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In this paper we develop an improvement on one of the more popular
methods for Value-at-Risk measurement, the historical simulation approach.  The
procedure we employ is the following: First, the density of the return on a
portfolio is estimated using a non-parametric method, called a Gaussian kernel. 
Second, we derive an expression for the density of any order statistic of the return
distribution.  Finally, because the density is not analytic, we employ Gauss-
Legendre integration to obtain the moments of the density of the order statistic, the
mean being our Value-at-Risk estimate, and the standard deviation providing us
with the ability to construct a confidence interval around the estimate.  We apply
this method to trading portfolios provided by a financial institution.

I.  Introduction
 
 For several years financial institutions have been searching for the best
means to represent the risk exposure of the financial institution s trading portfolio
in a single number.  Folklore attributes the inception of this quest to Dennis
Weatherstone at J. P. Morgan who was looking for a way to convey meaningful
risk exposure information to the financial institution s board without the need for
significant technical expertise on the part of the board members.  The appeal of the
idea of a simple, risk-revealing statistic has become sufficiently great that it forms
the centerpiece both of many risk management systems and proposed regulatory
approaches to capital regulation.  Despite the popularity of this concept of
measuring risk, no consensus has yet developed as to the best implementation of
this risk measurement approach.  This absence of consensus derives in part from
the realization that each method of implementation currently in use has some
significant drawbacks.  In this paper we develop a means to improve one of the
more popular risk measurement methods, the historical simulation approach.  We
then apply our method to actual trading portfolios of a financial institution.  

Every approach to developing a comprehensive risk measurement statistic
seeks to extract information from a forecast distribution of the return on the
trading portfolio at the end of a given holding period (usually one day).  Finance
practitioners have focussed their attention on a statistic commonly referred to as
Value-at-Risk ("VaR").  VaR is the level of return such that there is a given 
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probability (usually, 5, 2.3, or 1 per cent) of experiencing a return of less than that
level.   That is, VaR is a point estimate of a given percentile of the cumulative
distribution function ("cdf") of the portfolio return.1  In all cases of which we are
aware, this point estimate is the only statistic from the forecast return distribution
that is employed in VaR analysis. 

This paper is concerned with the VaR estimation method known as
historical simulation.2  Historical simulation, like all VaR estimation methods has
three components.  The first component is a representation of the return on each
position in the portfolio as a function of underlying risk factors.  In the case of
historical simulation, this representation usually takes the form of an exact
sensitivity to each factor (accomplished by revaluing the individual positions).  The
positions may instead be represented by a linear or nonlinear approximation of the
sensitivity to each risk factor, depending on trade-offs the financial institution
makes between computational time and accuracy.  The second component consists
of a model of the changes in the underlying risk factors.  In the historical
simulation approach potential changes in the risk factors are modeled as being
identical to the observed changes in the risk factors over some historical period. 
This is sometimes referred to as an empirical distribution of factor returns. 
Modeling the risk factors underlying changes in portfolio value  economizes on
computation time inasmuch as the number of relevant risk factors is much smaller
than the number of instruments in the portfolio.  In the third component of the
estimation, the VaR is deduced by relating changes in the risk factors to the factor
sensitivities of the positions.  In the historical simulation approach, this is
accomplished by (1) calculating the changes in the values of the positions
corresponding to  each historically observed change in risk factors, (2) ordering the
resulting portfolio value changes from smallest to greatest, and (3) finding the
change corresponding to the desired percentile.  For example, if 1,000 days of
historical risk factor changes are employed the fifth percentile is given by the
fiftieth smallest change in the portfolio. 

The main strength of the usual implementation of the historical simulation
approach is that it is non-parametric; i.e., no specific distributional assumptions
about the data are made ex ante, and no distributional parameters need to be
estimated.  Therefore, the data are allowed to dictate the form of the return
distribution.  Indeed, Hendricks (1995)  in a study using simulated spot foreign
exchange portfolios found that with departures from normality in the return
distribution, the historical simulation approach provided good estimates of the
first percentile of the distribution.   Mahoney (1995) obtained a similar result
studying simulated spot currency and equity portfolios.  While this approach does
assume that the historically observed factor changes used in the simulation are
taken from independent and identical distributions ("iid") which are the same as
the distribution applicable to the forecast, this assumption is common to all VaR
estimation approaches.
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One shortcoming of the historical simulation approach is the potential for
imprecise estimation of VaR, if the historical sampling period is "too short."3 
Hendricks (1995) found that longer historical sample periods resulted in less
variability in the VaR estimate.  In applying this approach a trade-off must be
made between lengthening the sample period and thereby potentially violating the
assumption of iid observations, and reducing the precision of the estimate. 
Evaluating this trade-off is complicated by the fact that the usual application of the
historical simulation approach (described above) does not produce a statistical
measure of precision.  In fact, as Kupiec (1995) notes, typical VaR models of all
types lack the ability to measure this precision or goodness-of-fit property ex ante.  

A related problem in the historical simulation approach is that the only
changes in risk factors that are possible in the forecast distribution are those that
are observed in the historical sample period.  This problem may be especially
significant in the estimation of "tail" probabilities, such as the first or fifth
percentile, where the number of observations in the historical sample period that
represent draws from the tail of the "true" distribution may be few.  Hendricks
(1995) found indirect confirmation of this problem in that longer historical sample
periods on average produced larger VaR estimates under the historical simulation
approach.  Also, Kupiec (1995), in a simulation study using return distributions
that were normal and Student-t, found that when the return distribution was fat-
tailed, the usual historical simulation approach resulted in a VaR that was subject
to both high variation and upward bias.  He went on to suggest that the problems
with this approach do not recommend its use to estimate tail values. 

If it were possible to quantify the uncertainty in the estimated VaR for an
unknown return distribution, the issues raised by Kupiec, Hendricks and others
would be mitigated.  The contribution of this paper is to develop a VaR estimator
that arises from an estimated portfolio return distribution that is  continuous and
differentiable, thereby providing added information about the distribution of the
desired percentile, including a measure of precision of the estimate (i.e., a standard
error).   The usefulness of a precision measure goes beyond the point made by
Kupiec.  With information about the precision of the estimate, it would be easier to
evaluate whether large deviations of P/L from the predicted VaR were evidence of
model problems.  This has an impact on VaR model development and, potentially,
regulatory capital allocations as well.  Under the Basle market risk rules as
proposed in the United States, a bank would be required to maintain additional
capital if the daily P/L losses were greater than daily VaR more than 4 times in a
year.  To the extent that the bank (and its supervisor) can use precision information
to explain such exceptions as being unrelated to the quality of the VaR model, the
supervisor may elect not to require the greater capital. 
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II.  A New Non-parametric VaR Estimator

Pritzker (1995) has noted that it is possible to compute a standard error in a
Monte Carlo based VaR analysis.  He suggests that the Monte Carlo standard error
can be used to place a confidence interval around the estimate from any VaR
model by relating the estimate from the VaR model to a Monte Carlo model
estimate and its standard error.  This approach, while feasible, may not be
desirable for several reasons.  A parametric representation will introduce
unwanted assumptions about the portfolio return distribution.  A nonparametric
representation will require bootstrapping from the set of sample observations to
obtain a standard error.  But this approach  cannot generate any information about
the tail of the return distribution beyond the smallest sample observation.  These
issues are explored further in a subsequent section of this paper.  In addition, it
may not be computationally efficient for risk managers who do not currently use
Monte Carlo, to obtain the usual estimate of VaR and then additionally run a
Monte Carlo in order to obtain a standard error.  For these reasons, we propose a
different approach to measuring the precision of VaR that does not suffer from
these drawbacks.   In fact our approach produces a nonparametric estimate of the
continuous pdf of portfolio returns.

The first step - estimating the pdf and cdf of portfolio returns
We use a kernel estimator, which can be thought of as a way of generalizing

a histogram constructed with the sample data.  Where a histogram results in a
density that is piecewise constant, a kernel estimator results in a smooth density. 
Our kernel attaches a normal pdf to each data point.   Note that use of a normal or
Gaussian kernel estimator does not make the ultimate  estimation of the VaR
parametric.  Smoothing the data can be done with any continuous shape.  As the
sample size grows, the net sum of all the smoothed points approaches the true pdf,
whatever that may be, irrespective of the method of smoothing the data.  This is
because the influence of each point becomes arbitrarily small as the sample size
grows, so the choice of kernel imposes no restrictions on the results.  The
smoothing is accomplished by centering each pdf on the data point with a
standard deviation, also called the bandwidth,  equal to 0.9)n-0.2, where ) is the
standard deviation of the data estimated from the available observations, and n is
the sample size.4  This bandwith is based on a suggestion in Silverman (1986, p. 
48).  The estimation of the moments of the order statistics appears to be very
insensitive to the standard deviation used to estimate the underlying portfolio pdf.
 Define the pdf of the portfolio return as f and the cdf of the portfolio return as F. 
Our kernel estimator of the pdf of trading portfolio returns is given by
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While we could calculate F, the cdf of the portfolio return distribution, directly
from this estimate, we use an empirical cdf for F.   The empirical cdf is a step
function which increases discretely at every value where a point in the data set
occurs.  The empirical cdf is easier to compute and shares the property of
consistency with a cdf that could be computed from equation 1.

The second step - estimating the distribution of the j-th order statistic
We seek the distribution of the j-th order statistic, i.e., the value such that k

data points are at or below that value and n-j above it.  When the problem is stated
as a percentile, p, then we seek the order statistic given by nxp.  For example, with
200 data points, the fifth percentile corresponds to the tenth order statistic.  When
the result is not an integer, it is necessary to round; with 155 data points the fifth
percentile corresponds to the eighth order statistic. 

Using probability density functions estimated with the kernel density
estimator above, we derive the pdf of the j-th order statistic and calculate its mean
and variance.  The pdf will not be analytic, but its moments can be readily
calculated by numerical methods. The mean of that pdf is our estimate of VaR. 
From the standard error of the estimate we can calculate confidence intervals.  In
this way we address the problems discussed above associated with the usual
historical simulation approach to VaR estimation. 

The distribution of the j-th order statistic is derived as follows (Stuart and
Ord (1987), 445-446).  Let the order statistic whose distribution we seek be called x,
with pdf gj(x) and cdf Gj(x).  Then the probability that exactly j of the data are less

than or equal to x is:

so that the probability that at least j of the data are less than or equal to x is:
If at least j of the data are less than or equal to x, then the j-th order statistic is less
than or equal to x.  Thus, equation 3 defines the cdf of the j-th order statistic.  The
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pdf that follows from this by differentiation with respect to x is (after some

manipulation, Hoel, Port and Stone (1971), 160-163):

Equation 4 states that j-1 of the data must be less than or equal to x, one must equal
x, and the rest must be greater than or equal to x. 

To obtain estimates of moments of the pdf of g from equation 4, it is
necessary to integrate the pdf numerically.  We employ Gaussian quadrature to
calculate both the mean of the pdf of the percentile, i.e., our estimate of the Value-
at-Risk, and the variance of the pdf, i.e., the standard error of the estimate. 

An example
To illustrate this procedure, assume that we collect three observations on X

whose distribution is unknown.  The three observations are 0.562336303,
-0.872515854, and -0.555551333.  These were generated as random draws from a
uniform distribution over [-1,1].  The standard deviation of this sample is
0.615443831.  Using a Gaussian kernel we evaluate the  pdf of X at -2.0, -1.9, ..., 1.9,

2.0.  The bandwidth we use is σ =  0.9xstd.dev.x3  =-0.2
 0.444638108.  The estimated

pdf of X at xi is then given by the following:
This estimated pdf is shown in Figure 1. 

In this example it is straightforward to estimate the cdf of X directly from
the pdf.  This, plus the fact that the empirical cdf with a sample of size three is very
coarse, leads us to eschew the empirical cdf for this example, even though it is used
in the analysis of the next section.  The value of the cdf of X at xi then is given by

the following:
With three observations, the first order statistic in the sample corresponds to

the 25th percentile of the of the distribution of X.  For ease of exposition, we
examine the 25th percentile, rather than the 3rd percentile (as is done in the next
section).  The pdf of the 25th percentile is evaluated at each of the points -2.5, -2.4,
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..., 1.9, 2.0 using equation 4, substituting in equations 5 and 6.  The estimated pdf of
the percentile is shown in Figure 2. 

To estimate the mean and standard deviation of the 25th percentile, the pdf
shown in Figure 2 must be integrated numerically.  For simplicity of exposition,
the mean is estimated using 12-point Gauss-Hermite integration, even though in
the next section 128-point Gauss-Legendre integration is employed.  The integral
being evaluated is replaced by a sum, here with twelve elements, identified by
weights, w, and points, y.  The points and weights for this example are given in the
appendix.  The estimated mean is

E(y) =  yg(y)dy  
1

12
y w e g(ysubc) =- c=1

12
c c

yc
2

∞
∞∫ ≈ ∑

 -0.02405048.

This, therefore is our estimate of "VaR."  The estimated variance of the pdf of the
percentile is obtained using Gaussian integration as well.  In particular, we can
write

Var(y) =  y g(y)dy -  E(y)   
1
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2 2
c=1
12

c
2

c
y

c
2

c
2

∞
∞∫ ≈ ∑

0.054406. 
This variance would be used to construct any desired confidence interval around
the VaR estimate. 

III.  APPLICATION OF THE NEW VaR ESTIMATOR
 

Next we apply the new estimator.5  We examine the performance of the new
estimator with actual trading portfolio data from one financial institution.  We
compare the usual historical simulation VaR estimate (the point estimate
determined by the average of the third and fourth order statistics in the sample) to
the VaR estimate obtained by applying our kernel estimator to equation 3. 

Application of the new VaR estimator to actual data
The data used in the following analysis were provided by an active dealer,

and they represent actual positions of the financial institution in three trading
portfolios at four dates between November 1, 1995 and February 1, 1996.  These
portfolios are quite diverse, containing positions in various interest rate and f/x
sensitive instruments such as swaps, forwards, futures, options, and cash market
instruments.  For each portfolio the financial institution calculated one hundred
simulated changes in portfolio value based on observed changes in levels of
various market risk factors, including interest rates and exchange rates, over the
one hundred trading days prior to the date of the VaR calculation.  For each
portfolio we estimate a single VaR using all 100 changes in portfolio value. 

Table 1 contains descriptive statistics for the sample returns of the twelve
portfolios.  The numbers have been re-scaled to help conceal the identity of the
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financial institution.  The portfolio return distributions generally have negative
skewness.  They are also somewhat fat-tailed relative to the normal distribution
(Kurtosis = 3), though only significantly so for one portfolio. 

The results of the VaR estimation are shown in Table 2.  The usual estimate,
calculated as the average of the 3rd and 4th smallest changes in portfolio value is
given in the second column.  The kernel-based estimate is in the third column.6 
The usual and kernel-based estimates are very close, the kernel-based estimate
being more negative in 5 out of 12 cases. The greatest percentage difference in the
estimates is observes in portfolio 8, where the usual estimate is about 10.5 percent
greater (in absolute value) than the kernel-based estimate.

The standard error of the kernel-based estimates is given in the fourth
column.  The standard error as a percentage of the estimate varies considerably
across portfolios, illustrating the importance of this precision information.  Note
that with these standard errors we could construct any desired confidence interval
around our estimates.  In large samples the distribution of the percentile is normal.
 In this case the desired confidence interval can be created by reference to a normal
table and standard t, F, and chi square tests can be performed.  However, we do
not know the small sample distribution of this estimator  of the percentile.  If the
estimate is not symmetric or normal, then confidence intervals would not be
centered on the estimated VaR, and confidence intervals constructed from a
normal table will be inefficient.  It is important therefore for the kernel-based
estimate, or any other estimator, to be normally distributed in small samples. 

To examine the small sample properties of the third percentile, we
calculated the skewness and Kurtosis of the kernel-based estimate of the VaR (see
Stuart and Ord (1987, p. 322)).  These results are reported in the last two columns
of Table 2.  In nine of twelve cases the skewness is estimated to be negative, and in
seven the skewness is significantly less than zero.  In two cases the skewness is
significantly positive.   In seven of twelve cases the Kurtosis is greater than three,
but in no case is Kurtosis significantly different from three.  These results suggest
that  standard confidence intervals can be constructed for the kernel-based
estimate of the VaR, but more accurate confidence intervals could be calculated
using the estimate pdf of the VaR directly.

Alternative approaches to obtaining precision information
As noted in an earlier section, resampling of the data could be used to

obtain an estimated standard error, though this estimate would be restricted by the
range of the observed data, and is therefore downward biased.  To examine this
alternative to our approach we calculate a standard error for the usual estimate by
employing a Monte Carlo simulation for each portfolio consisting of 1,000 samples
(with replacement) of size 100 taken from the observations.  The results are
presented in Table 3.  The usual estimate is reproduced from Table 2 for
completeness.  The standard errors are generally similar to those obtained from the
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kernel estimator.  To examine the small sample properties of the usual estimate,
skewness and Kurtosis are calculated as well.  Skewness is significantly different
from zero in ten out of twelve cases (significantly negative in eight cases).  The
average skewness over the twelve portfolios is -0.5997 and the standard error of
the average is 0.2991.  In comparison, the average skewness of the kernel-based
estimate is -0.1184 and the standard error of the average is 0.2848.  For the usual
estimate Kurtosis is significantly less than three in two cases.  The skewness and
Kurtosis of the usual VaR estimate suggest somewhat greater deviation from the
normal than is the case with the kernel-based estimate. Nevertheless, the usual
estimate combined with Monte Carlo could be used to construct useful confidence
intervals.  However, if more information is needed than  information about the
distribution of the third percentile, for example if the possible losses in the tail of
the return distribution is required, such information is available as a by-product of
the kernel-based approach, but not from this expanded analysis of the usual
estimator.

An alternative that is simpler still would be to impose a parametric
assumption that has fewer computational requirements.  For example, if it is
assumed that the portfolio return is distributed normal, then the VaR
corresponding to the third percentile can be obtained immediately from the
standard deviation of the portfolio returns.  A standard error  for the percentile
could be calculated using a single Monte Carlo simulation (rather than one for each
portfolio as was the case for the usual estimator).  We investigate the properties of
this alternative in Table 4, which also provides a direct comparison of the estimates
and standard errors obtained from the three estimation methods.    Normal-based
estimated VaR is calculated at 1.88 times the standard deviation of the portfolio
returns.  The normal-based estimate of the third percentile is generally close to the
usual and kernel-based estimates, suggesting that it provides a serviceable point
estimate of VaR.  The standard error of the normal-based estimate of VaR is
calculated by multiplying the standard deviation of portfolio return by 0.21.  This
multiplier is obtained from the results of a Monte Carlo simulation in which 1,000
samples (with replacement) of size 100 are taken from a standard normal
distribution.  In this simulation the standard error of the estimated third percentile
was approximately 0.21 of the standard error of the distribution.  The standard
error of the normal-based estimator is generally closer to that of the kernel-based
estimator than the usual estimator.  Because the underlying portfolio returns are
generally negatively skewed, care should be taken if constructing  confidence
intervals with the normal-based estimator. 

V.  SUMMARY AND CONCLUSIONS

We have proposed a new VaR estimator that uses a Gaussian kernel and
Gaussian quadrature in estimating moments of the pdf of the p-th percentile of the
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distribution of the return on a trading portfolio.  We offer this estimator as an
improvement over the usual approach to historical simulation of VaR because,
unlike the usual approach, ours produces a standard error which can be used to
gauge the precision of the estimated VaR.  We have illustrated the application of
our estimator with actual data from three trading portfolios of a financial
institution.  We  evaluated two alternative approaches to obtaining precision
information.  We found that  a standard error for the usual estimate could be
obtained from a Monte Carlo simulation.  This procedure produced  a usable
standard error, though it is downward biased.  We noted that this approach could
not be utilized to obtain additional information about the distribution of portfolio
returns, such as the size of possible losses in the tail, while such information is
produced as a by-product of the kernel based approach.  We found that the point
estimate of VaR obtained by assuming the portfolio return distribution was normal
was close to the estimates obtained using the other approaches, but we speculate
that confidence intervals constructed with the estimated standard errors are
unlikely to be reliable because the underlying portfolio distributions are negatively
skewed.

Without the additional information provided by a standard error as in the
new estimator, the quality of information in the VaR estimate is difficult to assess. 
The  estimator proposed here permits risk managers to construct confidence
intervals for making ex ante risk management decisions.  The estimator is also
useful for evaluating the ex post performance of the VaR estimate, because it
provides information which can help explain whether large deviations from VaR
are the result of modeling problems (more likely explanation, if the standard error
was small) or market conditions (more likely if the standard error was large).  This
ability may help improve risk management decisions, and it should aid in
determining the appropriateness of increased regulatory capital charges for market
risk when a bank's actual P/L losses exceed forecast VaR with greater frequency 
than allowed for under the proposed capital rules. 

Notes
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Appendix

This Appendix contains the points and weights used in the Gaussian integration
performed in the example of section II.

x w wexp(x^2)
-0.3142403762543590.5701352362625 0.6293078742695
-0.9477883912401640.2604923102642 0.6396212320203
-1.5976826351526 0.05160798561588 0.6626627732669
-2.27950708050106 0.003905390584629 0.7052203661122
-3.02063702512089 0.000085736870436 0.7866439394633
-3.88972489786978 0.000000265855168 0.9896990470923
0.314240376254359 0.5701352362625 0.6293078742695
0.947788391240164 0.2604923102642 0.6396212320203
1.5976826351526 0.05160798561588 0.6626627732669
2.27950708050106 0.003905390584629 0.7052203661122
3.02063702512089 0.000085736870436 0.7866439394633
3.88972489786978 0.000000265855168 0.9896990470923
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TABLE 1

Descriptive statistics for historical simulations of dollar returns on 3 trading
portfolios of a financial institution observed at four separate dates between
November 1, 1995 and February 1, 1996.  The simulations consisted of 100 or 99
observations each.  The observations in each sample represent simulated one-day
changes in the value of the portfolio. The numbers in the table have been rescaled
to aid in concealing the identity of the institution.

Port./Date Mean Std.  Deviation Skewness Kurtosis

01/01 -319.81 136.23 -1.1570* 4.2096

02/01 -98.28 2,807.31 -0.2000 3.8538

03/01 12.65 363.24  0.0878 2.8715

04/02 -298.89 1,253.47 -0.3328 3.3251

05/02 -495.54 2,963.33 -0.6959* 3.7326

06/02 2.76 115.27 -0.6518** 3.9302

07/03 -364.94 942.77 -2.3249* 7.1984*

08/03 -566.92 2,143.97 -0.9192** 6.2740

09/03 8.30 79.33 -0.3547 5.3064

10/04 -274.52 1,218.23 -1.4526* 3.3985

11/04 -515.09 2,544.93 -1.2821* 4.6022

12/04 -7.81 125.86 -0.1910 3.5088

*Significantly different from zero (for skewness) or three (for Kurtosis) at the 5%
level.
**Significantly different from zero (for skewness) or three (for Kurtosis) at the
10% level.
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TABLE 2

Kernel-Based Estimation of VaR using three different trading portfolios of a
financial institution observed on four separate dates between November 1, 1995
and February 1, 1996.

Port/
Date

VaR Estimates Statistics for Kernel-based Estimate

Usual Kernel-based Std. Error  Skewness  Kurtosis

01/01 -2,909 -2,916 273 0.6358* 3.1384

02/01 -4,890 -4,493 845 -0.6181* 2.8305

03/01 -606 -591 65 -0.6216* 4.3636

04/02 -2,182 -2,363 373 -0.7317* 3.0404

05/02 -6,157 -6,092 679 0.1472 3.2979

06/02 -247 -273 65 -0.1496 1.7085

07/03 -2,000 -1,978 280 -0.6494* 2.4916

08/03 -3,680 -3,326 230 -0.3528 3.4208

09/03 -111 -107 7 -1.0152** 4.8164

10/04 -2,484 -2,477 162 0.4560* 2.3216

11/04 -5,723 -5,722 805 -0.6820* 4.6244

12/04 -244 -257 50 -0.6164* 3.3791

See Table 1 for data description. 
* significantly different from zero (skewness) or from 3.0 (Kurtosis) at the 5%
level.
The Usual estimate is the average of the 3rd and 4th smallest  changes in portfolio
value, and the Kernel-based estimate and statistics for the estimate are obtained
using text equation 4.
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TABLE 3

Usual Estimator of Value at Risk for three portfolios of a financial institution
observed at four dates between November 1, 1995 and February 1, 1996, with
descriptive statistics of the distribution of the estimate. 

Port/Date Usual  Standard
Error

Skewness Kurtosis

01/01 -2,909   277 0.5111* 2.7886

02/01 -4,890 1,395 -1.2670* 4.7523

03/01 - 606   104 -1.0586* 4.0213

04/02 -2,182   337 -0.9481* 3.5665

05/02 -6,157   663 0.1323 2.9535

06/02 - 247   60 -0.3866* 2.1520*

07/03 -2,000   356 -0.8130* 3.1124

08/03 -3,680 1,126 -1.0361* 2.6749

09/03 - 111    50 -1.6502* 4.8802

10/04 -2,484   175 0.2798** 1.7095*

11/04 -5,723   752 -0.3538 4.2382

12/04 - 244    46 -0.6060* 3.4647

See Table 1 for data description.
* significantly different from zero (skewness) or from 3.0 (Kurtosis) at the 5%
level. 
Usual estimate is calculated as the average of the 3rd and 4th smallest
observations.  Moments of the Usual estimate computed using a Monte Carlo
simulation of 1,000 samples of size 100 with replacement.
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TABLE 4

Usual, Kernel-based, and Normal-based estimates of Value-at-Risk for three
trading portfolios of a financial institution, each observed at four dates, with
Standard Errors of the estimates. 

Port/Date
Point Estimate of VaR Standard Errors of VaR

Estimates

Usual Normal Kernel Usual Normal Kernel

01/01 -2909 -2882 -2916  277 297 273

02/01 -4890 -5378 -4493 1395 613 845

03/01 - 606 - 671 -591  104 79 65

04/02 -2182 -2059 -2363  337 273 373

05/02 -6157 -6069 -6092  663 647 679

06/02 - 247 -214 - 273   60 25 65

07/03 -2000 -2138 -1978  356 206 280

08/03 -3680 -4599 -3326 1126 468 230

09/03 - 111 -141 - 107   50 17 7

10/04 -2484 -2566 -2477  175 266 162

11/04 -5723 -5302 -5722  752 555 805

12/04 - 244 - 229 - 257   46 27 50

See Table 1 for data description.  The normal-based VaR estimate is -1.88 standard
deviations of portfolio dollar returns.  The standard error of the normal-based
VaR estimate is 0.21 times the standard deviation of the portfolio dollar returns,
where the 0.21 is obtained from the standard error of the estimate of the 3rd
percentile from a Monte Carlo simulation of 1,000 samples of size 100 from a
normal distribution with replacement.

                                                          

1. To finance researchers, the obvious candidate for a risk measurement statistic is the
portfolio standard deviation.  For return distributions that are distributed normal the
relation between the estimated standard deviation and the VaR (or any percentile) is
straightforward to calculate.  For non-normal return distributions, the relation is not
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necessarily obvious.  VaR may be popular, in part, because many practitioners feel that
options and other instruments in their trading books cause significant departures from
normality in portfolio return distributions.  Even where departures from normality in
returns are thought to be small, VaR is perceived as easier to visualize than standard
deviation for someone without a technical background.   Finally VaR may be more
popular because it is currently used as a risk measure rather than as portfolio
optimization tool where its connection to either of the goals of value maximization or
expected utility maximization is not as clear as is the portfolio standard deviation.

2. We can distinguish three general approaches that financial institutions have adopted
to estimate VaR: the variance-covariance approach, the Monte-Carlo approach and the
historical simulation approach.  These approaches have been subject to extensive
comparisons in several recent papers.  See, for example, Beder (1995), Hendricks (1995),
Jackson, Maude, and Perraudin (1995), Jordan and Mackay (1995), Mahoney (1995),
Pritzker (1995), and Smithson and Minton (1996).  These papers suggest that the
nonparametric nature of the historical simulation approach is an advantage over other
approaches in estimating tail probabilities.  As this paper is concerned solely with the
historical simulation approach, the interested reader should consult these other papers
for detailed comparisons. 

3. Historical simulation has been criticized as computationally intensive, because there
is no short-cut to recalculation of VaR if the financial institution wishes to vary the
holding period or conduct "stress" tests of the portfolio (Hendricks (1995), p.  10). 

4. See Silverman (1986).

5. We first conduct a diagnostic test of Fortran code in which the  estimator is
implemented.  In this test we employ a standard normal distribution.  In this case the
exact percentiles can be found by reference to a standard table.  Note that with 100

observations, one would draw, subject to sampling error, values at the
ix

100

101  percentile,
for 1 � I � 100.  We also know that the third percentile of the standard normal is -
1.88079.   We then assume that the theoretical percentiles represent the sample
percentiles (and that the sample size is 100).  The kernel based estimate of the third
percentile was -1.86959 with a standard error of 0.219875.  Our estimated VaR, for a
sample size of 100, is within 0.05 standard errors of the true value at the third
percentile.  We conclude that the kernel estimator is performing correctly. 

6.  In performing the Gauss-Legendre integration used to obtain the kernel-based VaR
estimate, we chose to center the range of integration on the usual estimate of VaR.  The
upper limit of the range was chosen to be the 13th percentile of the sample of



20

                                                                                                                                                                                

observations and the lower limit followed from these choices.  The upper limit was
selected based upon a Monte Carlo analysis of the distribution of the usual estimate  - in
no Monte Carlo sample was the estimate of the 3rd percentile greater than the 13th
percentile of the sample of observations.  Using this range of integration, the pdf of the
3rd percentile integrated to within 0.0007 of 1.0 for all twelve portfolios. 


