®(z(n))t = a(may (n—1), (37)
ensues. Specifying one of th& determines all the rest.
Position on the tree can be described in termgzaf) or (n,t). A natural
guestion is whether a continuum model can be developed in thé limit. An
obvious variable to try is

E=m/1. (38)
Summations over n are thus Riemann sums:
VEY WV — [ dEw@). (39)
n
Equation (37) for the, s can be simplified by noting that

ap(n+1)~ai(n)=an) (40)

to leading order it because., (§+1) ~a, (&). Thea’s defined previously can
be written as

ar ~a(f). (41)

If the indexn is set to zero aky, i.e. n(zy) = 0, az-position on the tree is deter-
mined by the number a-steps fromgy:
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n(2) g
26) 7%= 3 a ()~ /0 de’al(E). (42)

Accordingly, to leading order im, equation (37) can be written as

dz
d_E, = 0(2)7 (43)
and inverting
z dZ
g=nvi- [ oo (44)

yields thez-coordinate of theth node.

The foregoing discussion has been intuitive, and a consistency check is desir-
able. In fact, there is another interpretation which naturally encompasses models
other than Bihler-Kasler. The starting point is the continuum foém- f%z for &
given in equation (4). If its coefficients are time-independent, a PDE of the form

of 020°f of

E—{-?ﬁ‘FVeffE_rf:O (45)

can be rewritten as
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of 10%f Veit 1 0o Of
a 20t T20ag)aE T O (40)

When [ %Z diverges at zero and infinity, the relevant binomial process associated
with equation (46) involves price-dependent hopping of the form (27) on a uni-
form &-tree. The internode spacing,j&, and the hopping probability correspond-

ing to the drift velocity of¢ is

2p-1 = ( 5 2062 47
Vet 100 1/2
( s Zaz)T ) (48)

Consistency of the-tree andé-tree must be demonstrated. To ordgrt, the
spacings are related by

_Ee@ dZ Ni zt+ay(2) _(Z-2)do(2)
S G ()/ a2 (1-C 292 (ag)

a.(2) =~ o+ oo, (50)

The corresponding value af is

a_(2) ~ o(2)T/? %o(z)rdz(zz) (51)

Because the relationships
a2t ~ a;(2a (2 (52)
Vetf(2T ~ P(2ay(z2) - (1-p(2))a-(2) (53)

hold toO(1), the two trees are consistent. Discreteghii-Kasler is recovered for
the appropriate choice qf. ©
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