INTRODUCTION

We are proud to present to you a new issue of the *Journal of Academy of Business and Economics*, Volume V, Number 2, 2005. In this issue of the journal (JABE), we have published over 18 high quality research articles in Finance, Economics, Accounting, and related areas. Each article has successfully undergone a double blind review process. The JABE is a peer-reviewed journal listed in the Cabell's Directory 2004-06 Editions. The journal has ISSN number (Issn: 1542-8710) issued by the Library of Congress, Washington, DC. The JABE is also listed in the Ulrich's International Periodicals Directory. The JABE is available online from the Gale Group/Thomson Publishing. The JABE is sponsored by the South Stockholm University- Södertörn, Stockholm, Sweden. JABE is the flagship publication of the International Academy of Business and Economics (IABE). All rights reserved. ©2005 IABE.

The objective of the journal is to create and provide a worldwide forum for faculty, professionals, and students to publish and share developments in the business, economics, and related fields, particularly relevant at the international level, to help continuously improve teaching, scholarship, and practice.

On behalf of the Executive Committee of the International Academy of Business and Economics, we sincerely thank the South Stockholm University, Stockholm, for their sponsorship of the JABE for 2005 and 2006. We also thank to all our reviewers for their invaluable timely help in reviewing the papers. The editorial board of the IABE has significantly contributed towards the success of the journal and we commend the editorial board. We express our sincere thanks to all the authors who submitted their papers for review for the journal.

We look forward to your participation and support for continued success of the journal.

Best Regards,

Professor Alan S. Khade, Ph.D
California State University Stanislaus
Managing Editor

Dean and Professor Cheick Wagué, Ph.D.
South Stockholm University
Managing Editor
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A GENERAL EXPLANATION OF THE AMERICAN BUSINESS CYCLE of 1991-2001</td>
<td>1</td>
</tr>
<tr>
<td>Adil H. Mouhamed, University of Illinois at Springfield, Springfield, Illinois, USA</td>
<td></td>
</tr>
<tr>
<td>GENDER DIVERSITY AND FIRM VALUE: AN EXTENSION OF MEAN-VARIANCE PORTFOLIO THEORY</td>
<td>13</td>
</tr>
<tr>
<td>Jeff Heinfeldt, Ohio Northern University, Ada, Ohio, USA</td>
<td></td>
</tr>
<tr>
<td>DOES CORPORATE GOVERNANCE DETERMINE BANK LOAN PORTFOLIO CHOICE?</td>
<td>20</td>
</tr>
<tr>
<td>Steven W. Sumner, University of San Diego, San Diego, California, USA</td>
<td></td>
</tr>
<tr>
<td>ASSET PRICE VOLATILITY AND CONSUMER PRICE INFLATION: IS THERE A PREDICTIVE LINK?</td>
<td>35</td>
</tr>
<tr>
<td>Bala Batavia, DePaul University, Chicago, USA</td>
<td></td>
</tr>
<tr>
<td>Nandakumar Parameswar, Indian Institute of Management-Kozhikode, Calicut, INDIA</td>
<td></td>
</tr>
<tr>
<td>Cheick Wagué, South Stockholm University - SÖDERTÖRN, Stockholm, SWEDEN</td>
<td></td>
</tr>
<tr>
<td>THE EFFECTS OF A STOCK INDEX: EVIDENCE FROM THE ANNUAL REBALANCING OF THE MSCI USA INDEX</td>
<td>46</td>
</tr>
<tr>
<td>Ingyu Chion, Eastern Illinois University, Charleston, Illinois, USA</td>
<td></td>
</tr>
<tr>
<td>Stephen J. Larson, Eastern Illinois University, Charleston, Illinois, USA</td>
<td></td>
</tr>
<tr>
<td>DEFAULTABLE PUTTABLE/CALLABLE BOND VALUATION: A 3D FINITE DIFFERENCE MODEL</td>
<td>53</td>
</tr>
<tr>
<td>David Wang, Hsuan Chuang University, Hsinchu, Taiwan</td>
<td></td>
</tr>
<tr>
<td>Hong-Chih Chou, Ming Chuan University, Taipei, Taiwan</td>
<td></td>
</tr>
<tr>
<td>TRENDS IN EARNED DEGREES IN BUSINESS AND ECONOMICS & US PRODUCTIVITY GROWTH: IS THERE A FEEDBACK LINK?</td>
<td>62</td>
</tr>
<tr>
<td>Antonina Espiritu, Hawaii Pacific University, Honolulu, Hawaii, USA</td>
<td></td>
</tr>
<tr>
<td>THE ROLE OF INFORMATION TECHNOLOGY IN THE PROFIT AND COST EFFICIENCY IMPROVEMENTS OF THE BANKING SECTOR</td>
<td>70</td>
</tr>
<tr>
<td>Mohammad Eyadat, California State University-Dominguez Hills, Carson, CA, USA</td>
<td></td>
</tr>
<tr>
<td>Sylwester J. Kozak, National Bank of Poland-on leave, Polish Consulate General, Los Angeles, CA, USA</td>
<td></td>
</tr>
<tr>
<td>PRIVATE SECTOR FINANCING ON ECONOMIC GROWTH IN MALAYSIA: RESULTS FROM THE BOUNDS TEST</td>
<td>76</td>
</tr>
<tr>
<td>Santha Valithillingam, Monash University MALAYSIA</td>
<td></td>
</tr>
<tr>
<td>Mahenchiran Nair, Monash University MALAYSIA</td>
<td></td>
</tr>
<tr>
<td>Balachandhri Krishnan Guru, Multimedia University, MALAYSIA</td>
<td></td>
</tr>
<tr>
<td>THE PERFORMANCE OF SECTOR MUTUAL FUNDS RELATIVE TO BENCHMARKS</td>
<td>85</td>
</tr>
<tr>
<td>Richard Ketsa, Fairleigh Dickinson University, Teaneck, New Jersey, USA</td>
<td></td>
</tr>
<tr>
<td>BOARD RESTRUCTURE, CEO SUCESSION AND FINANCIAL PERFORMANCE IN FINANCIALLY DISTRESSED FIRMS</td>
<td>100</td>
</tr>
<tr>
<td>Lei Wen, Buena Vista University, Storm Lake, Iowa, USA</td>
<td></td>
</tr>
<tr>
<td>A BAYESIAN REGRESSION SPLINE APPROACH TO ESTIMATION OF THE TERM STRUCTURE OF INTEREST RATES</td>
<td>113</td>
</tr>
<tr>
<td>Min Li, California State University, Sacramento, USA</td>
<td></td>
</tr>
<tr>
<td>Yan Yu, University of Cincinnati, USA</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS (Contd...)</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>AN EMPIRICAL ANALYSIS OF THE RELATIONSHIP BETWEEN THE BUDGET DEFICIT AND THE TRADE DEFICIT</td>
<td>126</td>
</tr>
<tr>
<td>Mazhar M. Islam, Alabama A&M University, USA</td>
<td></td>
</tr>
<tr>
<td>Eric Rahimian, Alabama A&M University, USA</td>
<td></td>
</tr>
<tr>
<td>SPECIAL CHARGE ANNOUNCEMENT LABELING AND TIMING CHOICES: OPPORTUNISM OR SIGNALING?</td>
<td>133</td>
</tr>
<tr>
<td>Gyung Paik, Brigham Young University, Provo, Utah, USA</td>
<td></td>
</tr>
<tr>
<td>Kip R. Krumwiede, Boise State University, Boise, Idaho, USA</td>
<td></td>
</tr>
<tr>
<td>ACQUISITION PERFORMANCE: EXPERIENCE OR COMPETENCE?</td>
<td>149</td>
</tr>
<tr>
<td>Steven E. Phelan, University of Nevada Las Vegas, Las Vegas, Nevada, USA</td>
<td></td>
</tr>
<tr>
<td>Tomas Mantecon, University of Nevada Las Vegas, Las Vegas, Nevada, USA</td>
<td></td>
</tr>
<tr>
<td>THE BUDGETING AND CAPITAL RESERVES PROCESS: A REALISTIC APPROACH AND MODEL FOR A NON-PROFIT ORGANIZATION</td>
<td>161</td>
</tr>
<tr>
<td>Charles J. Pinero, Shenandoah University, Winchester, VA, USA</td>
<td></td>
</tr>
<tr>
<td>L. Mark Tyree, Shenandoah University, Winchester, VA, USA</td>
<td></td>
</tr>
<tr>
<td>HIGH QUALITY AND LOW COSTS? AN APPLICATION</td>
<td>172</td>
</tr>
<tr>
<td>Chiaho Chang, Montclair State University, Montclair, New Jersey, USA</td>
<td></td>
</tr>
<tr>
<td>BUILD-OPERATE-TRANSFER OF AIRPORT IN FUZZY COST OF CAPITAL AND FUZZY CAPITAL BUDGETING</td>
<td>188</td>
</tr>
<tr>
<td>Kang-Lin Chiang, National Taiwan Ocean University, TAIWAN</td>
<td></td>
</tr>
<tr>
<td>Kuang Lin, National Taiwan Ocean University, TAIWAN</td>
<td></td>
</tr>
<tr>
<td>Hauan-Shih Lee, National Taiwan Ocean University, TAIWAN</td>
<td></td>
</tr>
<tr>
<td>Gin-Shuh Liang, National Taiwan Ocean University, TAIWAN</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Batavia, Bala</td>
<td>35</td>
</tr>
<tr>
<td>Chang, Chiaho</td>
<td>172</td>
</tr>
<tr>
<td>Chiang, Kang-Lin</td>
<td>188</td>
</tr>
<tr>
<td>Chiou, Ingyu</td>
<td>46</td>
</tr>
<tr>
<td>Chou, Heng-Chih</td>
<td>53</td>
</tr>
<tr>
<td>Espiritu, Antonina</td>
<td>62</td>
</tr>
<tr>
<td>Eyadat, Mohammad</td>
<td>70</td>
</tr>
<tr>
<td>Guru, Balachandher Krishnan</td>
<td>76</td>
</tr>
<tr>
<td>Heinfeldt, Jeff</td>
<td>13</td>
</tr>
<tr>
<td>Islam, Mazhar M.</td>
<td>126</td>
</tr>
<tr>
<td>Kjetsaa, Richard</td>
<td>85</td>
</tr>
<tr>
<td>Kozak, Sylvester J.</td>
<td>70</td>
</tr>
<tr>
<td>Krumwiede, Kip R.</td>
<td>133</td>
</tr>
<tr>
<td>Larson, Stephen J.</td>
<td>46</td>
</tr>
<tr>
<td>Lee, Hsuan-Shih</td>
<td>188</td>
</tr>
<tr>
<td>Li, Min</td>
<td>113</td>
</tr>
<tr>
<td>Liang, Gin-Shuh</td>
<td>188</td>
</tr>
</tbody>
</table>
DEFAULTABLE PUTTABLE/CALLABLE BOND VALUATION: A 3D FINITE DIFFERENCE MODEL

David Wang, Hsuan Chuang University, Hsinchu, TAIWAN
Heng-Chih Chou, Ming Chuan University, Taipei, TAIWAN

ABSTRACT

This paper presents a 3D model for pricing defaultable bonds with embedded put/call options. The pricing model incorporates three essential ingredients in the pricing of defaultable bonds: stochastic interest rate, stochastic default risk, and put/call provision. Both the stochastic interest rate and the stochastic default risk are modeled as a square-root diffusion process. The default risk process is allowed to be correlated with the default-free term structure. The put/call provision is modeled as a constraint on the value of the bond in the finite difference scheme. This paper can provide new insight for future research on defaultable bond pricing models.

Keywords: Defaultable Bond, Embedded Option, Partial Differential Equation, Finite Difference Method.

1. INTRODUCTION

The pricing of defaultable securities has occupied a central place in the academic and practitioner literature. The standard theoretical paradigm for pricing defaultable securities is the contingent claims approach pioneered by Black and Scholes (1973). Much of the literature follows Merton (1974) by explicitly linking the risk of a firm’s default to the variability in the firm’s asset value. Although this line of research has proven very useful in addressing the quantitatively important aspects of pricing defaultable securities, it has been less successful in practical applications. The lack of success owes to the fact that firms’ capital structures are typically quite complex and priority rules are often violated. In response to these difficulties, an alternative modeling approach has been pursued in a number of papers, including Madan and Unal (1994), Jarrow and Turnbull (1995), Duffie and Singleton (1999). At each instant, there is some probability that a firm defaults on its obligation. This is called the instantaneous probability of default. The processes of both this probability and the recovery rate determine the value of default risk. Although these processes are not formally linked to the firm’s asset value, there is presumably some underlying relation, thus Duffie and Singleton describe this alternative approach as a reduced-form model (Duffie, 1999).

This paper is an effort to develop one such model in a 3D setting for pricing defaultable bonds with embedded put/call options. The remainder of this paper is organized as follows. Section 2 presents the model. Section 3 describes the methodology. Section 4 concludes this paper.

2. MODEL

We derive the pricing model for defaultable bonds with embedded put/call options by adopting Duffie and Singleton (1999)’s reduced-form approach and Hull (2000)’s replicating-portfolio approach.

According to Duffie and Singleton, defaultable bonds can be valued by discounting at a default-adjusted interest rate, R:

$$R = r + hL,$$

where r is the risk-free interest rate, h is the hazard rate for default (i.e., the instantaneous probability of default) at time t, and L is the loss rate (i.e., the expected fractional loss in the market value) if default were to occur at time t, conditional on the information available up to time t. That is, the price at time 0 of a defaultable discount bond, f, is:

$$f = E[\exp(-\int_0^T Rdt)X],$$

where X is the face value, T is the maturity time, and E is the risk-neutral, conditional expectation at date 0. This is natural, in that hL is the risk neutral mean-loss rate of the defaultable discount bond due to default. Discounting at the default-adjusted short-term interest rate R therefore accounts for both the
probability and timing of default, as well as for the effect of losses on default. A key feature of Equation (2) is that, assuming the risk neutral mean-loss rate process hL being given exogenously, standard term-structure models for default-free debt are directly applicable to defaultable debt by parameterizing R instead of r (Duffie and Singleton, 1999).

We assume that both the default-adjusted interest rate R and the hazard rate h fit a Cox, Ingersoll, and Ross (CIR)-style model (1985), a square-root diffusion model:

\[
dR = a_R (b_R - R) dt + \sigma_R \sqrt{R} dz_R,
\]

\[
dh = a_h (b_h - h) dt + \sigma_h \sqrt{h} dz_h,
\]

where dz_R and dz_h are Wiener processes, and the drift and the diffusion parameters are constants and are assumed to be known. The CIR-style model incorporates mean reversion and ensures that the default-adjusted interest rates and the hazard rates are always non-negative. As for the loss rate L, it is assumed to be a constant.

We make the assumption that there are a total of three defaultable bonds whose prices depend on the default-adjusted interest rate R and the hazard rate h. Because the three defaultable bonds are all dependent on the default-adjusted interest rate R and the hazard rate h, it follows from Ito’s lemma that the price of the jth defaultable bond, f_j, follows a diffusion process:

\[
df_j = \mu_j f_j dt + \sigma_{Rj} f_j dz_R + \sigma_{hj} f_j dz_h,
\]

where

\[
\mu_j f_j = \frac{\partial f_j}{\partial t} + \frac{\partial f_j}{\partial R} a_R (b_R - R) + \frac{\partial f_j}{\partial h} a_h (b_h - h)
+ \frac{1}{2} \left(\sigma_R \sqrt{R} \right)^2 \frac{\partial^2 f_j}{\partial R^2} + \rho_{Rh} \sigma_R \sqrt{R} \sigma_h \sqrt{h} \frac{\partial^2 f_j}{\partial R \partial h}
+ \frac{1}{2} \left(\sigma_h \sqrt{h} \right)^2 \frac{\partial^2 f_j}{\partial h^2},
\]

\[
\sigma_{Rj} f_j = \frac{\partial f_j}{\partial R} \sigma_R \sqrt{R},
\]

\[
\sigma_{hj} f_j = \frac{\partial f_j}{\partial h} \sigma_h \sqrt{h}.
\]

In these equations, μ_j is the instantaneous mean rate of return provided by f_j, σ_{Rj} and σ_{hj} are the components of the instantaneous standard deviation of the rate of return provided by f_j that may be attributed to R and h, and ρ_{Rh} is the correlation between dz_R and dz_h.

Because there are three defaultable bonds and two Wiener processes in Equation (5), it is possible to form an instantaneously riskless portfolio, Π, using the defaultable bonds. Define k_j as the amount of the jth defaultable bond in the portfolio, so that

\[
\Pi = \sum_j k_j f_j.
\]

The k_j must be chosen so that the stochastic components of the returns from the defaultable bonds are eliminated. From Equation (5) this means that

\[
\sum_j k_j \sigma_{Rj} f_j = 0,
\]

\[
\sum_j k_j \sigma_{hj} f_j = 0.
\]

The return from the portfolio is then given by
\[
d \Pi = \sum_j k_j \mu_j f_j dt.
\]

The cost of setting up the portfolio is \(\sum_j k_j f_j \). If there are no arbitrage opportunities, the portfolio must earn the default-adjusted interest rate, so that

\[
\sum_j k_j \mu_j f_j = R \sum_j k_j f_j
\]

or

\[
\sum_j k_j f_j (\mu_j - R) = 0.
\]

Equations (10), (11) and (14) can be regarded as three homogeneous linear equations in the \(k_j \)'s. The \(k_j \)'s are not all zero. From a well-known theorem in linear algebra, Equations (10), (11) and (14) can be consistent only if

\[
f_j (\mu_j - R) = \lambda_R \sigma_{Rj} f_j + \lambda_h \sigma_{hj} f_j
\]

or

\[
\mu_j - R = \lambda_R \sigma_{Rj} + \lambda_h \sigma_{hj}
\]

for \(\lambda_R \) and \(\lambda_h \) that are dependent only on the default-adjusted interest rate \(R \), the hazard rate \(h \) and time \(t \).

Substituting from Equations (6), (7) and (8) into Equation (15), we obtain

\[
\frac{\partial f_j}{\partial t} + \frac{\partial f_j}{\partial R} [a_R(b_R - R) - \lambda_R \sigma_R \sqrt{R}] + \frac{\partial f_j}{\partial h} [a_h(b_h - h) - \lambda_h \sigma_h \sqrt{h}] + \frac{1}{2} (\sigma_R \sqrt{R})^2 \frac{\partial^2 f_j}{\partial R^2} + \frac{1}{2} (\sigma_h \sqrt{h})^2 \frac{\partial^2 f_j}{\partial h^2} - R f_j
\]

\[
= \lambda_R \frac{\partial f_j}{\partial R} \sigma_R \sqrt{R} + \lambda_h \frac{\partial f_j}{\partial h} \sigma_h \sqrt{h}
\]

that reduces to

\[
\frac{\partial f_j}{\partial t} + \frac{\partial f_j}{\partial R} [a_R(b_R - R) - \lambda_R \sigma_R \sqrt{R}] + \frac{\partial f_j}{\partial h} [a_h(b_h - h) - \lambda_h \sigma_h \sqrt{h}] + \frac{1}{2} (\sigma_R \sqrt{R})^2 \frac{\partial^2 f_j}{\partial R^2} + \frac{1}{2} (\sigma_h \sqrt{h})^2 \frac{\partial^2 f_j}{\partial h^2} - R f_j = 0.
\]

Dropping the subscripts to \(f \), we deduce that any defaultable bond whose price, \(f \), is contingent on the default-adjusted interest rate, \(R \), the hazard rate, \(h \), and time, \(t \), satisfies the second-order partial differential equation

\[
\frac{\partial f}{\partial t} + \frac{\partial f}{\partial R} [a_R(b_R - R) - \lambda_R \sigma_R \sqrt{R}] + \frac{\partial f}{\partial h} [a_h(b_h - h) - \lambda_h \sigma_h \sqrt{h}] + \frac{1}{2} (\sigma_R \sqrt{R})^2 \frac{\partial^2 f}{\partial R^2} + \frac{1}{2} (\sigma_h \sqrt{h})^2 \frac{\partial^2 f}{\partial h^2} - R f = 0.
\]

Q.E.D.

On a coupon date, the bond value must jump by the amount of the coupon payment. Hence, to incorporate coupon payments into the model, we impose a jump condition:

\[
f(R, h, t_C^-) = f(R, h, t_C^+) + K_C.
\]
where a coupon of K_c is received at time t_c.

Bonds often have a call feature which gives the issuing company the right to purchase back the bond at any time during specified periods for a specified amount. According to the no-arbitrage argument, to incorporate a call feature into the model, we must impose a constraint on the bond’s value:

$$f(R, h, t_D) \leq X_D$$

where X_D is the call price and t_D is the call date.

Some bonds have a put feature. This right permits the holder of the bond to return it to the issuing company for a specified amount. According to the no-arbitrage argument, to incorporate a put feature into the model, we must impose a constraint on the bond’s value:

$$f(R, h, t_E) \geq X_E,$$

where X_E is the put price and t_E is the put date.

To find a unique solution of Equation (19), we must impose one final condition and four boundary conditions.

The final condition corresponds to the payoff at maturity and so for a coupon-paying bond:

$$f(R, h, T) = P_T + K_T,$$

where a principal amount of P_T and a coupon payment of K_T are received at maturity.

The first boundary condition, when the default-adjusted interest rate, R, approaches to zero percent, can be stated as:

$$f(R, h, t) = f(R, h, T)e^{-R(T-t)} = f(R, h, T).$$

The second boundary condition, when the default-adjusted interest rate, R, approaches to infinity, can be stated as:

$$f(R, h, t) = f(R, h, T)e^{-R(T-t)} = 0.$$

The third boundary condition, when the hazard rate, h, approaches to zero percent, can be stated as:

$$f(R, h, t) = f(R, h, T)e^{-R(T-t)} = f(R, h, T)e^{-(r+h)l(T-t)} = f(R, h, T)e^{-(Rl(T-t))}.$$

The fourth boundary condition, when the hazard rate, h, approaches to infinity, can be stated as:

$$f(R, h, t) = f(R, h, T)e^{-R(T-t)} = f(R, h, T)e^{-(r+h)l(T-t)} = 0.$$

3. METHODOLOGY

We solve the pricing model for defaultable bonds with embedded put/call options by a 3D explicit finite difference method (Hull, 2003; Wilmott, 2000).

Suppose that the number of months to maturity is T. We divide this into L equally spaced intervals of length $\Delta t = T/L$. Δt is fixed at one month. A total of $L+1$ times are, therefore, considered:
Suppose that h_{max} is a hazard rate sufficiently high that, when it is reached, the bond has virtually no value. We define $\Delta h = h_{\text{max}}/M$ and consider a total of $M+1$ equally spaced hazard rates:

$0, \Delta h, 2\Delta h, \ldots, h_{\text{max}}$.

Δh is set to be one percent.

Suppose that R_{max} is a default-adjusted interest rate sufficiently high that, when it is reached, the bond has virtually no value. We define $\Delta R = R_{\text{max}}/N$ and consider a total of $N+1$ equally spaced default-adjusted interest rates:

$0, \Delta R, 2\Delta R, \ldots, R_{\text{max}}$.

ΔR is set to be one percent.

The time points, hazard rate points and default-adjusted interest rate points define a 3D grid consisting of a total of $(L+1)(M+1)(N+1)$ points as shown in Figure 1.

FIGURE 1: THE 3D FINITE DIFFERENCE GRID

The (i, j, k) point on the 3D grid is the point that corresponds to default-adjusted interest rate $i \Delta R$, hazard rate $j \Delta h$ and time $k \Delta t$. We use the variable $f_{i,j}^{k}$ to denote the value of the bond at the (i, j, k) point.

Recall that the differential equation for the price of a defaultable bond, $f(R, h, t)$, is given as:
\[
\frac{\partial f}{\partial t} + \frac{\partial f}{\partial R} [a_R (b_R - R) - \lambda_R \sigma_R \sqrt{R}] + \frac{\partial f}{\partial h} [a_h (b_h - h) - \lambda_h \sigma_h \sqrt{h}] \\
+ \frac{1}{2} (\sigma_R \sqrt{R})^2 \frac{\partial^2 f}{\partial R^2} + \rho_R \sigma_R \sqrt{R} \sigma_h \sqrt{h} \frac{\partial^2 f}{\partial R \partial h} + \frac{1}{2} (\sigma_h \sqrt{h})^2 \frac{\partial^2 f}{\partial h^2} \\
- R f = 0.
\] (28)

For an interior point \((i, j, k)\) in the 3D grid, \(\frac{\partial f}{\partial t}\) can be approximated by using a symmetric central difference:
\[
\frac{\partial f}{\partial t} = \frac{f_{i,j}^k - f_{i,j}^{k+1}}{\Delta t},
\] (29)
\(\frac{\partial f}{\partial R}\) can be approximated by using a symmetric central difference:
\[
\frac{\partial f}{\partial R} = \frac{f_{i+1,j}^k - f_{i-1,j}^k}{2 \Delta R},
\] (30)
\(\frac{\partial f}{\partial h}\) can be approximated by using a symmetric central difference:
\[
\frac{\partial f}{\partial h} = \frac{f_{i,j+1}^k - f_{i,j-1}^k}{2 \Delta h},
\] (31)
\(\frac{\partial^2 f}{\partial R^2}\) can be approximated by using a symmetric central difference:
\[
\frac{\partial^2 f}{\partial R^2} = \frac{f_{i+1,j}^k - 2 f_{i,j}^k + f_{i-1,j}^k}{\Delta R^2},
\] (32)
\(\frac{\partial^2 f}{\partial R \partial h}\) can be approximated by using a symmetric central difference:
\[
\frac{\partial^2 f}{\partial R \partial h} = \frac{f_{i+1,j+1}^k - f_{i+1,j-1}^k - f_{i-1,j+1}^k + f_{i-1,j-1}^k}{4 \Delta R \Delta h},
\] (33)
and \(\frac{\partial^2 f}{\partial h^2}\) can be approximated by using a symmetric central difference:
\[
\frac{\partial^2 f}{\partial h^2} = \frac{f_{i,j+1}^k - 2 f_{i,j}^k + f_{i,j-1}^k}{\Delta h^2}.
\] (34)

Substituting equations (29), (30), (31), (32), (33) and (34) into the differential equation (28) and noting that \(R = i \Delta R, h = j \Delta h\) and \(f = f_{i,j}^k\), the corresponding difference equation can be shown as:
\[
\begin{align*}
\frac{f_{i,j}^k - f_{i,j}^{k+1}}{\Delta t} &+ f_{i-1,j}^k - f_{i,j-1}^k [a_R (b_R - i\Delta R) - \lambda_R \sigma_R \sqrt{i\Delta R}] \\
&+ \frac{f_{i,j+1}^k - f_{i,j}^{k+1}}{2\Delta h} [a_h (b_h - j\Delta h) - \lambda_h \sigma_h \sqrt{j\Delta h}] \\
&+ \frac{1}{2} (\sigma_R \sqrt{i\Delta R})^2 \frac{f_{i+1,j}^k - 2f_{i,j}^k + f_{i-1,j}^k}{\Delta R^2} \\
&+ \frac{1}{2} (\sigma_h \sqrt{j\Delta h})^2 \frac{f_{i,j+1}^k - 2f_{i,j}^k + f_{i,j-1}^k}{\Delta h^2} \\
&+ \frac{1}{4\Delta R\Delta h} \rho_{Rh} \sigma_R \sqrt{i\Delta R} \sigma_h \sqrt{j\Delta h} \Delta t
\end{align*}
\]

(35)

where \(i = 0, 1, \ldots, N, j = 0, 1, \ldots, M\) and \(k = 0, 1, \ldots, L\). Rearranging terms, this equation becomes:

\[
A_{i,j} f_{i,j}^k + B_i (f_{i+1,j}^k + f_{i-1,j}^k) + C_j (f_{i,j+1}^k + f_{i,j-1}^k) \\
+ D_{i,j} (f_{i+1,j}^k + f_{i+1,j-1}^k + f_{i-1,j}^k + f_{i-1,j-1}^k) = f_{i,j}^{k+1},
\]

(36)

where

\[
A_{i,j} = 1 - \frac{1}{\Delta R^2} (\sigma_R \sqrt{i\Delta R})^2 \Delta t - \frac{1}{\Delta h^2} (\sigma_h \sqrt{j\Delta h})^2 \Delta t - (i\Delta R)\Delta t,
\]

\[
B_i = \frac{1}{2\Delta R} [a_R (b_R - i\Delta R) - \lambda_R \sigma_R \sqrt{i\Delta R}] \Delta t + \frac{1}{2\Delta R^2} (\sigma_R \sqrt{i\Delta R})^2 \Delta t,
\]

\[
C_j = \frac{1}{2\Delta h} [a_h (b_h - j\Delta h) - \lambda_h \sigma_h \sqrt{j\Delta h}] \Delta t + \frac{1}{2\Delta h^2} (\sigma_h \sqrt{j\Delta h})^2 \Delta t,
\]

\[
D_{i,j} = \frac{1}{4\Delta R\Delta h} \rho_{Rh} \sigma_R \sqrt{i\Delta R} \sigma_h \sqrt{j\Delta h} \Delta t,
\]

\(i = 0, 1, \ldots, N, j = 0, 1, \ldots, M\) and \(k = 0, 1, \ldots, L\).

The value of the bond at time \(T\) is \(P_T + K_T\), where \(P_T\) is the principal amount and \(K_T\) is the coupon payment. Hence,

\[
f_{i,j}^k = P_T + K_T
\]

for \(i = 0, 1, \ldots, N, j = 0, 1, \ldots, M-1\) and \(k = 0, 1, \ldots, L-1\).

The value of the bond when the default-adjusted interest rate is zero percent is \(f(R, h, T)\). Hence,

\[
f_{i,j}^{k+1} = f_{i,j}^k
\]

for \(i = 0, j = 0, 1, \ldots, M-1\) and \(k = 0, 1, \ldots, L-1\).

We assume that the bond is worth zero when the default-adjusted interest rate is one hundred percent, so that

\[
f_{i,j}^{k+1} = 0
\]

for \(i = N, j = 0, 1, \ldots, M-1\) and \(k = 0, 1, \ldots, L-1\).

The value of the bond when the hazard rate is zero percent is \(f(R, h, T)e^{-r(T-t)}\). Hence,

\[
f_{i,j}^{k+1} = f_{i,j}^k e^{-r(T-t)}
\]

for \(i = 1, 2, \ldots, N-1, j = 0\) and \(k = 0, 1, \ldots, L-1\).
We assume that the bond is worth zero when the hazard rate is one hundred percent, so that
\[f_{i,j}^{k+1} = 0 \]
for \(i = 0, 1, ..., N, j = M \) and \(k = -1, 0, ..., L-1 \).

To incorporate coupon payments into the model, we impose a jump condition. Hence,
\[f_{i,j}^k = f_{i,j}^k + K_C \]
for \(i = 0, 1, ..., N-1, j = 0, 1, ..., M-1, k = t_C \) or the coupon date and \(K_C \) is the coupon payment.

To incorporate call features into the model, we impose a constraint on the bond's value. Hence,
\[f_{i,j}^k \leq X_D \]
for \(i = 0, 1, ..., N-1, j = 0, 1, ..., M-1, k = t_D \) or the call date and \(X_D \) is the call price.

To incorporate put features into the model, we impose a constraint on the bond's value. Hence,
\[f_{i,j}^k \geq X_E \]
for \(i = 0, 1, ..., N-1, j = 0, 1, ..., M-1, k = t_E \) or the put date and \(X_E \) is the put price.

Equations (37), (38), (39), (40) and (41) define the value of the bond along the five planes of the 3D grid in Figure 1, where \(t = T, R = 0\% \), \(R = 100\% \), \(h = 0\% \) and \(h = 100\% \). Equation (36) defines the value of the bond at all other points.

Equation (36) shows that there are nine known bond values linked to one unknown bond value. See Figure 2. Hence, for each time layer there are \((N-1)(M-1)\) equations in \((N-1)(M-1)\) unknowns; the boundary conditions yield the values at the four boundaries for each time layer and the final condition gives the values in the last time layer.

FIGURE 2: THE RELATIONSHIP BETWEEN BOND VALUES IN THE 3D EXPLICIT FINITE DIFFERENCE METHOD

To find the bond value of interest, go backwards in time, solving for a sequence of linear equations. Eventually, \(f_{1,1}^{L}, f_{1,2}^{L}, f_{1,3}^{L}, ..., f_{N-1,M-1}^{L} \) are obtained. One of these is the bond price of interest. If the
initial default-adjusted interest rate or the initial hazard rate does not lie on the grid point, we use a linear interpolation between the two bond prices on the neighboring grid points to find the bond price of interest.

4. CONCLUSION

This paper presents a 3D model for pricing defaultable bonds with embedded put/call options. The pricing model incorporates three essential ingredients in the pricing of defaultable bonds: stochastic interest rate, stochastic default risk, and put/call provision. Both the stochastic interest rate and the stochastic default risk are modeled as a square-root diffusion process. The default risk process is allowed to be correlated with the default-free term structure. The put/call provision is modeled as a constraint on the value of the bond in the finite difference scheme. The model is by no means a complete success. To improve the model, one can assume that the recovery rate in the event of default varies stochastically through time. In summary, this paper can provide new insight for future research on defaultable bond pricing models.

REFERENCES:

AUTHOR PROFILES:

Dr. David Wang earned his doctoral degree at the Golden Gate University, San Francisco in 2003. Currently he is an assistant professor of finance at Hsuan Chuang University, Hsinchu, Taiwan.

Dr. Heng-Chih Chou earned his doctoral degree at the Golden Gate University, San Francisco in 1999. Currently he is an assistant professor of finance at Ming Chuan University, Taipei, Taiwan.
Manuscript Submission Guidelines for Review

Please use following format guidelines for submission of your manuscript for the review. The papers are reviewed on a continual basis around the year. Early Submissions are welcome!
Please visit our new website at www.iabe.org.

Copyright: Articles, papers or cases submitted for publication should be original contributions and should not be under consideration for any other publication at the same time. Authors submitting articles/papers/cases for publication warrant that the work is not an infringement of any existing copyright, infringement of proprietary right, invasion of privacy, of libel and will indemnify, defend, and hold IABE or AIBE or sponsor(s) harmless from any damages, expenses, and costs against any breach of such warranty. For ease of dissemination and to ensure proper policing of use, papers/articles/cases and contributions become the legal copyright of the IABE or AIBE unless otherwise agreed in writing.

I. General Information: These are submission instructions for review purpose. Once your submission is accepted, you will receive final submission instructions with acceptance letter. The author(s) will be emailed the result of the review process in about 6-8 weeks from submission date. Papers are reviewed on a continual basis throughout the year. Submit your paper(s) early for full considerations!

II. Typing: prepare your manuscript using Arial 10-point font, single-spaced lines, justify style in MS Word. All four side margins must be 1” each.

III. First Page: Paper title, not exceeding two lines, must be CAPITALIZED AND CENTERED IN BOLD LETTERS. Author name, university/organizational affiliation, and email address of each author must be printed on one line each. Do NOT include titles such as, Dr., Professor, Ph.D., department, address, etc. Please print the word ‘ABSTRACT’ in capitalized bold letters, left justified, and double-spaced from last author’s name/affiliation. Abstract should be in italic. After abstract, add Keywords to your paper.

IV. All other Headings: All other section headings starting with INTRODUCTION must be numbered, in capitalized bold letters, left justified, and double-spaced from last line above them.

V. Tables, Figures, and Charts: All tables, figures or charts must be inserted in the body of the manuscripts within the margins with headings/titles in centered CAPITALIZED BOLD letters.

VI. References and Bibliography: All references listed in this section must be cited in the article and vice-versa. The reference citations in the text must be inserted in parentheses within sentences with author name followed by a comma and year of publication. Please follow the following formats:

VII. Author Profile(s): At the end of paper, include author profile(s), not exceeding five lines per author, including name, highest degree/degree/year, current position/university, and major achievements. For example:

Dr. Tahi J. Gnepa earned his Ph.D. at the University of Wisconsin, Madison in 1989. Currently he is a professor of international business at the California State University, Stanislaus. Dr. Gnepa is Program Chair of the AIBE-2006 and Managing Editor of the Journal of International Business and Economics.

VIII. Manuscript: Absolutely no footnotes allowed! Do not insert page numbers for the manuscript. Please do not forget to run spelling and grammar check for the completed paper. Save the manuscript on a diskette or hard drive.

IX. Electronic Submission: