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1 Introduction

A number of studies have demonstrated that the simple Black-Scholes (BS) paradigm of lognormality

of asset returns distribution is in contrast with empirical observations. The simplistic assumption

of asset dynamics being driven by a Gaussian process must indeed be rejected in favour of more

general processes like, for instance, those driving stochastic volatility (SV) models.

One stream of research focuses on the statistical properties of asset returns. In this context,

empirical evidence seems to reject SV models since they are not capable of reproducing the observed

conditional kurtosis of returns. The presence of jumps is often advocated as a solution to this

problem. In fact, evidence of presence of jumps in the asset, in the volatility or in both is reported

in Bates (1996), Bakshi et al. (1997), Chernov et al. (1999), Andersen et al.(2002), Pan (2002),

Bates (2000), Eraker et al. (2003) and Chernov et al. (2003), among others.

In another set of studies, departures from the BS model are advocated in relation to the implied

volatility smile phenomenon. Deterministic volatility extensions of the BS model were first due

to Dupire (1994) and Derman and Kani (1994). These are usually referred to as local volatility

(LV) models. Although LV models provide a simple mechanism for smile generation, they are

pledged by a number of shortcomings. On the empirical side, they require the knowledge of option

prices over a continuum of strikes and maturities, a situation never encountered in practice. On the

theoretical side, it is well-known (Rebonato (2000), Andersen and Andreasen (2000)) that models

whose volatility evolves deterministically with the underlying state variables generate smiles at future

times that are inconsistent with historical observations: while historical smile surfaces display a high

degree of time-stationarity, model-implied smiles in LV models tend to flatten very quickly as time

goes by. In addition, by imposing a deterministic relationship between volatility and underlying, one

is implicitly making a strong assumption on their relative movements, with implications on the risk-

management side (Di Graziano and Galluccio (2005)). Empirical literature rejects local volatility

models on their impact on hedging, Dumas et al. (1997). In a different line of thought, Hull

and White (1987), Stein and Stein (1991) and Heston (1993), account for the smile phenomenon

through SV models. Finally, modelling the smile through mixed jump-diffusion (JD) processes is

proposed in Andersen et al. (2000) (for LV models with jumps) and Duffie et al. (2000) (for SV

models with jumps). However, to force a SV or a JD model to be consistent with the whole set of

smiles at different maturities (the so-called “implied volatility surface”), model coefficients must be

heavily (and unrealistically) time-dependent. In particular, SV models tend to underestimate smile

convexity at short maturities while a JD model suffers from the same drawback at large maturities

(Section 3).

In summary, empirical studies based on both statistical analysis and market-implied methods
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reject SV, JD and LV models in favour of stochastic volatility jump-diffusion models (SVJD) thanks

to their superior market explicative power.

A fundamental problem in the applications (e.g. for derivatives pricing and hedging) is the esti-

mation of latent parameters in SVJD models. Estimation based on statistical analysis from historical

data series has been given extensive coverage in the past. In particular Bates (2000), Chernov et

al. (1999), Craine, Lochstoer and Syrtveit (2000) and Deelstra et al. (2002) use simulation-based

estimators and/or Efficient Methods of Moments in models with jumps and stochastic volatility.

Eraker et al. (2003) employ Markov Chain Monte Carlo methods to provide evidence of jumps in

both asset and volatility. Finally, extensive empirical studies across several models are conducted in

Chernov et al. (2003).

As long as option pricing and hedging is concerned, a model must be made consistent with

the available market quotations of liquid vanilla options in order to avoid arbitrage opportunities.

In this respect statistical estimations must be replaced or, at least, complemented by a reverse

engineering process (model calibration) that consists of determining model parameters to reproduce

the observed vanilla option prices1 . Despite the importance of having a fast, robust and accurate

model calibration, the literature on the subject is scarce. In this respect, calibration based on short-

term asymptotics is studied in Medvedev and Scaillet (2004). Backus et al. (1997) and Zhang and

Xiang (2005) use an interesting mapping to infer a term structure of market implied cumulants

directly from market smiles at different maturities. Unfortunately, this approach does not provide

an estimation of the coefficients of a single model that is consistent with the whole volatility surface

since different models are needed to match different smiles. Bakshi et al. (1997) and Andersen and

Andreasen (2000) suggest to calibrate a model by minimizing the sum of the squared errors of all

available options across all strikes and maturities. This simple non-linear least squares optimization

is usually not convergent and not statistically robust, as shown in Cont and Tankov (2004) and

Detlefsen (2005). Cont and Tankov point out that the information contained in the set of available

option prices is not sufficient to remove the coefficients degeneracy that is associated to a SVJD

process and suggest that calibration can only be achieved provided one adds exogenous information

in addition to the available option prices. For, they introduce a calibration algorithm (in the context

of exponential-Lévy processes) where the objective function contains a convex functional that is

meant to stabilize the (non-convex) optimization problem. The authors are mainly interested in

calibrating a single smile at the time, but a straight generalization of Cont-Tankov’s approach to

more general processes or to cope with the calibration of the whole volatility surface remains, as of

1When market is complete, model calibration identifies (at least in principle) the unique risk-neutral measure and

avoids the problem of determining the market price of risk. This contrasts the case when estimation is conducted

from a statistical perspective. When market is incomplete, calibration allows selecting the “market” measure among

the infinite set of possible risk-neutral measures.
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today, an open issue.

In our paper, inspired by Cont and Tankov (2004) results, we attempt to take the next step in

this direction and introduce a novel implied calibration methodology for some SVJD models with

time-dependent coefficients in the affine-quadratic class (Piazzesi (2003), Peng and Scaillet (2004)).

We recall that the affine-quadratic class contains the affine one as a special case. Our approach,

aimed at calibrating the whole volatility surface at any given time, retains (at a qualitative level)

some of the interesting features contained in Cont and Tankov’s method, namely the regularization

of least-squares optimization through addition of a number of constraints to the problem. However,

we depart from Cont and Tankov method in both the nature of the problem (we aim at calibrating

the whole volatility surface as opposed to a single smile curve) and in the type of dynamics (we

don’t restrict ourselves to Lévy processes). We apply our method to one of the simplest (yet non-

trivial) SVJDmodel with jumps in the asset and we show that an accurate and financially meaningful

calibration to the whole volatility surface is possible and the algorithm is robust. However, our study

strongly suggests that the algorithmic complexity is such that generalizing the present approach to

more complex models might result impossible to achieve. This is the case, for instance, when jumps

in volatility are also present or for more general local volatility forms .2 These shortcomings expose

an intrinsic limitation of SVJD models and clearly indicate that, despite their mathematical and

financial appeal, further theoretical developments are needed.

The rest of the paper is organized as follows. In section 2 we introduce model and notations, and

we determine closed-form formulae for European options. In Section 3 we analyze the different role

played by jumps and stochastic volatility in explaining the market smile. This results in identifying

two separate regimes which are instrumental in solving the calibration problem. Section 4 gathers

some general ideas about calibration in models mixing jumps and stochastic volatility while Section

5 is devoted to a detailed description of the calibration methodology. Numerical results are presented

in Section 6 and Section 7 contains conclusions and prospects for future research.

2 Mathematical setup and option pricing

2.1 The model

Let (Ω,A,P) be a probability space. We shall denote by St the price of the Equity asset at time

t and rt the spot rate of interest assumed deterministic. A probability measure P∗, equivalent to

the historical probability measure P, is said to be the risk-neutral measure if the relative price

Ste
−rttfollows a local martingale process under P∗.
2One important exception being hybrid (Equity-IR) modelling with no jumps in volatility since in that case the

approach we present here can be applied without major modifications, as shown in Galluccio and LeCam (2005).
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We stipulate that the asset dynamics follows a jump-diffusion process under any equivalent risk-

neutral measure P∗,3 {
dSt
S
t−

= (rt − dt − µt)dt + ηtdB
1
t + dJt

dηt = λ(at − ηt)dt + αtdB
2
t ,

(1)

where B1 and B2 are two Brownian motions with d
〈
B1, B2

〉
t

= ρ1,2(t)dt; λ is a constant and

dt, αt, at are deterministic functions of time. Here, J is a compound Poisson process with stochastic

intensity ξ (t, St). We shall write Jt =
∑

n≥1
(
eYn − 1

)
1{Tn≤t} (Ti are the jump arrival times), and

denote by G the law of the jumps (a iid sequence). More precisely, the jump diffusion Z = (S, η) is

a Feller process with infinitesimal generator A defined by

Aϕ(t, x) = ∂tϕ + ∂xϕ(t, x)ζ(t, x) +
1

2
tr
[
∂x,xϕ(t, x)Σ(t, x)Σ�(t, x)

]
(2)

+ξ(t, x)

∫

R

[ϕ(t, x1 + u)− ϕ(t, x)] dG(u),

where ζ is the drift vector and Σ the volatility matrix of the diffusion. Let µt = ξ (t, St)E
∗ (Y ) be

its associated compensator. An equivalent representation considers state variables driven by a two

dimensional vector of independent Wiener processes
(
W1,W 2

)′

{
dSt
St−

= (r − dt − µt)dt + ηtdW
1
t + dJt

dηt = λ(at − ηt)dt + αt

(
ρ1dW

1
t + ρ2dW

2
t

) (3)

where {ρi := ρi(t), i = 1, 2} are deterministic functions of time. We will alternate between the first
and the second representation depending on the circumstances, if no confusion arises. The relation

between the two representations is provided by ρ1 = ρ1,2, ρ
2
1 + ρ22 = 1.

As it is well known, the above model is arbitrage-free but is not complete. Model calibration will

then be used to select the risk-neutral measure. We also remind that the model defined by Eqs. (1)

and (3) does not belong to the affine class, in the sense of Duffie et al. (2000), since it corresponds

the jumps-augmented version of the Stein-Stein model, (Stein and Stein (1991)). The equivalent

of (1) within the affine framework (when (Yn)n≥1 are Gaussian r.v.’s) is in fact the Bates (1996)

model which is obtained by assuming that η2t follows a one-dimensional CIR-like process.

Our choice is motivated by a number of reasons. First, empirical literature (Jones (2003), Aït-

Sahalia and Kimmel (2004)) demonstrates that simple affine models must be rejected in favor of

more general processes. Indeed, our model belongs to the so called “linear-quadratic” class (Piazzesi

(2003), Peng and Scaillet (2004)), which includes the affine as a special case. Second, our calibration

3For sake of simplicity, we will thoroughout assume that the divident process dt is deterministic and that relative

dividends are payed continuously in time. Note also that in our formulation no restriction must be imposed on the

r.v. Y to ensure that St stays positive.
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algorithm (Sections 4 and 5) applies without major changes to affine models as well. Finally, SVJD

linear-quadratic models can be easily generalized to include quanto and cross-currency features as

well as the effect of stochastic interest rates (for the purpose of hybrids modelling) while this is

not possible in affine models (Galluccio and Le Cam (2005)). At an intuitive level, the presence

of quanto effects or stochastic interest rates induces non-linear terms in the drift of the process.

As a consequence, apart from rather unrealistic situations (for instance when some correlations are

artificially set to zero so to force these non-linear additional terms to identically vanish, see Galluccio

and Le Cam (2005)) the CCY or stochastic interest rates extended SVJD models are not affine.

In the applications, it is useful to recast all equations in a more convenient form by introducing

the auxiliary vector diffusion process Xt :=
(
X1

t = ln (St) ,X2
t = ηt

)
and the jump process Nt :=

∑
n≥1 Yn1{Tn≤t}. In the new setting, the system reads as:





dX1
t =

(
r − 1

2

(
X2

t

)2 − dt − µt

)
dt + X2

t dW
1
t + dNt

dX2
t = λ

(
at −X2

t

)
dt + αt

(
ρ1dW

1
t + ρ2dW

2
t

)
.

(4)

The model can be efficiently handled mathematically. In fact, if we assume that the intensity process

takes the form ξ(t, x) := ξ0t+ ξ1tX
1
t + ξ2tX

2
t + ξ3t

(
X2

t

)2
, the jump diffusion vector-valued process

dXt = ς(Xt, t)dt + Σ(t,Xt)dWt + dNt is a semimartingale associated to a triplet of characteristics

that are affine-quadratic functions of the state variables, as in Peng and Scaillet (2004).

The presence of jumps in the dynamics is well supported by historical time series analysis, as

mentioned in the introduction. Also, Bates (1996) and (2000) suggests that jumps are needed in

addition to stochastic volatility to allow matching both long and short-maturity smiles within a

single model. Strong evidence in support of this claim (and its implications on calibration) are given

in the next Section.

2.2 Option Pricing

To ensure market consistency in pricing and hedging, a model must be “calibrated” to a set of vanilla

options. The availability of closed or quasi-closed form formulae for simple European derivatives

is of crucial importance to improve speed and avoid numerical convergence problems. This can be

easily achieved in our framework. The path we follow is similar to the one adopted in Peng and

Scaillet (2004) in the general context of affine-quadratic models.

We introduce two objects. One is the Green function ψ(u,Xt; t, T ) from the risk-neutral expec-

tation

ψ(u,Xt; t, T ) := E
∗
[

exp

(
−
∫ T

t

R(s,Xs)ds

)
eu·XT

∣∣∣∣∣Gt
]
, (5)
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where R(t,Xt) = r is the spot interest rate which, for simplicity, is assumed constant. The other

is the Laplace transform of the law of Y from Lf (x) =
∫
euxdG(u), under the usual conditions of

existence and convergence. Next define the functions Φi
t(x) = ξit (Lf (x)− 1). Then, the following

result holds (where time dependency has been omitted to lighten notation)

Proposition 1 There exist four functions γ(t, T ), β1(t, T ), β2(t, T ), and δ(t, T ) such that ψ can be

represented as

ψ(u,Xt; t, T ) = eγ(t,T )+β(t,T )·Xt+δ(t,T )(X2
t )

2

for u = (u1, u2), β(t, T ) := (β1(t, T ), β2(t, T ))′, and Xt :=
(
X
(1)
t ,X

(2)
t

)′
. Moreover the four func-

tions satisfy the following system of ODE’s:





∂β1
∂t = −Φ1(β1),
∂β2
∂t = −Φ2(β1)− 2λaδ −

(
ρ1αβ1 + 2α2δ

)
β2,

∂δ
∂t = −Φ4(β1) + 1

2

(
β1 − β21

)
+ 2 (λ− αρ1β1) δ − 2α2δ2

∂γ
∂t = −Φ0(β1) + (d + µ− r)β1 − λaβ2 − α2

(
δ + 1

2β
2
2

)
(6)

with final conditions β(T, T ) = u, δ(T, T ) = γ(T, T ) = 0

Proof. See Appendix A.

To allow analytical tractability of the ODE’s, avoid model overparametrization and to simplify

the calibration without compromising the quality of the result we will assume, from now on, that the

stochastic intensity of the compound Poisson process takes a simple form, i.e. ξ
(0)
t �= 0, ξ

(1)
t = ξ

(2)
t =

ξ
(3)
t = 0. Despite this simplification, the above system contains non-linear second order Riccati

equations and cannot be solved in closed form, in general. However, since only a finite set of options

at different times to expiry are quoted in the market, we consider a particular specification of the

ODE’s coefficients. Be (T1, · · · , TN) the set of expiry times associated to the quoted vanilla options.

Accordingly, if θ(t) is a generic time-dependent coefficient in the ODE’s system, we will assume

that θ(t) is defined through piecewise constant functions as follows: θ(t) = θi, if t ∈ [Ti−1, Ti),

i = 2, · · · , N . With this specification, on every interval [Ti−1, Ti), Riccati equations are defined

in terms of constant coefficients and then solvable. On every subinterval, terminal conditions are

β(Ti) = (u1i , u
2
i )
′, δ(Ti) = u3i , γ(Ti) = u4i . We then arrive at the following result, where we have

defined Ψi(t, x) = x−1
[
1− exp

(
x(T i − t)

)]

Proposition 2 Assume that αt, at, kt, ξt are piecewise constant on the intervals [Ti−1, Ti), i =

2, · · · , N and that ξ
(0)
t �= 0, ξ

(1)
t = ξ

(2)
t = ξ

(3)
t = 0. Then the solution of the system of ODE’s is
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given, on each [Ti−1, Ti), by

β(t) =
(
u1i , M(t)

(
u2i −K(t)

))′
,

δ(t) =
1

α2i

(
−(Bi + Γi)−

2ΓiCi

e4Γi(Ti−t) −Ci

)
,

γ(t) = u4i −
((
d + Φ0t (1)

)
u1i −Φ0t (u

1
i )
)

(Ti − t)− (Bi + Γi)(Ti − t),

−1

2
ln

1−Cie
−4Γi(Ti−t)

1−Ci
+

∫ T

t

(
λai +

1

2
α2iβ2(s)

)
β2(s)ds,

where

pi = −2λai, Ai = u1i (1− u1i )/4,

Bi =
(
αρ1u

1
i − λ

)
/2, Γ2i = B2

i + α2iAi, Ci =
α2ui4 + Bi + Γi

α2ui4 + Bi − Γi
i

M(t) =
1−Ci

1−Cie−4Γi(Ti−t)
e−πi(Ti−t); πi = 2(Bi + Γi)− u1ρ1αi;

K(t) =
1

1−Ci

[
−piyiΨi(t, π

i) + (piyiCi − pizi) Ψi(t, π
i − 4Γi)

]

zi = −2ΓiCi/α
2
i ; yi = −Bi + Γi/α

2
i .

Proof. See Appendix B.

We remark that jumps now appear in the expression of γ(t) through the Laplace transform

Lf (u1i ). With a proper choice of the distribution of the r.v. Y , the transform can be analytically

computed. This applies, for instance, when Y ∼ N (q, v2) is a Gaussian variable so that Lf (x) =

exp
(
qx + x2v2/2

)
. This choice provides a simple and intuitive jumps parametrization and, as we

show below, it offers great flexibility in the calibration process.4

Our goal is the evaluation of a vanilla call option expiring at T and struck at K written on S,

whose arbitrage price at time t is Callt(St,K, t, T ) = E∗
{

exp
(
−
∫ T

t R(s,Xs)ds
)

(ST −K)+|Gt
}
.

To this aim, we use the knowledge of the Green function

G(y, ς, ϕ,Xt; t, T ) = E
∗
{

exp

(
−
∫ T

t

R(s,Xs)ds

)
eς·XTχ(ϕ·XT≤y)|Gt

}
, (7)

and a number of well-known results on Fourier transforms for option pricing. In fact, as the following

Proposition shows, G(y, ς, ϕ,Xt, t, T ) can be determined from the knowledge of ψ(u,Xt; t, T ) and

the pricing problem is then solved.

4 In theory, a simpler solution would be to assume that Y follows a symmetric Laplace distribution with probability

density p(x) = ζ exp (−ζ|x|), defined by a single parameter ζ. This choice, however, does not provide enough flexibility

to match the observed smiles.
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Proposition 3 The price of the call option is given by Callt(St,K, t, T ) = G1 −KG2, with

G1 = G(− lnK, ζ1, ν1,Xt, t, T ), (8)

with ζ1 = (1, 0, 0) , ν1 = (−1, 0, 0), Xt = (lnSt, ηt, rt)

G2 = G(− lnK, ζ2, ν2,Xt, t, T ),

with ζ1 = (0, 0, 0) , ν1 = (−1, 0, 0), Xt = (lnSt, ηt, rt)

and

G(y, ς, ϕ,Xt, t, T ) =
1

2
ψ(ς,Xt, t, T )− 1

π

∫

(Rd)+

1

k
Im

{
e−ikyψ (ς + ikϕ,Xt, t, T )

}
dk (9)

Proof. Duffie et al. (2000).

3 Gamma and Vega regimes

In this section we study the relationship between the dynamics Eq.(1) and the associated shape of

the volatility surface. The goal is to provide evidence about the different role played by jumps and

by stochastic volatility in explaining the observed smile in different portions of the time to expiry

dimension. This result is instrumental in understanding the calibration methodology that will be

introduced in Section 4.

The analysis of the moments of the asset distribution and their link with the shape of the smile has

been already addressed in the literature. In particular, Backus et al. (1997) and (in a similar context)

Zhang and Xiang (2005) show that if the smile is parametrized through a quadratic polynomial in

the “modified moneyness” m = ln(F/K)

Σatm
√
T−t

+ Σatm
2 , where F is the option’s underlying, Σatm is the

at the money (ATM) BS volatility and K is the strike then, approximately, the BS implied volatility

at varying m reads as

σ(m, τ) 
 Σatm

√
τ

(
1− ζ1(τ)

3!
m− ζ2(τ)

4!

(
1−m2

))
, (10)

where ζ1(t) and ζ2(t) are the skewness and the kurtosis of the logarithm of the underlying process,

and τ = T − t is the time to expiry. This results from a Edgeworth expansion of the law of the

log-asset price and holds for small values of Σatm. Formula (10) shows the tight link existing between

shape of the smile and moments of the underlying asset process. In particular, when skewness and

kurtosis are zero, the smile is flat at Σatm (as in the BS model). In addition, skewness (through the

linear term in m) and kurtosis (through the quadratic term in m) act by respectively tilting and

bending the smile.

For the sake of simplicity, we will assume in this section that dividends dt vanish and that all

model coefficients are constant since all conclusions are preserved (at a qualitative level) in the general
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setup. Even in this simplified scenario the mathematical expression of the characteristic function

Φt(x) := Et

[
eix lnST

]
of the log-asset price (and a fortiori, that of the associated cumulants) is quite

involved. For this reason, we provide explicit formulae in the pure jump case and analyze the general

case numerically. When only jumps are present, Eq.(1) reduces to the Merton jump-diffusion model

and the characteristic function ΦMer
t (x) reads as

ΦMer
t (θ) = exp (tϕ(θ))

with ϕ(θ) = i
(
r − η2/2− µ

)
θ − η2θ2/2 + ξ

[
exp

(
iθq − θ2v2/2

)
− 1

]
. In Appendix C we re-derive

this formula and show that the first four cumulants of Zt := ln(St) are given by

E (Zt) = Π1 =

(
r − η2

2

)
t, (12)

E

[
(Zt − E (Zt))

2
]

= Π2 = V ar (Zt) = η2t + ξt
(
q2 + v2

)
,

E

[
(Zt − E (Zt))

3
]

= Π3 = ξtq
(
q2 + 3v2

)
,

E

[
(Zt − E (Zt))

4
]
− 3V ar (Zt)

2 = Π4 = ξt
(
q4 + 6q2v2 + 3v4

)
.

By recalling the expression of the skewness ζ1(t) = Π3Π
−3/2
2 and the kurtosis ζ2(t) = Π4Π

−2
2 , we

finally arrive at

ζ1(t) =
1√
t

ξq
(
q2 + 3v2

)

[η2 + ξ (q2 + v2)]3/2
, ζ2(t) =

1

t

ξ
(
q4 + 6q2v2 + 3v4

)

[η2 + ξ (q2 + v2)]2
. (13)

These equations, in conjunction with Eq.(10) , show that the impact of jumps on the volatility smile

is restricted at very short times. In particular the jumps-induced smile convexity decays linearly with

the time to expiry while smile skewness decays as t−1/2. In a similar context to ours, Backus et al.

(1997) demonstrate that, on the opposite, the impact of stochastic volatility persists on long-term

smiles.

In order to provide quantitative support to this claim and to the different roles played by jumps

and stochastic volatility, in Fig.1a we show the term structure of ”butterfly spread” prices observed in

the market on a generic trading day. A butterfly spread option with expiry T is a combined position

in three call options and is usually measured byH = ΣBS(Katm−∆)−2ΣBS(Katm)+ΣBS(Katm+∆)

where ΣBS(K) is the BS implied volatility at K. Butterfly spreads provide the simplest trading

strategy to take a position in the smile’s convexity. This is due to the fact that (apart from a

multiplicative factor) H is the second derivative of the smile (thought of as a function of K) taken

at Katm. Thus, the higher H the larger the convexity and viceversa. In Fig.1a we compare the

market butterfly with the one generated by our model Eq.(1) in the particular case where no jumps
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are present and when all coefficients are time-homogeneous.5 We see that at intermediate and at long

maturities a stochastic volatility model explains the term structure of the smile convexity reasonably

well (if mean reversion is carefully chosen) but it fails to do so at short maturities. This fact has a

simple and intuitive explanation. Eq.(10) shows that the smile convexity is typically associated to

the excess kurtosis of the log-asset returns distribution. Since in our case this is entirely generated by

a diffusion process (the volatility ηt), it normally takes time to accumulate enough kurtosis starting

from 0 at inception. This implies that a simple diffusive dynamics is not consistent with the market

implied smile at short maturities. These observations suggest that jumps and stochastic volatility

must be combined together since jumps have a big impact on short term convexity (Eq. (13)) and

stochastic volatility on long term one.

These findings can be also interpreted from a different perspective. From a trading point of

view, short-term and long-term smiles have a very different origin. Short term convexity is mainly

associated to investors risk aversion to unexpected economic and sociopolitical events that might

result in sudden jumps in the asset price. On the other side, long-term convexity is usually driven

by the law of offer/demand induced by large investors, institutions and hedge/pension funds buying

and selling in and out of the money options as a form of leveraged investment. Traders refer

to these two regimes as “Gamma” and “Vega” trading, since the option Gamma (resp. Vega)

risk is predominant at short (resp. long) maturities and in presence of large (resp. small) asset

variations. These considerations indicate that the market smile is implicitly pricing the risk of large

fluctuations (indeed, jumps) in the asset dynamics in the short term and of that of unpredictable

(indeed, stochastic) asset volatility in the long end. The threshold between the two regimes will be

denoted by T ∗. This regime “switching” is therefore an intrinsic market characteristic and plays a

fundamental role in our calibration approach.

4 SVJD models: the calibration problem

As above mentioned, model calibration consists of solving a multi-dimensional reverse engineering

problem. As discussed by many authors it is impossible, in general, to determine a set of parameters

such that market prices are exactly reproduced by any model.6 Throughout this paper, by “model

calibration” we then mean a methodology such that

1. The difference between market and model option prices is within the bid/ask spread.

2. The calibrated solution is statistically robust.
5 In this case we recover the Stein and Stein (1991) model.
6Even from a pure financial point of view this is impossible to achieve. In fact, market imperfections and ineffi-

ciencies do not allow to identify option prices exactly (a bid/ask spread is always present).
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Following Cont and Tankov (2004), ideally one would attempt to perform a model calibration

by solving the following general non-linear optimization problem ( NS = n. of strikes, NE = n. of

option expires):

{ςi}∗ = arg min
{πi}

NS∑

j=1

NE∑

k=1

wjk

∣∣∣Σ
(
Tk,K

(k)
j ; {πi}

)
−ΣBS

(
Tk,K

(k)
j

)∣∣∣
2

+ ψF ({πi}), (14)

where {πi} is a set of free model parameters, Σ is the model-implied Black-Scholes volatility,

ΣBS is the market-implied Black-Scholes volatility, ψ and wjk are weighting constants, K
(k)
j is the

j-th. strike for options expiring at Tk and F ({πi}) is a convex regularization functional. The above
minimization problem provides in theory a set of “optimal” free parameters {πi}∗.

Formally, the methodology we introduce here shares some features in common with that proposal.

In our case, however, because of the nature of our problem and because we aim at making the

calibrated solution meaningful from a trading perspective, we add a number of additional constraints

driven by statistical and risk-management criteria.

First, (condition C1) the influence of the jumps in the dynamics is confined at short times

while stochastic volatility mainly acts at medium and long expiries to reflect the transition between

“Gamma” and “Vega” regimes, as previously discussed. In this way we enforce smile to be generated

by jumps for short maturities and by stochastic volatility for long maturities, allowing for a perfect

disentanglement between the two noise sources. This assumption is crucial in the calibration process

we address here but it is also beneficial in numerical implementations of PDE’s for option pricing,

as extensively discussed in Galluccio and LeCam (2005). Second, (condition C2) we favour solutions

where the transition between the two regimes is smooth once the model has been calibrated to

liquid instruments in order to guarantee a robust risk-management. In particular, jumps will be

gradually “switched off” to avoid unreasonable discontinuities in across the two regimes. Third,

(condition C2) we enforce solutions where the term structure of the calibrated coefficients is as time-

homogeneous as possible. From a statistical point of view, such models are more robust and realistic

than those models where all parameters are heavily time-dependent. In addition, when parameters

are constant the dynamics of the volatility surface is closer to stationarity and then consistent with

empirical observations. This is also beneficial on the risk-management side (Rebonato (2000)).

4.1 Constrained optimization

In our empirical study we consider options up to 5 years time to expiry since the market is rather

illiquid at longer maturities.7 In our empirical tests we consider data from the EuroStoxx 50 equity

7However, extending our approach beyond 5 years is straightforward.
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index, whose ATM volatility matrix is given in Fig 1b. 8 Similar studies conducted on other indeces

(S&P 500, FTSE 100, DAX and CAC40) provide similar results to the ones presented here and

are available upon request. Two well-known features can be noticed. First, smile convexity is a

decreasing function of time to maturity and is extremely high for short maturities. Second, the

smile shape is not symmetric around the at-the-money (ATM) strike. In other words, the smile is

both convex and “skewed”.

In any time interval [Ti−1, Ti) between two consecutive option expires our model is specified by

a set of 7 independent constant coefficients: the volatility mean reversion level a(t), the volatility

of volatility (volvol) α(t), the constant volatility mean reversion rate λη, the asset-volatility corre-

lation ρ1,2(t), the stochastic jumps intensity ξ(0)(t), the jumps average q(t) and, finally, the jumps

variance v2(t), with t ∈ [Ti−1, Ti). Obviously, any attempt to perform a global calibration on this

7-dimensional manifold is doomed to failure.9 Understanding the impact of each single parameter

on the shape of the smile is instrumental to the problem’s solution. To simplify our discussion in

the beginning we will not consider the presence of jumps.

In a pure stochastic volatility framework, the role of coefficients a(t), α(t) and ρ(t) is indeed

well established (Hagan et al. (2002)). For reader’s convenience, we briefly summarize the main

points here. At the leading order in the volvol α(t), the at-the-money (ATM) volatility is completely

specified by a(t). Thus, a(t) mainly affects the global level of the smile but has little impact on its

overall shape. The Equity-IR correlation ρ(t) affects the asymmetry of the smile (or “skew”) around

the ATM point. Increasing correlation means that assets prices tend to increase when volatility

increases and viceversa. Then, out-of-the money call and in-the-money put options become more

expensive. The net effect is that implied Black volatilities at high strikes increase while Black

volatilities at low strikes decrease, so that the smile takes a positively skewed shape. Similarly,

the more negative the correlation, the more negatively skewed the smile. Finally, the volatility of

volatility (or “volvol”) α(t) rules smile convexity: the higher α(t) the more convex the smile and

viceversa. As a secondary effect, the volvol influences the total variance of the process and (just like

a(t)) it impacts the global level of the smile.10 Results displayed in Fig.2 (where the influence of

8The smooth surface has been obtained by using a BNP Paribas propietary arbitrage-free volatility interpolation

algorithm that is capable of matching quoted market prices within their bid-ask spread. Alternative parametrizations

have been tried, like the one proposed by Fengler (2005), but results are not significantly affected by this choice. Data

correspond to Feb 2nd 2004.
9The causes for this are: i) the non-linear optimization problem is not strictly convex and, ii) some of the model

parameters are quasi-degenerate. This implies that: i) the objective function has many local minima and, ii) it is

almost flat in the maximum gradient direction so that both convergence and robustness are at risk (see Cont and

Tankov (2004)).
10As shown in Fig. 2, by increasing the level of α the ATM volatility increases, as one would intuitively expect.

On the opposite, in affine models (Heston) the ATM volatility is inversely proportional to the volvol coefficient. This
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the three parameters on the smile are compared) support this view. The picture shows that any

among a(t), α(t), ρ(t) plays a different role from the others in explaining possible smile movements.

As shown below, this is a fundamental property in the calibration process.

A fundamental role is played by the mean reversion λ which is assumed constant in our model. A

mean reverting Ornstein-Uhlenbeck process converges to its ergodic measure after a “characteristic

time” τ = 1/λ. The quadratic variation of the asset process in Eq.(1) is given by Qt = η2tS
2
t .

Conditionally to any volatility path, Qt evolves like the square of a lognormal process, so it increases

indefinitely on average as times goes to infinity. Because η is an ergodic process, its variance converges

to an asymptotic value after a time t 
 τ . Therefore, unconditionally to any realization of ηt, the

average of Qt is asymptotically dominated by S2t and the effect of the stochastic volatility becomes

negligible at large times. This shows that the presence of the volatility mean reversion λ provides a

simple and effective tool to “fine tune” the rate of decrease of the smile convexity at long maturities,

as observed in the market (see Fig. 1a, 1b). In models where λ = 0, like the one proposed in Hagan

et al. (2002), it is necessary to artificially impose a decreasing term structure of the volvol to ensure

market consistency. We also remind that λ cannot be statistically inferred from historical time series

since it is not measure change invariant.

When also jumps are present, the picture becomes much more complex. In fact, although jump

parameters ξ(0)(t), q(t) and v(t) play altogether a role similar to a (t) , α(t) and ρ(t) in explaining

possible smile deformations, their influence on the smile shape cannot be as nicely identified as

before since, differently from above, any parameter now plays a “mixed” role. The reason for this

can be best understood in the simplified scenario provided by the Merton model. In this case, the

cumulants of Zt := ln(St) are given by Eq.(12). In a BS setting we have ξ = 0, so that only mean

and variance are different from zero, as expected. In this case the implied smile would be flat and

equal to η. When ξ �= 0 second, third and fourth cumulant play altogether a decisive role in moving

the implied volatility away from its BS level. Eq. (12) and Eq. (10) show that smile deformations

around the BS level can be attributed to either the stochastic intensity ξ, the jumps average q or the

jumps standard deviation v. Since different triplets {ξ, q, v} can in this case be associated to almost

identical smile curves the inverse problem (i.e. determining a unique triplet from a given smile or

a set of smiles) is in general ill-defined (see also Cont and Tankov (2004)). When this happens we

will refer to the associated parameters as being “degenerate”. This identification problem affects a

number of studies, including Andersen and Andreasen (2000) and Bakshi et al. (1997). A first step

towards the problem solution consists of imposing the above mentioned constraints on the problem.

This goes as follows.

1. First (condition C1) we split the calibration problem in two consecutive steps. Initially, the

unrealistic behaviour makes affine models less appealing from a trading perspective than affine-quadratic ones.
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term structure of diffusion coefficients is kept at a (trial) constant level {a0, α0, ρ0} at t < T ∗,

while the smile is calibrated by only adjusting the jump coefficients as shown below. Thus, at

t < T ∗, stochastic volatility does not play any role and the smile is almost entirely generated

by jumps. Once jumps calibration has been achieved, we calibrate the remaining smiles by

adjusting {a(t), α(t), ρ(t)} at t ≥ T ∗ while keeping the jump parameters “frozen” at their

previously calibrated levels. In this way jumps and stochastic volatility are not “mixed up” in

the optimization procedure and some degeneracies (like those described in Cont and Tankov

(2004) are eliminated.

2. Second, (condition C2) we impose that the switch between the two regimes at t < T ∗ and

t ≥ T ∗ is smooth. To meaningfully achieve this, we assume that the stochastic intensity ξ(t)

is a continuous (possibly differentiable) strictly decreasing function, i.e. i) ξ(T ∗) ∈ C0, ii)

ξ(T ∗) = 0, iii) ξ(t) > ξ(t′) for t < t′. Also, the initial set {a0, α0, ρ0} is adjusted to minimize
the jump in the value between the two regimes.

3. Third, (condition C3) the volatility mean reversion λ is adjusted to ensure that the calibrated

set {a(t), α(t), ρ(t)} is as time-homogeneous as possible.

5 Numerical implementation

5.1 Data set

Empirical tests on calibration are performed by using EuroStoxx 50 data on Feb, 2nd 2004. These

data correspond to: a) a set of EuroStoxx forward prices for maturities up to 5Y; b) The whole

EuroStoxx volatility surface for times to expiry up to 5 years. Both sets correspond to mid-market

quotations and have been provided by internal BNP Paribas proprietary systems according to the

market information prevailing at that time.

5.2 Jumps calibration

In the paper above mentioned, Cont and Tankov (2004) show that in Merton’s model the market-

implied calibration of stochastic intensity and diffusion’s volatility from a single smile is impossible

since the two parameters are degenerate. In addition, the optimization problem is not convex and

many different minima exist. Although we never attempt to simultaneously calibrate jumps and
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diffusion, Cont and Tankov remark equally applies if one attempts to calibrate a single smile in a

Merton model.11

Unfortunately, Cont and Tankov (2004) regularization procedure for generic Lévy processes can-

not be directly applied to our problem for two reasons. First, we aim at making the model consistent

with the whole volatility surface and in doing so we need a term structure of model coefficients. Sec-

ond, more fundamentally, the process defined by Eq. (1) is not a Lévy process since its increments

are independent but not stationary.

Instead of attempting a calibration to each smile individually, we propose an alternative ap-

proach aimed at calibrating the whole set of smiles up to (and including) T ∗ by assuming a suitable

parametric form for ξ(t) for given (constant) jumps average q and standard deviation v.

More precisely, we aim at calibrating the three smiles corresponding to options of 1 month, 3

months and 6 months expiry, so that T ∗ = 1
2 and introduce a specific form of ξ(t) according to

condition C2. We find convenient to define ξ(t) from ξ(t) =
(
ω − ω

t

)δ
thanks to the fact that (as

shown below) it provides excellent calibration results with a minimal number of free parameters, ω

and δ. In the applications, ξ(t) must be discretized as follows

ξ(t) = ξ(t, ω, δ) =





ξ1(t, ω, δ) =
(
ω − 12ω

1

)δ
for t ∈

[
T0,

1
12

)

ξ2(t, ω, δ) =
(
ω − 12ω

3

)δ
for t ∈

[
1
12 ,

1
4

)

ξ3(t, ω, δ) =
(
ω − 12ω

6

)δ
for t ∈

[
1
4 ,

1
2

)
, ξ(t) = 0, if t >

1

2
.

With this parametrization, ξ(t) is completely specified once the two constants ω and δ have been

assigned.

Initially, suppose that δ is given and that coefficients {a0, α0, ρ0} have been fixed to a trial level.
Then, the objective function

Gω,δ(q, v) :=

NS∑

j=1

NE∑

k=1

wjk

∣∣∣Σ
(
Tk,K

(k)
j ; q, v, ω, δ

)
−ΣBS

(
Tk,K

(k)
j

)∣∣∣
2

can be plotted as a function of (q, v) for different values of ω and the results are shown in Fig.3.

Two things are worth noticing. First, the function Gω,δ(q, v) is strictly convex around a minimum

independently of the chosen ω (i.e. independently of the level of the jumps intensity - similar results

hold at varying δ). Second, Gω,δ(q, v) is not just locally convex around the (single) minimum but,

instead, its convex portion extends to a wide region in the (q, v) space where no other local minima

exist.

Table 1 provides a more rigorous argument to support this intuitive picture. There, we show the

results of a simple Levenberg-Marquardt numerical minimization algorithm onGω,δ(q, v) for different

11 In other words, the triplet {ξ, q, v} is degenerate as above pointed out.
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choices of the initialization set (qinit, vinit). In other words we solve the problem (q∗(ω), v∗(ω)) =

arg minq,v Gω,δ(q, v) with ω given (in this example ω = −0.3 and δ = 1). We note that the method is

very accurate for a wide range of initial conditions, although the low convexity of the surface around

the minimum demands a good level of numerical accuracy. The optimization algorithm drifts away

from the convex region (and provides no sensible result) only when qinit is very badly chosen at

inception.

These results have been obtained by fixing the stochastic intensity to a given value. One would

be tempted to try estimating the optimal ω jointly with q and v, as a solution of the global least-

squares problem (q∗, v∗, ω∗) = arg minq,v,ω Gω,δ(q, v), for a given δ. This way of proceeding was

suggested, for instance, in Andersen and Andreasen (2000) and Bakshi et al. (1997). Unfortunately,

this direct method is not usually viable because in general {q, v, ω} is a degenerate triplet. Table 2
shows that, no matter how ω is selected, it always exists an optimal couple (q∗(ω), v∗(ω)) such that

the objective function Gω(q∗(ω), v∗(ω)) attains the same minimum value. Thus, Gω(q∗(ω), v∗(ω))

is almost flat in ω and the inverse (minimization) problem on ω is ill-posed.

To overcome this potential issue, we introduce a convex penalization term, as in Cont and Tankov

(2004). In the present case, however, the relative-entropy (or Kullback-Leibler distance) method used

by the authors cannot be applied since ours is not a Lévy process. We then introduce a quadratic

penalization term so that the whole inverse problem reads in general as

(q∗(ω), v∗(ω)) = arg min
(q,v)

NS∑

j=1

NE∑

k=1

wjk

∣∣∣Σ
(
Tk,K

(k)
j ; q, v, ω, δ

)
−ΣBS

(
Tk,K

(k)
j

)∣∣∣
2

, (15)

(ω∗, q∗, v∗) = arg min
ω

[
(qP − q∗(ω))2 + (vP − v∗(ω))2

]
. (16)

Simply stated, the problem consists of determining ω∗ such that the couple (q∗, v∗) is as close as

possible to a “prior” couple
(
qP , vP

)
arbitrarily chosen. A good criterion is to estimate jumps

average and standard deviation from historical data series and to assign
(
qP , vP

)
accordingly. This

choice has the advantage that the optimal solution (ω∗, q∗, v∗) is a guarantee that the market-implied

model stays “close” (in the probability measure space) to the historically estimated one. 12

Although the above methodology provides a unique and stable solution, the resulting errors

between market and model implied smiles can sometimes be beyond the typical volatility bid/ask

spread (i.e., 1% in lognormal units) if δ is badly chosen. In fact, calibration accuracy sensibly

depends on the choice of ξ(t). When δ = 1, the simple hyperbolic shape associated to ξ(t) does not

12As an important remark, we note that the request that couples
(
qP , vP

)
and (q∗, v∗) are close is a well defined

problem in probabilistic terms. In fact, this is equivalent to enforce that the market-implied jumps probability distri-

bution is as close as possible to the historical (objective) one. Girsanov theorem ensures that the jumps distribution

is indeed invariant under changes of probability measure (in our case from the objective to the risk-neutral and

viceversa).
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provide good results while precision can be improved by modifying δ (i.e., by changing the speed of

convergence of ξ(t) to 0 as t→ T ∗).

The main question is how does the choice of δ impact the above picture and whether any complex

interplay between the choice of δ and that of ω exists destroying the above picture. To study this

problem in Fig. 4a we report the results of an optimization performed on δ, i.e., for a given set

{a0, ρ0, α0, ω} we solve the problem

δ∗ = arg min
δ

Gω,δ(q, v), (17)

and we look at how this optimal solution is affected by changes in the trial set {a0, ρ0, α0, ω}. Let
G∗ = Gω,δ∗(q, v) be the minimum of the objective function. We consider a typical set of parameters

as our base case scenario (Series 1). All other curves in Fig.4a are obtained from the base one by

applying a large shock in one single parameter among those in the set {a0, ρ0, α0, ω}. Results can be
summarized as follows, i) δ∗ and G∗ are not sensibly affected by a shock in ω and a0, ii) a shock in

ρ0 affects calibration accuracy (G
∗) but has almost no impact on the optimal δ∗, iii) a shock in α0

affects the optimal δ∗ but has almost no impact on the calibration accuracy (G∗). In addition, Fig4b

further investigates the dependency of δ∗ on α0. The picture shows that the functional relationship

between δ∗ and α0 is linear only for small values of α0.

These results indicate that the choice of the optimal δ∗ is almost entirely dependent on the chosen

value of α0. in other words, once the initial volvol parameter has been set at inception, one can

determine an optimal δ∗ for any given set of {a0, ρ0, ω} by solving problem (17) . Even though after

calibration to the smile ω will be different, δ∗ is guaranteed to stay very close to the new optimal

value. The conclusion is that, once the initial volvol α0 assigned, jumps can be efficiently calibrated

to the market.

5.3 Stochastic volatility calibration

In the last section we showed that it is possible to calibrate the jumps once an initial set {a0, ρ0, α0}
of SV parameters has been assigned. We now address the issue of how optimally select the triplet

{a0, ρ0, α0}. In general, unfortunately, there is no unique answer to this, i.e., there is no obvious

way to decide how to fix a priori the triplet before any calibration is attempted. Despite finding

a unique set is impossible, we introduce a constructive approach that allows calibrating the model

efficiently. The good news is that, once this “pre-calibration” study has been carried out, the initial

set {a0, ρ0, α0} can be taken as granted and one can avoid readjusting it too often (see Section 6 on
this point).

The approach we use is based on the intuitive observation that if {a0, ρ0, α0} has been badly
chosen in the “Gamma” region, the terminal (or cumulative) variance, skewness and kurtosis make
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impossible to calibrate the remaining smiles for options expiring after T ∗. To better understand the

link between {a0, ρ0, α0} and terminal variance, skewness and kurtosis we have performed a number
of tests. As an illustration, we consider three sets of parameters

{
a0, ρ0, α

(i)
0

}
, with i = 1, 2, 3

corresponding to α
(1)
0 = 10%, α

(2)
0 = 30%, α

(3)
0 = 50%. For each given set, the model is then

calibrated to all smiles up to 6 months expiry as previously explained. Finally, all smiles with expiry

beyond 6 months are generated. This test is aimed at measuring the terminal variance, skewness

and kurtosis generated by the initial set {a0, ρ0, α0} (and by jumps) and to check whether they
are compatible with the market prices. Table 3 gathers the results. There, we show the difference

between market and model implied volatility for smiles at 1Y, 2Y, 3Y and 5Y induced by the

calibration at shorter maturities. Results show that, as one might expect, if α0 is assigned a too

high value at the beginning, model-implied smiles at 1Y expiry are inconsistent with the market.

In our case, if α0 = 50% the terminal variance at 1Y is too high: no matter how {a(t), ρ(t), α(t)}
are selected in the time interval [6M, 1Y ] hitting the market smile is impossible. In theory, this

could still be achievable by allowing a(t) to take large negative values but this solution is financially

meaningless.

We can formally define, for a given a0, a “critical” value α̂0 of the volvol coefficient as follows:

α̂0 = sup {α0 : all smiles are calibrated within the bid/ask spread; a(t) > 0, α(t) > 0 } .

In other words, α̂0 is the maximum value of the volvol such that, other parameters being given,

all smiles can be matched by means of a sequence {a(t), ρ(t), α(t)} by keeping both a(t) and α(t)

positive. In the next section we show that calibration can be achieved for a wide range of α0 by

performing a full volatility surface calibration (i.e., α̂0 is normally very high). We finally remark

that the above picture is not significantly altered by ρ0 once its sign has been properly assigned

(smiles are usually negatively skewed implying ρ0 should be always negative). These two properties

are extremely important since they indicate that {a0, ρ0, α0} can be assigned with great flexibility
without compromising the quality of the calibration.

We now assume that {a0, ρ0, α0} has been fixed and that an optimal set {ω∗, q∗, v∗, δ∗} has been
determined accordingly. The next step consists of keeping these parameters fixed and calibrate the

remaining part of the volatility surface at t ≥ T ∗ by adjusting the stochastic volatility coefficients

a(t), α(t) and ρ(t). In other words, starting from the first smile after T ∗, we proceed recursively and

at each interval in between consecutive smiles we attempt solving the following problem

(α∗(t), ρ∗(t), a∗(t)) = arg min
a(t),α(t),ρ(t)

NS∑

j=1

ujk

∣∣∣Σ
(
Tk,K

(k)
j ;α(t), ρ(t), a(t)

)
−ΣBS

(
Tk,K

(k)
j

)∣∣∣
2

,(18)

for t ∈ [Tk, Tk+1), k = 1, · · · , L− 1, T1 = T ∗, (19)

19



where L− 1 is the number of smiles with expiry strictly larger than T ∗. As above anticipated, this

problem is well posed since {α∗(t), ρ∗(t), a∗(t)} are not degenerate.
Finally, λ can be fine tuned so that the calibrated term structure of the volvol a∗(t) is as constant

as possible. Finding the optimal λ∗ can be easily achieved by solving the following least squares

optimization,

λ∗ = arg min
λ



L−1∑

j=1

(
α∗j (λ)− α∗j+1(λ)

)2

 , (20)

where vector (α∗1(λ), α∗2(λ), · · · , α∗L(λ))′ comprises the piecewise constant term structure of α∗(t),

for a given value of λ. In short, λ∗ is the volatility mean reversion that corresponds to the least

oscillating calibrated term structure a∗(t). As before, the good news is that once optimization

problem (20) has been solved it is possible to keep λ∗ fixed without significantly altering the result

in future calibrations. In this way, we empirically established that optimal values for λ are in the

interval [0.4, 0.7], independently on the chosen market.

6 Calibration algorithm and numerical results

6.1 The algorithm

In our example, we calibrate the model on a set of increasing time to expiry options, corresponding

to T1 = 1 month, T2 = 3 months , T3 = 6 months, T4 = 1 year, T5 = 2 years, T6 = 3 years, T7 = 5

years. T0 is the observation date. We define a threshold T ∗ between the two regimes. In our test

we fix T ∗ = 0.5, but similar results can generally be found by fixing T ∗ anywhere between 3 months

and 1 year. We call T< the set of option expiries shorter than T ∗, that is T< := {T : T ≤ T ∗}, with
|T<| = M<. Similarly, T> := {T : T > T ∗}, with |T>| = M>. The calibration algorithm is based on

a recursive procedure that, starting from the shortest expiry T1, proceeds as follows.

1. Choose a “trial” value for λ. Then run a “pre-calibration” test as described in the previous

section to determine, for a given a0, the critical volvol coefficient α̂0. Finally, determine an

initial set {a0, ρ0, α0} by fixing α0 < α̂0.

2. Assign a value to ω and determine δ∗ such that the calibration errors in T< are minimal by

solving (17), while {a0, ρ0, α0} are kept fixed at their initial values.

3. With δ∗ fixed, calibrate the jumps coefficients in T< by solving the two optimization problems
(15) and (16). In other words, for a given ω solve (15) so that ω∗ corresponds to the single

ω such that the quadratic distance between
(
qH , vH

)
and (q∗, v∗) is minimal. This procedure

provides an optimal set {ω∗, q∗, v∗}.
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4. Next, determine the diffusion coefficients by calibrating the smile in the interval T>. Keep jump
parameters frozen at the previously calibrated values, then proceed recursively by sequentially

calibrating the remaining smiles starting from the one associated to options with the shortest

maturity in T>. This is done by solving the problem (18) and provides an optimal term

structure of SV coefficients {α∗(t), ρ∗(t), a∗(t)} for t ≥ T ∗.

5. If the prior mean reversion rate λ(0) has been badly chosen, step 4) might provide a too rapidly

increasing or decreasing term structure {α∗(t), ρ∗(t), a∗(t)}, as previously discussed. We then
proceed (condition C3) by solving the problem (20): choose a new λ(1) and restart from step

1). Then proceed recursively until the optimal λ∗ has been found.

As already discussed, it is not necessary to perform all five steps at any new calibration. For

instance δ∗ and λ∗ are very stable with time and, once estimated, can be occasionally readjusted. In

addition, if one is not interested in ensuring that couple (q∗, v∗) is close to the historically estimated

one, step 3) can be neglected in the algorithm.

Extensive empirical studies performed on S&P and EuroStoxx data in the time period spanning

the years 2002 - 2005 (not reported here) suggest that the optimal λ∗ must lie in the interval [0.4, 0.7],

as above mentioned. Interestingly, this is in contrast with the most recent findings of λ based on

historical data series (Eraker et al. (2000)) that assign to the mean reversion rate much lower values:

λ ∈ [0.013, 0.025] . This indirectly indicates that the market price of volatility risk is significant in

SVJD models.

6.2 Numerical results

In all our tests we calibrate each smile by selecting three liquid options (i.e., NS = 3) struck at Ki,

i = 1, 2, 3. These correspond to the at-the-money forward option (K2), one in-the-money option

(K1), and one out of-the-money option (K3). All results are however independent fromNS. To ensure

selection of liquid (and meaningful) points, for every expiry Ti we fixK1 (resp. K3) to a fixed number

l of standard deviations from the ATM strike, i.e. K1 = K0 − lσATM
√
T , K3 = K0 + lσATM

√
T .

Here, σATM is the at-the-money Black implied volatility13 . Scale parameter l is fixed to 1, although

larger values can be considered in case one needs to calibrate wider portions of the smile. Fixing l

to a too large value must be avoided since far out of the money or in the money options are illiquid.

Spot interest rate is 0.033 and dividends are 0. All weights ujk, wjk are fixed to 1.

Tables 4 and 5 show results of a typical calibration on the EuroStoxx volatility matrix for

α0 = 10% and α0 = 30%, while a0 = 6% is given. We see that (given two quite different values

13Alternatively one could select K1 (resp. K3) as the strike corresponding to 25% (resp. 75%) of the ATM option’s

delta. This choice is common practice in FX markets.
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of the initial volvol coefficient) the model is capable of efficiently calibrating the whole volatility

surface since all errors are within the bid ask spread (typically around 1%). However, when α0 is

set to 10%, the resulting term structure of α(t) is much more irregular than in the second case with

α0 = 30%. In particular, a jump in α(t) exists between the 6 month and the 1Y smile. When

this happens, adjusting λ can help in partially reducing the oscillations of α(t), but to completely

remove the jumps it is usually necessary to adjust α0, as Table 5 demonstrates. Interestingly, the

term structure of a(t) is very regular and smooth in all cases. In addition, the choice of ξ(t) ensures

that the jumps gradually vanish in approaching T ∗ (condition C1), so that the transition between

the two regimes is smooth (condition C2).

Statistical robustness of the calibrated solutions is addressed next. Table 6 shows the output

of a calibration with α0 = 10% after a shock of 1% has been applied uniformly across the whole

volatility matrix. This is the order of magnitude of the shocks occurring between two consecutive

days in the market. In order to determine whether our algorithm is robust, we keep all parameters

at the same level before the shock (in particular we do not revaluate a0,ρ0,α0, λ and ω). Results

show that the calibration accuracy is unaffected by the shock and, more importantly, that the new

set of calibrated coefficients is extremely close to the old one. This clearly demonstrates that the

optimal solution is stable and that meaningful risk-management is possible is this framework.

In Fig 5 we plot the calibrated volatility surface. A comparison with Fig.1b (the original market

volatility surface) shows that the calibration errors are always very small respect to the market

bid/ask spread.

As an important final remark, we note that the calibrated correlation term structure ρ(t) tends to

converge to -1 at large maturities. This clearly indicates that the market-implied skewness is larger

than the one predicted by a SVJD model and is in contrasts with correlation estimations based on

historical data.14 For instance, Eraker et al. (2000) report that ρ varies typically in [−0.4,−0.5]

for the S&P 500 and in [−0.3,−0.4] for the Nasdaq 100 based on statistical estimations. To take

into account these features, dynamics Eq.(1) must be generalized. From a statistical point of view

there is strong evidence of presence of jumps in volatility (Eraker et al. (2000)). Alternatively, these

effects could be accounted for by an extension of the present model to include more complex forms

of local volatility (Hagan et al. (2002)).

14Although the tests presented here refer to the EuroStoxx 50, the same conclusion applies to other indices, including

S&P 500 and FTSE 100.
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7 Conclusions

In this paper we have introduced a market-implied calibration technique that can be used for certain

classes of stochastic volatility jump diffusion models. In particular, we focused on a model within

the linear-quadratic class since generalizations to include stochastic interest rates and multi-currency

markets are viable in this setting. We have demonstrated that calibration of the entire volatility

surface is possible in this framework and we have studied both precision and stability of the algorithm.

Our empirical study indicates, at the same time, that the algorithmic complexity associated to the

calibration of more general SVJD models might represent a major problem in the applications.

Further theoretical and numerical developments in this direction are left to future research.
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A Appendix

The proof is similar to Duffie et al. (2000) and Peng and Scaillet (2004). We start by identifying

the coefficients of the dynamics Eq.(4) . In a more compact notation we have dXt = ζ(Xt, t)dt +

Σ(Xt, t)dWt + dZt. The triplet of characteristics of this semimartingale are quadratic functions of

the state variables since, by direct inspection,

ζ(x, t) = K0(t) + K1(t)x +
∑

k,l=1,2

K
(k,l)
2 (t)x(k)x(l)

with

K0(t) =

(
r − dt − µt

ληa(t)

)
, K1(t) =

(
0 0

0 −λη

)
,

K
(2,2)
2 (t) = 0 if (k, l) �= (2, 2), and K

(2,2)
2 (t) =

(
−1
2 0

0 0

)
.

Similarly, the quadratic variation reads as

Σ(x, t)Σ(x, t)T = H0(t) +
∑

k=1,2

H
(k)
1 (t)x(k) +

∑

k,l=1,2

H
(k,l)
2 (t)x(k)x(l)

since

Σ(x, t)Σ(x, t)t =

(
x22 ρ1αtx2

ρ1αtx2 (ρ1α
2
t + ρ2α

2
t )

)

and

H0 =

(
0 0

0 (ρ21α
2
t + ρ22α

2
t )

)
, H

(2)
1 (t) =

(
0 ρ1αt

ρ1αt 0

)
, H

(2,2)
1 (t) =

(
1 0

0 0

)
,

H
(1)
1 (t) = H

(3)
1 (t) = H

(1,1)
2 (t) = H

(1,2)
2 (t) = H

(2,1)
2 (t) = 0.

We remark that e−
∫
t

0
rsdsψ(u,Xt, t, T ) is a P∗-martingale. Equivalently, the process h(t,Xt) =

eYt+γ(t,T )+β(t,T )·Xt+δ(t,T )(X2
t )

2

is a P∗-martingale where Ys = −
∫ t

0 rsds is a deterministic process.

Since the predictable finite variation process of this semi martingale must be equal to zero, appli-

cation of Itô formula to h(t,Xt) allows identifying the drift term which results into the following

equation

0 = ∂tf(t, x, y) +
∑

i=1,2

∂xih(t, x, y)ζi(t, x)− rt.h(t, x, y)

+
1

2

∑

i,j=1,2

(ΣΣt)i,j(t, x)∂2i,jh(t, x, y). +Ah(t, x, y),
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where ζ is the drift vector and Σ the volatility matrix of the diffusion. A is the infinitesimal generator
of the jump process, i.e.,

Af(t,X1,X2) = ξ(t,X1,X2)

∫

R

[f(t,X1 + u,X2)− f(t,X1,X2)]dG(u),

Because

Ah(t,X1,X2) =
(
ξ0 + ξ1X1 + ξ2X2 + ξ3X2

2

)
(L(β1(t, T ))− 1)h(t,X1,X2),

after some algebra, we finally get

0 = ∂tγ + ∂tβ1(t)X1 + ∂tβ2(t)X2 + ∂tδ(t)X2
2

+β1(t)
(
rt −X2

2/2− dt − µt

)
+ λ(β2(t) + 2δ(t)X2)(a(t)−X2)

+
1

2

(
β1(t)

2 (X2)
2 + 2β1(t)(β2(t) + 2δ(t)X2)ρ1X2αt +

(
2δ(t) + (β2(t) + 2δX2)

2
)
α2t

)

+
(
ξ0 + ξ1X1 + ξ2X2 + ξ3X2

2

)
(L(β1(t, T ))− 1)

For a completely generic choice of X1 and X2 this expression is a second order polynomial in X and

is identically equal to zero if and only if all its coefficients are identically zero, which provides the

four ODE’s.

B Appendix

We consider a generic time interval [T i−1, T i) where all equation coefficients are supposed to be

constant. To solve the system of Riccati ODE’s, a precise order must be followed. In this appendix

we will omit specifying the time dependency of some variables to lighten notation.

- First equation. Solution subject to the final condition β1(T
i) = u

(1)
i is immediate, and reads

β1(t) = u
(1)
i . (21)

- Third equation. The equation satisfied by δ(t) is a second-order Riccati equation with

terminal condition δ(T i) = u
(3)
i

∂δ(t)
∂t = 1

2

(
ui1 − (ui1)

2
)

+ 2
(
λ− αiρ1u

i
1

)
]δ(t)− 2α2δ(t)2,

and we have used β1(t) given Eq.(21). After a little algebra, we can rewrite the equations as

∂δ(t)

∂t
= 2

(
1

α2i

(
B2
i + α2iAi

)
−
(
αiδ(t) +

Bi

αi

)2)

= −2

(
αiδ(t) +

Bi

αi
+

Γi

αi

)(
αiδ(t) +

Bi

αi
− Γi

αi

)
,
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or, equivalently, by separating the variables

4Γidt = αidδ(t)


 1(

αiδ(t) + Bi

αi
+ Γi

αi

) − 1(
αiδ(t) + Bi

αi
− Γi

αi

)




and the solution, given the above final condition u
(3)
i is therefore

δ(t) = − 1

α2i

(
(Bi + Γi) +

2ΓiCi

e4Γi(Ti−t) −Ci

)
. (22)

- Second equation. This equation is linear and its solution (with terminal condition β2(T
i) =

u
(2)
i is lengthy but straightforward. We have

∂β2(t)

∂t
= −2λaiδ −

(
ρ1αiβ1 + 2α2i δ

)
β2

Introducing a new set of functions

U(t) = −2λaiδ, V (t) = −
(
ρ1αiβ1 + 2α2i δ

)

This equation becomes ∂β2(t)/∂t = U(t) + V (t)β2(t) so that, formally

β2(t) = u
(2)
i e−

∫
T
i

t
V (s)ds − e−

∫
T
i

t
V (s)ds

∫ T i

t

U(x)e
∫
T
i

x
V (s)dsdx.

After a number of algebraic manipulations it is possible to solve all integrals explicitly, and we finally

obtain

β2(t) = M(t)
(
u
(2)
i −K(t)

)
. (23)

with M(t) and K(t) defined in the main text.

- Fifth equation The equation to solve reads as

∂γ

∂t
= −Φ0(β1) + (d + µ− r)β1 − ληaiβ2 − α2i

(
δ + β22/2

)

with terminal condition γ(T i) = u
(4)
i . Once again, the solution is straightforward but requires some

lengthy algebra. We point out that integrals of β2(t) and β2(t)
2 can be both expressed in terms

of hypergeometric functions but the solution is rather involved. For this reason, we found more

convenient to present the solution in integral form. In the applications, both integrals can be easily

evaluated numerically through a simple Gaussian quadrature.
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C Appendix

If Zt satisfies the SDE dZt =
(
r − η2/2− κt

)
dt + ηdBt + dNt where the jump Poisson process is

defined as in the text, its characteristic function is given by ϕt(θ) = E [exp (iθZt)] = exp [tψ(θ)],

since Z is a Lévy process and, in particular, its increments are stationary and independent (Jacod

and Shiryaev (1987)). Function ψ(θ) is known as characteristic exponent and can be computed as

follows. By recalling that Nt =
∑nt

j=1 Yj , and that Yj are i.i.d. random variables, we get (by the

laws of conditional expectation)

E [exp (iθZt)] = exp

[
i

(
r − η2

2
− κt

)
θt− η2

2
θ2t

]
E [exp (iθNt)]

= exp

[
i

(
r − η2

2
− κt

)
θt− η2

2
θ2t

] ∞∑

k=0

E [exp (iθNt) |Nt = k]P (Nt = k)

= exp

[
i

(
r − η2

2
− κt

)
θt− η2

2
θ2t

]
exp

[
ξt

∫

R

(
eiθx − 1

)
n(x)dx

]
, (24)

where we have used the property P (Nt = k) = (ξt)k

k! exp (−ξt) and E [exp (iθNt) |Nt = k] = E [exp iθY ]k.

Here, n(x) is the Gaussian distribution with mean q and variance v2. Thus,

ψ(θ) = i

(
r − η2

2
− κt

)
θ − η2

2
θ2 + ξ

∫

R

(
eiθx − 1

)
n(x)dx

= i

(
r − η2

2
− κt

)
θ − η2

2
θ2 + ξ

[
exp

(
iθq − θ2v2

2

)
− 1

]
.

From the knowledge of ϕt(θ), the centered moment Kl = E

[
(Zt − E (Zt))

l
]
of order l can be

evaluated from Kl = 1
il

d
dθl

[lnϕt(θ)]
∣∣
θ=0

= t
il

d
dθl

[ψ(θ)]
∣∣
θ=0

. Simple algebra then provides the result.
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Table 1
Robustness of the minimization algorithm for jumps calibration

Table 1a

2% 5% 15% 20% 30% 50% 80%

-80% -7.20% -7.20% -7.20% -7.20% -7.20% -7.20% -7.20%

-50% -7.20% -7.20% -7.20% -7.20% -7.20% -7.20% -7.20%

-20% -7.20% -7.20% -7.20% -7.20% -7.20% -7.20% -7.20%

Initial jumps 0% -7.20% -7.20% -7.20% -7.20% -7.20% -7.20% -7.20%

average q(0) 20% 7.56% 7.56% -7.20% -7.20% -7.20% -7.20% -7.20%

50% 7.56% 7.56% -7.20% -7.20% -7.20% -7.20% -7.20%

80% -7.20% -7.20% -7.20% -7.20% -7.20% -7.20% -7.20%

Table 1b

2% 5% 15% 20% 30% 50% 80%

-80% 7.95% 7.95% 7.95% 7.95% 7.95% 7.95% 7.95%

-50% 7.95% 7.95% 7.95% 7.95% 7.95% 7.95% 7.95%

-20% 7.95% 7.95% 7.95% 7.95% 7.95% 7.95% 7.95%

Initial jumps 0% 7.95% 7.95% 7.95% 7.95% 7.95% 7.95% 7.95%

average q(0) 20% 0.00% 0.00% 7.95% 7.95% 7.95% 7.95% 7.95%

50% 0.00% 0.00% 7.95% 7.95% 7.95% 7.95% 7.95%

80% 7.95% 7.95% 7.95% 7.95% 7.95% 7.95% 7.95%

Robustness of the minimization algorithm for jumps. For a given row and column, Table 1a (resp. 1b)   provides the optimal

 jumps average (resp. standard deviation) that is obtained by initializing a Levenberg-Marquardt algorithm at the given couple (q(0),v(0)) 

We see that the algorithm converges to the optimal couple (q = -7.2%, v = 7.95%) for a wide range of

initialization parameters. Coefficients used are: delta =1, a(0)= 2%, rho(0)=0%, alpha(0)= 10%, omega = -0.3

Initial jumps standard deviation   v(0)

Initial jumps standard deviation   v(0)



Table 2
Minimum of the objective function at varying omega parameter

Omega -0.100 -0.200 -0.500 -0.700 -1.000 -1.500 -1.800 -2.000

Least squares error 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006%

Precision of the minimization algorithm at varying omega. The error refers to the minimum of the objective function

with weights equal to 1. Other parameters are: delta =1, a(0)= 2%, rho(0)=0%, alpha(0)= 10%

Table 3
Differences between market and model implied volatility for different values of the initial volvol (alpha(0))

-1 st. dev. ATM +1 st. dev. -1 st. dev. ATM +1 st. dev. -1 st. dev. ATM +1 st. dev.

1Y 5.73% 3.17% 2.71% 2.13% 1.13% -0.09% -1.59% -0.90% -0.37%

2Y 9.40% 6.74% 5.36% 5.43% 4.45% 2.22% 2.23% 1.55% 0.52%

3Y 11.62% 8.81% 6.89% 7.76% 6.75% 3.89% 3.78% 3.11% 2.52%

5Y 13.85% 11.32% 9.01% 10.47% 9.67% 6.46% 7.63% 6.74% 5.28%

The difference between market and model implied volatility at varying time to expiry and for different values of

the initial volvol parameter.  The model is calibrated to smiles up to 6M expiry only, then all coefficients are set to 0.

Parameters used are a(0) = 11%, rho = -40%, Omega = -0.3, delta = 0.14.

The 1Y model-generated smile with alpha(0) = 50% (in bold)  is much higher than the market one. 

It is then impossible to calibrate the market  by constraining the volatility mean reversion level to take positive values

alpha(0) = 10% alpha(0) = 30% alpha(0) = 50% 



Table 4
Calibration errors and associated calibrated parameters with alpha(0) = 10%

a alpha rho csi q v

-1 st. dev. ATM +1 st. dev.

Mod. Vol. 20.06% 15.06% 14.81%

1M Market Vol. 19.85% 15.94% 14.81% 6.00% 10.00% -60.00% 120.0% -6.15% 14.25%

Error 0.21% -0.88% 0.00%

Mod. Vol. 18.96% 16.47% 15.01%

3M Market Vol. 18.91% 16.71% 15.45% 6.00% 10.00% -60.00% 95.0% -6.15% 14.25%

Error 0.05% -0.24% -0.44%

Mod. Vol. 18.61% 17.07% 15.78%

6M Market Vol. 18.85% 17.19% 16.02% 6.00% 10.00% -60.00% 76.0% -6.15% 14.25%

Error -0.24% -0.12% -0.24%

Mod. Vol. 21.84% 18.10% 14.76%

1Y Market Vol. 22.49% 17.78% 15.19% 6.46% 39.35% -95.57% 0.0% 0.00% 0.00%

Error -0.65% 0.32% -0.43%

Mod. Vol. 22.62% 18.45% 15.28%

2Y Market Vol. 22.91% 18.22% 15.44% 6.10% 14.00% -67.45% 0.0% 0.00% 0.00%

Error -0.29% 0.23% -0.16%

Mod. Vol. 22.91% 18.60% 15.27%

3Y Market Vol. 23.36% 18.44% 15.46% 5.57% 25.10% -98.83% 0.0% 0.00% 0.00%

Error -0.45% 0.16% -0.19%

Mod. Vol. 23.25% 19.06% 15.79%

5Y Market Vol. 23.38% 18.86% 15.81% 5.87% 23.24% -99.60% 0.0% 0.00% 0.00%

Error -0.13% 0.20% -0.02%

Comparison between market and model generated implied volatilities on three different strikes after calibration .

Up to smiles of 6M expiry, all SV coefficients are kept to a constant level and smiles are calibrated with jumps only

For the remaining part jumps are switched off and market is calibrated through stochastic volatility

Alpha(0) is fixed at 10%. Other model parameters are: lambda = 0.6, a(0) = 0.06, rho(0) = -0.6, delta = 0.1, volatility initial condition =0.11.

Errors are in absolute units

alpha(0) = 10% 



Table 5
Calibration errors and associated calibrated parameters with alpha(0) = 30%

a alpha rho csi q v

-1 st. dev. ATM +1 st. dev.

Mod. Vol. 19.99% 15.46% 14.94%

1M Market Vol. 19.85% 15.94% 14.81% 6.00% 30.00% -60.00% 133.2% -2.75% 9.34%

Error 0.14% -0.48% 0.13%

Mod. Vol. 19.10% 16.79% 15.23%

3M Market Vol. 18.91% 16.71% 15.45% 6.00% 30.00% -60.00% 99.3% -2.75% 9.34%

Error 0.19% 0.08% -0.22%

Mod. Vol. 19.46% 17.95% 16.70%

6M Market Vol. 18.85% 17.19% 16.02% 6.00% 30.00% -60.00% 75.5% -2.75% 9.34%

Error 0.61% 0.76% 0.68%

Mod. Vol. 22.13% 17.98% 15.17%

1Y Market Vol. 22.49% 17.78% 15.19% 8.43% 22.23% -88.34% 0.0% 0.00% 0.00%

Error -0.36% 0.20% -0.02%

Mod. Vol. 22.64% 18.51% 15.75%

2Y Market Vol. 22.91% 18.22% 15.44% 9.31% 21.58% -78.45% 0.0% 0.00% 0.00%

Error -0.27% 0.29% 0.31%

Mod. Vol. 23.02% 18.64% 15.56%

3Y Market Vol. 23.36% 18.44% 15.46% 6.37% 20.40% -96.34% 0.0% 0.00% 0.00%

Error -0.34% 0.19% 0.10%

Mod. Vol. 23.16% 19.09% 16.09%

5Y Market Vol. 23.38% 18.86% 15.81% 5.89% 23.45% -98.48% 0.0% 0.00% 0.00%

Error -0.22% 0.23% 0.28%

Comparison between market and model generated implied volatilities on three different strikes after calibration .

Up to smiles of 6M expiry, all SV coefficients are kept to a constant level and smiles are calibrated with jumps only

For the remaining part jumps are switched off and market is calibrated through stochastic volatility

Alpha(0) is fixed at 30%. Other model parameters are: lambda = 0.6, a(0) = 0.06, rho(0) = -0.6, delta = 0.4, volatility initial condition =0.11.

Errors are in absolute units

alpha(0) = 30% 



Table 6
Calibration errors and associated calibrated parameters with alpha(0) = 10% after a 1% shock in the market volatility

a alpha rho csi q v

-1 st. dev. ATM +1 st. dev.

Mod. Vol. 20.73% 16.15% 16.08%

1M Market Vol. 20.85% 16.94% 15.81% 6.00% 10.00% -60.00% 120.0% -6.02% 15.87%

Error -0.12% -0.79% 0.27%

Mod. Vol. 20.16% 17.80% 16.55%

3M Market Vol. 19.91% 17.71% 16.45% 6.00% 10.00% -60.00% 95.0% -6.02% 15.87%

Error 0.25% 0.09% 0.10%

Mod. Vol. 20.12% 18.64% 17.48%

6M Market Vol. 19.85% 18.19% 17.02% 6.00% 10.00% -60.00% 76.0% -6.02% 15.87%

Error 0.27% 0.45% 0.46%

Mod. Vol. 22.74% 19.09% 16.01%

1Y Market Vol. 23.49% 18.78% 16.19% 6.13% 40.12% -95.00% 0.0% 0.00% 0.00%

Error -0.75% 0.31% -0.18%

Mod. Vol. 23.11% 19.06% 16.02%

2Y Market Vol. 23.91% 19.22% 16.44% 6.03% 13.45% -80.00% 0.0% 0.00% 0.00%

Error -0.80% -0.16% -0.42%

Mod. Vol. 23.88% 19.69% 16.41%

3Y Market Vol. 24.36% 19.44% 16.46% 5.87% 29.54% -98.00% 0.0% 0.00% 0.00%

Error -0.48% 0.25% -0.05%

Mod. Vol. 24.19% 20.02% 16.77%

5Y Market Vol. 24.38% 19.86% 16.81% 5.65% 23.12% -99.00% 0.0% 0.00% 0.00%

Error -0.19% 0.16% -0.04%

Comparison between market and model generated implied volatilities on three different strikes after calibration .

Market volatility surface has been artificially shocked by 1% 

Up to smiles of 6M expiry, all SV coefficients are kept to a constant level and smiles are calibrated with jumps only

For the remaining part jumps are switched off and market is calibrated through stochastic volatility

Alpha(0) is fixed at 10%. Other model parameters are: lambda = 0.6, a(0) = 0.06, rho(0) = -0.6, delta = 0.06, volatility initial condition =0.12.

Errors are in absolute units

alpha(0) = 10% 



Fig 1a

Comparison of butterfly prices between market and the pure SV model Fig 1b

Series 1: Market butterfly on Feb 2nd, 2004 The EuroStoxx implied volatility matrix 

Series 2: Model butterfly with a= 0.1, rho =0, alpha =0.1, lambda = 5% on  Feb, 2nd 2004

Series 3: Model butterfly with a= 0.1, rho =0, alpha =0.1, lambda = 60%
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Fig 2

The picture shows and compares the impact of a shock in different SV parameters on the smile. Jumps are set to zero

Volatility initial condition eta(0) = 0.11.

Series 1: Base scenario. Parameters: a = 0.1, rho = 0, alpha =0.1

Series 2: Shock in the volatility mean reversion level a.  Parameters: a = 0.15, rho = 0, alpha =0.1

Series 3: Shock in the correlation rho. Parameters:   a = 0.1, rho = -0.2, alpha =0.1

Series 4: Shock in the volvol alpha. Parameters:   a = 0.1, rho = 0, alpha =0.15
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Fig. 3
Plot of the objective function associated to the optimization problem Eq.(14) for different values of 

the omega parameter. For a given omega, the surface is plotted at three different scales 

 Delta  is fixed to 1 in this example.

Other coefficients are: a(0)= 2%, rho(0)=0%, alpha(0)= 10%.
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Fig 4a Fig4b

Minimum of the objectve function as a function of delta Dependency of optimal delta from alpha(0)

Series 1:   a(0)=7%, rho(0) =-40%, alpha(0) =10%, omega = -0.3

Series 2:   a(0)=7%, rho(0) =-40%, alpha(0) =10%, omega = -0.6

Series 3:   a(0)=13%, rho(0) =-40%, alpha(0) =10%, omega = -0.3

Series 4:   a(0)=7%, rho(0) =-99%, alpha(0) =10%, omega = -0.3

Series 5:   a(0)=7%, rho(0) =-40%, alpha(0) =25%, omega = -0.3
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Fig 5
Calibrated   volatility   surface
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