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Abstract

Interest-rate derivative models governed by parabolic partial di�er-

ential equations (PDEs) are studied with discrete-time recombining

binomial trees. For the B�uhler-K�asler discount-bond model, the ex-

piration value of the bond is a limit point of tree sites. Representa-

tive calculations give a close approximation to the continuum results.

Next, situations are considered in which spatial inhomogeneity of the

drift velocity can cause binomial jump probabilities to become nega-

tive. When the continuous-time boundary conditions are applied near

the tree points at which this occurs, good agreement is obtained with

with Hull and White's explicit-�nite-di�erence treatment of the Cox-

Ingersoll-Ross model. Finally, to mimic the e�ect of a drift-velocity

divergence which prevents interest rates from becoming negative, Neu-

mann boundary conditions are applied in the Vasicek model. Discrete-

time computations are performed for a mean-reverting situation and

for a case with constant negative short-rate drift; the ensuing bond

values have nonnegative interest rates and forward rates. The results

are compared with the Vasicek solution and with the leading term in

a spectral expansion.

1Draft No. 2. Sections 3 and 4 on Neumann boundary conditions are new. Additional ref-
erences have been included, and some material from the previous draft has been moved to the
Appendix.
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1. Introduction

This working paper applies binomial-tree models to calculate interest-rate
derivative valuations. Particular attention is paid to the interplay between bound-
ary conditions and the approach to the continuous-time limit. A natural variable
for modelling a stock of priceS is lnS, which is unbounded (�∞ < lnS< ∞).
Since interest rates are in principle nonnegative1, a discount-bond price B has an
upper bound and lnB is confined to s half-space. The continuous-time valuations
considered here are described by parabolic partial differential equations (PDEs);
the correct behavior near the half-space boundary must be built into a tree model’s
passage to the continuous-time limit.

The paper is organized as follows. Section 2 considers the B¨uhler-Käsler
discount-bond model[1]. The binomial tree has a limit point which makes the
boundary unattainable in a finite number of jumps. The Cox-Ingersoll-Ross (CIR)
model[2] is treated in Section 3. When CIR is mapped onto a model with con-
stant variance, Neumann boundary conditions (vanishing slope) hold in the new
variable. Although these boundary conditions are not explicitly stressed in Nel-
son and Ramaswamy’s binomial analysis[3], they can be applied naturally in the
binomial-tree formulation; it is argued that the Hull-White modification of the
explicit finite-difference method[4] converges to them. In Section 4, Neumann
conditions are applied to the Vasicek model[5] as a way of precluding negative
interest rates. The interest-rate-dependent mean-reversion term is suppressed, and
a computed example has nonnegative discount-bond rates for constantnegative
drift velocity. Section 5 presents concluding remarks. The tree structure for a
nonconstant variance has been derived concisely by use of Ito’s lemma[4, 3], the
Appendix gives alternative derivations, one of which admits a simple multifactor
generalization[6].

1In practice, models permitting negative interest rates should produce a negligible probability
for such rates. For situations in which the predicted probability is not negligible, it is appropriate
to bar negative rates outright.
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2. Inaccessible Boundary: B̈uhler-K äsler

In the ”direct” approach to bond valuation, the bond price is the fundamental
random variable. Rady and Sandmann’s article[7] reviews this line of effort, es-
pecially key contributions by Ball and Torous[8], by Briys, Crouhy and Sch¨obel
[9], and by Bühler and Käsler[1]. The simplest lattice for a discrete-time formu-
lation is a recombining binomial tree. The resulting picture has the same rela-
tionship to the continuous-time model as the Cox-Ross-Rubinstein binomial-tree
description[10] has to Black-Scholes[11].

Rady and Sandmann[7] caution that in bond-price direct models, an absorbing
boundary and nonzero probability of vanishing interest rate can arise. On a bi-
nomial tree, such behavior could be precluded if the boundary were a limit point
which is inaccessible in a finite number of steps. Figure 1 depicts such a tree, on
which computations can readily be performed. Representative numerical results
will be presented for the B¨uhler-Käsler model, whose continuum limit has an eco-
nomic and probabilistic ”clean bill of health”. Moreover, the tree structure can be
determined analytically.

Bühler and Käsler value bond derivatives by solving the PDE

∂ f
∂t

+
1
2

σ2∂2 f
∂z2 �

1
2

σ2∂ f
∂z

= 0 (1)

with variance

σ2
(z) = σ2

0(1�ez
)
2
: (2)

Equation (1) is the Black-Scholes equation with a price-dependent variance. It is
solved in the half-spacez� 0 with the boundary condition

f (z= 0; t) = f (z= 0;T): (3)

Derivative securities assume their expiration value atz= 0.
The tree structure is found by inverting

ξ = n
p

τ =
Z z

z0

dz0

σ(z0)
(4)

for the z-coordinate of thenth node[3, 4]. For the B¨uhler-Käsler model, the solu-
tion is

z=� ln
h
1+e�nσ0

p
τ �e�z0�1

�i
: (5)
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Figure 1:Schematic diagram of a binomial tree.Time steps occur in the vertical
direction, and the horizontal direction depicts price. Hops occur between nearest
neighbors on adjacent time steps. The depicted tree becomes uniform to the left
and has a limit point on the right. Thus there is an infinite number of nodes both
to the left and to the right of any given node.
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z=-.200000
(n=0)

z=-.214697
(n=-10)

T� t = 50τ .995 .965
T� t = 100τ .9975 .990
T� t = 200τ .999 .997

Table 1:Ratio of binomial calls to the Bühler-K äsler value.The ln of the strike
price isε = �1

5, and the node indexn is zero atz0 =�1
5. The standard deviation

per time step isσ0 =
3

20�3651=2 , and the time step isτ = 1.

For n ! �∞, the nodes become evenly spaced, but forn ! +∞, z = 0 is an
accumulation point of nodes. In random-interest-rate models like the Dothan[12]
and Black-Karasinski[13] models, an accumulation point would arise at vanishing
short-term rate.) The accumulation point would not exist if 1=σ(z) were integrable
nearz= 0; examples of such situations will be examined in the next two sections.
For constantσ, Rady and Sandmann show that the boundary conditions on the
PDE can be interpreted in terms of an absorbing boundary atz= 0 and a finite
probability for a vanishing interest rate; these are absent for the B¨uhler-Käsler
model. The absence of an absorbing barrier is consistent with the limit point at
z= 0.

Table 1 shows representative numerical results showing good agreement with
the Bühler-Käsler call value [7, 1]

f (z; t) = (1�eε
)ezN

�
1

σ0
p

T� t

�
ln

ez
(1�eε

)

(1�ez)eε +
σ2

0(T� t)

2

��

�eε
(1�ez

)N

�
1

σ0
p

T� t

�
ln

ez
(1�eε

)

(1�ez)eε �
σ2

0(T� t)

2

��
(6)

where the strike price iseε andT is the expiration time. For the given parameter
values, the at-the-money B¨uhler-Käsler call is more than a factor of 5 less than the
Black-Scholes call. The difference is due to the price dependence of the variance.
This price dependence is captured by the nonuniform binomial tree.

3. Neumann Boundary Conditions: Cox-Ingersoll-Ross

It is known that artificial negative jump probabilities can arise in literal discrete-
time treatments of models with large drift velocities. The Cox-Ingersoll-Ross
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(CIR) model provides an example. CIR is a one-factor model driven by a random
short-term interestr whose variance is proportional tor. For vanishing price of
risk and a drift velocityv = a(b� r) with a;b > 0, the valuation equation for a
derivative security is[2]

∂ f
∂t

+
σ2

2
r

∂2 f
∂r2 +a(b� r)

∂ f
∂r
� r f = 0 (7)

The derivativef can be priced in terms of (a presumably complete set of) eigen-
functionsψ generated by the substitutionf ! e�λ(T�t)ψ(r;λ). The transforma-
tion of variablesξ = 2

p
r=σ produces

1
2

∂2ψ
∂ξ2 +

��
2ab
σ2 �

1
2

�
1
ξ
� 1

2
aξ
�

∂ψ
∂ξ

+

�
�1

4
σ2ξ2

+λ
�

ψ = 0: (8)

Values ofλ are determined by the boundary conditions. These are thatψ is regular
at r = 0 and vanishes atr = ∞. Examination of the power series solution[14]
indicates that the term of orderξ is absent. Thus, the regularity requirement at
r = 0 becomes the Neumann boundary condition

∂ψ
∂ξ

= 0 (9)

Sincer ∝ ξ2, this is satisfied by the CIR discount-bond valueA(t)e�B(t)r.
How is the Neumann boundary condition to be implemented on the binomial

tree associated with the time-dependent version of equation 8? The nodes are at
ξ = n

p
τ (n= 0;1;2; :::). Forn= 0 and perhaps some neighboring sites, and for

sufficiently large values ofn, one hopping probability is negative (and the other
is greater than one). A natural procedure is to apply the boundary condition at
the valuesn� of n at which the probabilistic interpretation breaks down2; using
the condition∂ f (ξ = 0; t)=∂ξ = 0 rather thanf (ξ = 0; t) = 0 permitsf to remain
nonzero at finiter. Table 2 shows a comparison with the exact CIR results and Hull
and White’s explicit-finite-difference solution[4]. The Neumann conditions are
given the formf (n�σ

p
τ; t) = f ((n�+1)σ

p
τ; t). This leads to two interleaving

binomial trees which interact at their boundaries. The time stepτ was chosen
identical to Hull and White’s, and theξ-step size is 1=

p
3 smaller than that on

their trinomial tree; this is partially offset by the fact that computing a trinomial
jump requires fewer multiplications than computing a binomial one.

2By no means is this the only choice. For example,v could be regularized, e.g. byv
p

τ
σ !
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r=.06 r=.08 r=.10 r=.12 r=.14
.6631 .6353 .6086 .5830 .5585

T� t = 5 yrs (.6631) (.6353) (.6086) (.5830) (.5585)
((.6624)) ((.6345)) ((.6078)) ((.5823)) ((.5578))

.4091 .3898 .3714 .3538 .3371
T� t = 10 yrs (.4092) (.3898) (.3714) (.3538) (.3371)

((.4083)) ((.3889)) ((.3705)) ((.3529)) ((.3362))
.2502 .2382 .2268 .2159 .2055

T� t = 15 yrs (.2502) (.2382) (.2268) (.2159) (.2055)
((.2494)) ((.2374)) ((.2259)) ((.2151)) ((.2147))

.1528 .1454 .1385 .1318 .1255
T� t = 20 yrs (.1528) (.1454) (.1385) (.1318) (.1255)

((.1521)) ((.1448)) ((.1378)) ((.1311)) ((.1248))

Table 2:CIR Results. Hull and White’s parameters are adopted:a= :4, b= :1,
σ = :06, andτ = :05. The top entry in each box is the present calculation; linear
interpolation was used on the tree values. The second (in parentheses) is Hull-
White’s explicit-finite-difference result, and the third ((in double parentheses)) is
the exact CIR result quoted by Hull and White.
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Actually, the Neumann boundary condition atr = 0 is virtually implicit in the
binomial formulation of CIR. Consider the continuous-time limitτ ! 0; in this
limit, v(ξ = n

p
τ)
p

τ approaches a constant for fixedn and so do the correspond-
ing jump probabilities. Ignoring the 1=(1+ rτ) term which is of higher order inξ,
one sees that for adjacent tree sites

f (n
p

τ; t) = p(n) f ((n+1)
p

τ; t + τ)
+(1� p(n)); (10)

where p(n) is the jump probability at siten. The point is thatf (r ∝ ξ2; t) is
assumed regular and smooth nearr = 0, but this cannot be true forp(n) because
of the 1=ξ term in the drift velocity. Expanding aboutξ = 0 to leading order inp

τ, one finds

∂ f (ξ = 0; t)
∂ξ

' (2p(n)�1)
∂ f (ξ = 0; t + τ)

∂ξ
: (11)

For positive drift velocity, 2p� 1 > 0 holds, and, forp(n) < 1, under repeated
time steps a finite∂ f (ξ�pτ; t)=∂ξ is rapidly driven to zero.

Similar considerations hold for the Hull-White explicit-finite-difference treat-
ment of CIR. For example, consider the relation

f (n∆φ; t) = p+n f ((n+1)∆φ; t+ τ)
+(1� p+n � p�n ) f (n∆φ; t + τ)

+p�n f ((n�1)∆φ; t+ τ); (12)

in which thep�n ’s are the probabilities of up or down jumps at siten and∆φ is the
ξ-step size. Since∆φ= O(

p
τ), for τ! 0 at fixedn, this equation can be expanded

aboutξ = 0. At first order in∆φ, there ensues

n∆φ
∂ f (ξ = 0; t)

∂ξ
' (n+ p+n � p�n )∆φ

∂ f ((n+1)∆φ; t+ τ)
∂ξ

(0; t+ τ) (13)

' (n+ p+n � p�n )∆φ
∂ f (ξ = 0; t)

∂ξ
: (14)

Sincep�n approaches a constant in the limit considered, Neumann boundary con-
ditions hold if the Taylor expansion is valid3—not surprisingly, given the quanti-

v
p

τp
σ2+v2τ

.
3Equation (14) leaves open the possibility that∂ f (ξ! 0; t)=∂ξ grows under iteration. For the

functional form of Hull and White’s jump probabilities and their bounds on the variables in the
functions, it can be shown that this is not the case atn= n�.
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tative success of Hull-White reproduced in Table 2.

4. Neumann Boundary Conditions: Vasicek

The power-series solution[14] of equations of the form (8) indicates that the
Neumann boundary condition describes the solution which is regular at the origin
when the drift velocity has a pole there. In effect, a pole with positive residue
preventsξ from becoming negative. It is natural to consider such a divergent
drift velocity in a constant-variance interest rate model, i.e. in the Vasicek model,
whose variants and generalizations[15, 16, 13] are used to infer derivative val-
uations from empirical term structure data. The robustness of the results is of
particular interest: when the residue of the pole is tuned toward zero, the limit-
ing case is a ”regular” Vasicek model with Neumann boundary conditions. Also,
for constantσ, if Neumann conditions are adopted for the forward equation∂ f

∂t +

1
2σ2 ∂2 f

∂r2 +v(r)∂ f
∂r = 0, the adjoint boundary condition is12

∂ f
∂r � v f = 0, which in-

dicates the conservation of probability—time-independent normalization—in the

backward (adjoint) equation�∂ f
∂t +

1
2σ2 ∂2 f

∂r2 � ∂v(r) f
∂r = 0.

This section presents binomial-tree computations on the Vasicek model; the
results will be interpreted with the continuous-time theory. First, a standard sce-
nario with strong mean reversion will be considered; then, to highlight the role
of boundary conditions, a situation without mean reversion and withnegative
interest-rate drift will be analyzed. The intention (at least in the present draft)
is to demonstrate the procedure rather than to present a survey of the(σ;b;a;τ)
parameter space.

The valuation equation is

∂ f
∂t

+
1
2

σ2∂2 f
∂r2 +a(b� r)

∂ f
∂r
� r f = 0: (15)

This equation is usually analyzed in the domain�∞ < r < ∞, where its behavior
simplifies[5, 17]. The mean reversion implied by the conventiona;b> 0 typically
keeps the contribution of negative rates small, but this need not be the case for
sufficiently volatile assets or for nonstandard values ofa andb. The solution can
be expressed as an eigenfunction expansion:

f (r; t) =
∞

∑
n=0

ψ(r;λn)e
�λn(T�t)

: (16)

The eigenfunction terms are the solutions of equation (15) which vanish atr = ∞;

9



r=.04 r=.06 r=.08 r=.10 r=.12 r=.14
.8048 .7555 .7093 .6658 .6251 .5868

T� t = 5 yrs (.8163) (.7390) (.6688) (.6052) (.5477) (.4956)
((.8047)) ((.7554)) ((.7091)) ((.6657)) ((.6249)) ((5866))

.6365 .5839 .5356 .4913 .4507 .4134
T� t = 10 yrs (.6395) (.5789) (.5239) (.4742) (.4291) (.3883)

((.6364)) ((.5836)) ((.5353)) ((.4910)) ((.4503)) ((.4130))
.5003 .4552 .4141 .3766 .3425 3115

T� t = 15 yrs (.5010) (.4535) (.4105) (.3715) (.3361) ((.3042))
((.5003)) ((.4550)) ((.4134)) ((.3762)) ((.3421)) ((.3111))

.3925 .3560 .3229 .2928 .2654 .2407
T� t = 20 yrs (.3925) (.3553) (.3216) (.2910) (.2633) (.2383)

((.3926)) ((.3559)) ((.3226)) ((.2924)) ((.2651)) ((.2403))

Table 3: Results for Mean-Reverting Vasicek. The following parameters are
adopted:a = :2, b = :05, σ = :01, andτ = :04. The top entry in each box is
the binomial calculation; linear interpolation was used on the tree values. The
second (in parentheses) is the one-mode approximation, and the third ((in double
parentheses)) is the Vasicek solution for�∞ < r < ∞.

the eigenvalues are determined by the boundary condition atr = 0. Theψλ’s can
be expressed in terms of confluent hypergeometric (parabolic cylinder) functions
or Airy functions[18]. Because (15) is not a Sturm-Liouville equation, a weight
factor must be used to orthonormalize theψλ’s. Interest rates will be negative if
the smallestλ appearing in the expansion is negative.

Table 3 presents a canonical case with strong mean reversion. Neumann con-
ditions are imposed atr = 0 and at the value ofr at which a jump probability
becomes negative. The numerical results are in good agreement with the Vasicek
solution; the dynamics is driven by the mean reversion and boundary effects are
minor. The results are also consistent with a one-term truncation of the eigen-
function expansion; as expected, the agreement improves when time to maturity
increases and the leading transient dominates.

Next, a nonstandard situation will be considered in which the boundary condi-
tion is the only factor working against negative interest rates. Equation (15) will
be considered in the limit(a! 0;ab! v), and the interest-rate driftv will be
taken as negative. Negative interest rates are not apparent in Table 4. In the set of

10



r=.04 r=.06 r=.08 r=.10 r=.12 r=.14
.9059 .8356 .7600 .6883 .6231 .5640

T� t = 5 yrs (.9039) (.8202) (.7168) (.6036) (.4902) (.3840)
((.9297)) ((.8412)) ((.7612)) ((.6887)) ((.6232)) ((.5639))

.8736 .7974 .7007 .5978 .4992 .4120
T� t = 10 yrs (.8817) (.8001) (.6992) (.5888) (.4781) (3746)

((1.1237)) ((.9200)) ((.7537)) ((.6167)) ((.5049)) ((.4134))
.8505 .7732 .6771 .5718 .4666 .3691

T� t = 15 yrs (.8600) (.7804) (.6820) (.5743) (.4637) (.3654)
((1.7883)) ((1.3248)) ((.9814)) ((.7271)) ((.5386)) ((.3990))

.8254 .7504 .6570 .5544 .4511 .3543
T� t = 20 yrs (.8389) (.7612) (.6652) (.5602) (.4549) (.3564)

((3.7934)) ((2.5430)) ((1.7046)) ((1.1426)) ((.7659)) ((.5134))

Table 4: Vasicek Results for Constant Drift. The following parameters are
adopted:a = 0, v = ab= �:01, σ = :01, andτ = :04. The top entry in each
box is the binomial calculation; linear interpolation was used on the tree values.
The second (in parentheses) is the one-mode approximation, and the third ((in
double parentheses)) is the Vasicek solution for�∞ < r < ∞.
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eigenfunctions

ψ(r;λ) = e�rv=σ2
Ai

 
r�λ+

v2

2σ2

(
1
2σ2)1=3

!
; (17)

the asymptotic properties of the Airy function in the limitvσ4=3 !�∞, lead to the

estimateλ� σ2

2jvj , in good agreement with the Newton’s-method resultλ' :00497.
(Forv= 0, the leadingλ is proportional to the Airy function’s largest root, which
is negative; forv!+∞, v2

2σ2 �λ is proportional to the zero ofAi0(x), which is also
negative.)

The absence of negative eigenvalues for constant drift raises the issue for
v = a(b� r) and more general cases. For example, whena > 0, the appropri-
ate eigenfunction is

f (r;λ) = πe�r=a

2
4M

�
c; 1

2;
a

σ2(r +
σ2

a2 �b)2
�

Γ(1
2 +c)Γ(1

2)

�
p

a
σ

(r +
σ2

a2 �b)
M
�

1
2 +c; 3

2;
a

σ2(r +
σ2

a2 �b)2
�

Γ(c)Γ(3
2)

3
5 ; (18)

where

c=� 1
2a

�
σ2

2a2 �b+λ
�
: (19)

and f ! 0 asr ! ∞; a similar solution exists fora< 0. The leading eigenvalue
λ = b� σ2

2a2 in the Vasicek solution satisfies the equationc = 0, which can be

shown to determine an eigenvalue, i.e.1Γ(c) = 0, in the limit σ ! 0. For b =

σ2

a2 , examination of theΓ-functions indicates that the solutions to∂ f (r=0;λ)
∂r = 0

must have negativec and positiveλ. At present, the spectrum associated with an
arbitrary value of(a;b) must be determined on an individual basis, although so
far all prospective negative roots of∂ f (r=0;λ)

∂r = 0 have turned out to be weakly
positive or asymptotes.

Nevertheless, a qualititive argument about the spectrum can be made. Con-

sider the forward equation�∂ f
∂t +

1
2σ2 ∂2 f

∂r2 � ∂v(r) f
∂r = 0 mentioned at the beginning
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of this section. Since the (adjoint) boundary conditions give conservation of prob-
ability, the equation is assumed to have well-behaved solutions with a nonnegative
spectrum. Therefore, the backward equation

∂ f
∂t

+
1
2

σ2∂2 f
∂r2 +v(r)

∂ f
∂r

= 0; (20)

with Neuman boundary conditions, is also well-behaved.
Consider a binomial-tree treatment of this equation. If the initial value of the

solution is nonnegative, the properly bounded jump probabilities assure that it will
be nonnegative at all prior times. Introducing the damping factor1

1+rτ � 1 at each
jump in equation (20) produces a binomial-tree formulation of

∂ f
∂t

+
1
2

σ2∂2 f
∂r2 +v(r)

∂ f
∂r
� r f = 0; (21)

which is the equation of interest. If the temporal divergences associated with
negative eigenvalues are not present in (20), they will not arise in (21). Note that
this rationale breaks down ifr is allowed to be negative.

5. Summary and Conclusion

Three things have been done in this paper. First, the discrete-time B¨uhler=Käsler
discont-bond model has been studied on a binomial tree which turned out to have
a limit point. Second, it was noted that when the Cox-Ingersoll-Ross model is
mapped onto a constant-variance model, the appropriate boundary condition in the
new price variable is the Neumann condition; binomial-tree calculations are con-
sistent with, and clarify the success of, the Hull-White explicit-finite-difference
method. Third, as a heuristic way of modelling a short-range divergent drift which
keeps interest rates nonnegative, Neumann conditions were imposed in the Va-
sicek model. In a typical mean-reverting situation, the effects are minor. When
mean reversion is turned off and a constant negative interest-rate drift imposed,
the consequences in a sample case are dramatic: the discount-bond valuation ap-
pears well-conditioned, whereas the Vasicek solution is dominated by negative
rates. If mean reversion is not essential to obtainprima facieacceptable results
from Vasicek, the model and its variants may accommodate a larger category of
fitting functions, and be applicable to securities with greater volatility, than would
be the case otherwise.
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Appendix

The tree structure has been concisely derived[3, 4] by use Ito’s lemma. This
Appendix derives it by formulating the appropriate continuous-time limit of a
binomial process. A check using the PDE commences after equation (44); it is the
starting point for a simple generalization to the multifactor case.

In the binomial processes of interest, the price of interest-rate derivatives de-
pends on the value of a random variablez which can be, for instance, an interest
rate or a bond price. Changes inz occur in discrete time stepsτ. At time t and
z= z0, z changes toz0+ a+ with probability p and toz0� a� with probability
1� p. Derivative securities can be valued with price-of-risk methods[19, 20]. It
is convenient to adapt the terminology of Ref. [21]. The value of a derivative
security f (z; t) is determined from its values one time step closer to expiration by

h f (z+∆z; t + τi∆z� (1+R) f (z; t)

R [ f ]
= λτ1=2

; (22)

whereλ is the price of risk andR is the interest. In principle, these quantities can
depend on bothz andt. The expectation value is

h f (z0)i � p f(z+a+)+(1� p) f (z�a�) (a++a� > 0); (23)

and the risk metricR is taken as quadratic:

jR [ f ]j =



( f (z+∆z)�h f i)2�1=2

(24)

=

p
p(1� p) j f (z+a+)� f (z�a�)j (25)

The Black-ScholesR has the sign of∂ f=∂z, and in the present situation,R is
assigned the sign off (z+a+)� f (z�a�). The solution to equation (22) is

f (z; t) =
1

1+R

"
p(1�λ

s
τ(1� p)

p
) f (z+a+; t + τ))+

(1� p)(1+λ
r

τp
1� p

) f (z�a�; t + τ)
�

(26)

� 1
1+R

[p̃ f(z+a+; t + τ))+(1� p̃) f (z�a�; t + τ)] : (27)
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The functional form (27) remains valid irrespective of the sign ofR . If the under-
lying security is a bond of priceB and the random variablez is z= lnB, p̃ can be
eliminated by requiring thatez be a solution of the equation, which transforms to

f (z; t) =
(1+R�e�a

�) f (z+a+; t + τ)� (1+R�ea+) f (z�a�; t + τ)
(1+R)(ea+�e�a

�)
: (28)

For a market consisting of the bond B, its derivatives, and time-independent cash,
the above expression further simplifies to

f (z; t) =
(1�e�a

�) f (z+a+; t + τ)+(ea+�1) f (z�a�; t + τ)
(ea+�e�a

�)
: (29)

after the interest rate is dropped. Equation (29) describes a binomial hopping
process with

1�e�a
�

ea+�e�a
�

;
ea+�1

ea+�e�a
�

(30)

as transition probabilities.
As noted in Section 2, B¨uhler and Käsler value bond derivatives by solving

the PDE

∂ f
∂t

+
1
2

σ2∂2 f
∂z2 �

1
2

σ2∂ f
∂z

= 0 (31)

subject to

σ2
(z) = σ2

0(1�ez
)
2 (32)

f (z= 0; t) = f (z= 0;T): (33)

Derivative securities assume their expiration value atz= 0.
Can a binomial process be constructed which reduces to B¨uhler-Käsler in the

τ! 0 limit? A recombining tree is sought. Ifσ depends on price but not on time,
so will the lattice geometry. Let the price-dependent nodes of the tree be indexed
by an integern. At a given time step, all values ofn are even or odd; hops take
place from siten to sitesn�1. Accordingly, the quantitiesa� depend on the index
n. The constraint

a+(n) = a�(n+1): (34)

holds because the tree structure is recombining and time-independent.
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A convenient feature of the B¨uhler-Käsler model is that the variance approaches
a constant values for large negativez. The tree becomes uniform in this domain
with a+(n)' a�(n)' a' σ0τ1=2 asn!�∞ andτ! 0. For smallτ, the replace-
ment

a�(n) = α�τ1=2 (35)

is reasonable; the uniform-tree results suggest that the hopping probabilities should
be expanded toO(τ1=2). Thus the drift velocity is

vdri f t τ'�
1
2

σ2
(z(n))τ'�1

2
a+(n)a�(n) =�1

2
a+(n)a+(n�1): (36)

The first equality above comes from the PDE; the second is a small-a� expansion
of the tree model. If the variance rather than the drift velocity is computed, to
leading order inτ the same relationship,

σ2
(z(n))τ = a+(n)a+(n�1); (37)

ensues. Specifying one of thea’s determines all the rest.
Position on the tree can be described in terms of(z; t) or (n; t). A natural

question is whether a continuum model can be developed in theτ ! 0 limit. An
obvious variable to try is

ξ� n
p

τ: (38)

Summations over n are thus Riemann sums:

p
τ∑

n
ψ(n

p
τ)�!

Z
dξψ(ξ): (39)

Equation (37) for thea+’s can be simplified by noting that

a+(n+1)' a+(n)� a(n) (40)

to leading order inτ becausea+(ξ+τ)' a+(ξ). Theα�’s defined previously can
be written as

α� ' α(ξ): (41)

If the indexn is set to zero atz0, i.e. n(z0) = 0, az-position on the tree is deter-
mined by the number ofa-steps fromz0:
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z(ξ)�z0'
n(z)

∑
n=0

a+(n)'
Z ξ

0
dξ0α(ξ0): (42)

Accordingly, to leading order inτ, equation (37) can be written as

dz
dξ

= σ(z); (43)

and inverting

ξ = n
p

τ =
Z z

z0

dz0

σ(z0)
(44)

yields thez-coordinate of thenth node.
The foregoing discussion has been intuitive, and a consistency check is desir-

able. In fact, there is another interpretation which naturally encompasses models
other than B¨uhler-Käsler. The starting point is the continuum formξ =

R dz
σ for ξ

given in equation (4). If its coefficients are time-independent, a PDE of the form

∂ f
∂t

+
σ2

2
∂2 f
∂z2 +ve f f

∂ f
∂z
� r f = 0 (45)

can be rewritten as
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∂ f
∂t

+
1
2

∂2 f
∂ξ2 +(

ve f f

σ
� 1

2σ
∂σ
∂ξ

)
∂ f
∂ξ
� r f = 0 (46)

When
R dz

σ diverges at zero and infinity, the relevant binomial process associated
with equation (46) involves price-dependent hopping of the form (27) on a uni-
form ξ-tree. The internode spacing is

p
τ, and the hopping probability correspond-

ing to the drift velocity ofξ is

2p̃�1 = (
ve f f

σ
� 1

2σ
∂σ
∂ξ

)τ1=2 (47)

= (
ve f f

σ
� 1

2
∂σ
∂z

)τ1=2
: (48)

Consistency of thez-tree andξ-tree must be demonstrated. To order
p

τ, the
spacings are related by

τ1=2
=

Z z+a+(z)

z

dz0

σ(z0)
' 1

σ(z)

Z z+a+(z)

z
dz0
�

1� (z0�z)
σ(z)

dσ(z)
dz

�
(49)

a+(z) ' σ(z)τ1=2
+

1
2

σ(z)τ
dσ(z)

dz
: (50)

The corresponding value ofa� is

a�(z)' σ(z)τ1=2� 1
2

σ(z)τ
dσ(z)

dz
: (51)

Because the relationships

σ(z)2τ ' a+(z)a�(z) (52)

ve f f(z)τ ' p̃(z)a+(z)� (1� p̃(z))a�(z) (53)

hold toO(τ), the two trees are consistent. Discrete B¨uhler-Käsler is recovered for
the appropriate choice of ˜p.
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