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Abstract

We consider the position management problem for an agent trading a mean-reverting asset. This
problem arises in many statistical and fundamental arbitrage trading situations when the short-
term returns on an asset are predictable but limited risk-bearing capacity does not allow to fully
exploit this predictability. The model is rather simple; it does not require any inputs apart from the
parameters of the price process and agent’s relative risk aversion. However, the model reproduces
some realistic patterns of traders’ behaviour. We use the Ornstein-Uhlenbeck process to model the
price process and consider a finite horizon power utility agent. The dynamic programming approach
yields a non-linear PDE. It is solved explicitly, and simple formulas for the value function and the
optimal trading strategy are obtained. We use Monte-Carlo simulation to check for the effects of
parameter misspecification.
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1 Introduction

1.1 Motivation

Many academic papers about optimal trading rules and portfolio selection assume that the assets
follow geometric Brownian motions, or, more generally, random walks. These papers are typically
concerned with portfolio selection problems faced by long-term investors. In this paper, we consider
a problem where the asset price is driven by a mean-reverting process. With some exceptions (e.g.
[Lo]), this kind of processes is not widely used to model stock or bond price dynamics. However
similar portfolio selection problems arise naturally in many “relative value” strategies assuming some
kind of mean reversion in a tradable asset.

Figure 1: Difference of ordinary share close price for BASF AG and Bayer AG, 1997-2001.

Consider, for example, a limited capital speculator trading the spread (i.e. the difference) between
two cointegrated assets or, more generally, an arbitrageur with a limited capital trading a mean-
reverting asset. The trader knows the “correct” (long-term average) price of the asset, and he knows
that the price will sooner or later revert to the correct level, but the risk is that the position losses
may become unbearable for the trader before the reversion happens. The finite horizon assumption
is quite realistic because the bonuses to traders and fees to hedge fund managers are usually paid
yearly. Just to give an example, Fig. 1 shows the spread of the once famous BASF-Bayer stock pair.

Faced with a mean-reverting process, a trader would typically take a long (i.e. positive) position
in the asset when the asset is below its long-term mean and a short (i.e. negative) position when the
asset is below the long-term mean. He would then either liquidate the position when the price reverts
closer to the mean and take the profit or he might have to close the position before the reversion
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happens and face the losses. The question is in the size of the position and how the position should
be optimally managed as the price and the trader’s wealth change and time passes by. An often rule
of thumb is that one opens the short position as soon as the spread is above one standard deviation
from its mean and a long position as soon as the spread is below one standard deviation.

It is well known that capital and risk-bearing constraints may seriously limit arbitrage activities.
Shleifer [Shl] built an equilibrium model for a market with limited capital arbitrageurs.

We solve the optimal problem assuming an Ornstein-Uhlenbeck process for the price and power
utility over the final wealth for a finite horizon agent. This model was first formulated for the power
utility case and solved for the log-utility case by Mendez-Vivez, Morton, and Naik, [M], [M-VMN].

Besides the quantitative result, there is a number of interesting qualitative questions to answer
about the optimal strategy.

• When and how aggressively should one open the position?

• When should one cut a loosing position?

• Can a trader ever be happy when the spread widens against his position?

• What is the effect of process parameters on optimal strategy?

• How does the trading strategy and the value function change as the time horizon approaches?

• What is the effect of risk aversion on position term dependence?

• How the process parameters uncertainty affects the optimal strategy?

We answer these questions in section 3.

1.2 Choice of the price process

Without loss of generality we can assume that the long-term mean of the price process is zero. WE
stick to the simplest example of a mean-reverting process, namely, the Ornstein-Uhlenbeck process
given by

dXt = −kXtdt + σdBt, (1)

where Bt is a Brownian motion, k and σ are positive constants. This process will revert to its long-
term mean zero. More exactly, given Xt, the distribution of Xt+s, s > 0 is normal with parameters

E(Xt+s|Xt) = Xte
−ks; V ar(Xt+s|Xt) =

(
1− e−2ks

2k

)
σ2. (2)

Informally, the constant k measures the speed of the mean-reversion and σ measures the strength
of the noise component.

1.3 Choice of the utility function

For −∞ < γ < 1 we consider power utility

U = U(WT ) =
1
γ

W γ
T (3)

over the terminal wealth UT . This is a simple but rich enough family of utility functions. Utility
functions are defined up to an additive constant. To include the log-utility as a special case, it is
sometimes more convenient to consider the family of utility functions U(WT ) = 1

γ (W γ
T − 1). Taking

the limit γ → 0 we obtain the log-utility function U(WT ) = log(WT ). The log-utility version of our
problem was solved by A. Morton [M].
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The relative risk aversion is measured by 1−γ, so the bigger γ is, the less risk averse is the agent.
In the limit γ → 1 we have a linear utility function. In section 3 we study the effect of γ on trading
strategy.

1.4 The model

The problem can be treated in the general portfolio optimization framework of [Mer]. Suppose a
traded asset follows an Ornstein-Uhlenbeck process (1). It is convenient to think about Xt as a
“spread” between the price of an asset and its “fair value”. Let αt be a trader’s position at time t,
i.e. the number of units of the asset held. This parameter is the control in our optimization problem.
Assuming zero interest rates and no market frictions, the wealth dynamics for a given control αt is
given by

dWt = αtdXt = −kαtXtdt + αtσdBt. (4)

We assume that there are no restrictions on α, so short selling is allowed and there are no marginal
requirements on wealth W .

We solve the expected terminal utility maximization problem for an agent with a prespecified
time horizon T and initial wealth W0. The utility function (3) is defined over the terminal wealth
WT . The value function J(Wt, Xt, t) is the expectation of the terminal utility conditional on the
information available at time t:

J(Wt, Xt, t) = sup
αt

Et
1
γ

W γ
T . (5)

1.5 Normalization

It is more convenient to work with dimensionless time and money. Let $ be the dimension of X;
we denote it by [X] = $. By T we denote the dimension of time. From Eq. (1) it is clear that
[σ] = $T−1/2 and [k] = T−1. Renormalizing price Xt, position size αt, and time t

X → X

σ

√
k, (6)

α → α√
k

σ, (7)

t → kt,

we can assume that k = 1 and σ = 1. The wealth W does not change under this normalization. Note
that this normalization is slightly different from one used in [M-VMN].

1.6 Overview

In [M-VMN] it is proven that for γ = 0 (log-utility case) the optimal control is given simply by

αt = −WtXt.

The case γ = 0 is simpler than the general case because a log-utility agent does not hedge intertem-
porally (see [Mer]) and the equations are much simpler. The same paper also derives an approximate
solution for the case γ < 0. The approximation does not behave particularly well.

In Section 2, we obtain an exact solution to the problem defined by Eqs. (1) – (5) for the general
case γ < 1, γ 6= 0. The answer is given by Eqs. (16) and (17). In section 3, we analyze this solution.
We are looking at how J and α change as the spread X changes and how the risk aversion affects
trader’s strategy.
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We will see that although our model is very simple, it reproduces some of the typical trader
behavior patterns. For example, if a trader is more risk-averse than a log-utility one, then he will
cut his position as the time horizon approaches. This behavior is similar to the anecdotical evidence
on real position management practice.

Section 4 concludes with suggestions for possible generalizations.

2 Main result

2.1 The Hamilton-Jacobi-Bellman equation

We need to find the optimal control α∗(Wt, Xt, t) and the value function J(Wt, Xt, t) as explicit
functions of wealth Wt, price Xt, and time t.

The Hamilton-Jacobi-Bellman equation1 is

sup
α

(
Jt − xJx − αxJw +

1
2
Jxx +

1
2
α2Jww + αJxw

)
= 0 (8)

The first order optimality condition on control α∗ is

α∗(w, x, t) = x
Jw

Jww
− Jxw

Jww
. (9)

Note that the first summand in the right-hand side of Eq.(9) is the myopic demand term cor-
responding to a static optimization problem while the second term hedges from changes in the
investment opportunity set. For a log-utility investor (γ = 0) the second term vanishes (see [Mer].)

Substituting this condition into the Hamilton-Jacobi-Bellman equation for the value function, we
obtain the non-linear PDE

Jt +
1
2
Jxx − xJx −

1
2
Jww

(
Jxw

Jww
− x

Jw

Jww

)2

= 0. (10)

2.2 Main theorem

Let
τ = T − t (11)

be the time left for trading and define the constant ν and time functions C(τ), C ′(τ), and D(τ) by

ν =
1√

1− γ
(12)

C(τ) = cosh ντ + ν sinh ντ (13)

C ′(τ) =
dC(τ)

dτ
= ν sinh ντ + ν2 cosh ντ (14)

D(τ) =
C ′(τ)
C(τ)

. (15)

As we shall see, the function D(τ) plays a crucial role in determining the optimal strategy.

1see e.g. [Fle].
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Theorem 1 Suppose that γ < 0 or 0 < γ < 1. Then the optimal strategy for the problem (1) – (5)
is given by

α∗t = −wxD(τ). (16)

The value function is given by

J(w, x, t) =
1
γ

wγ
√

eτC(τ)γ−1 exp
(

x2

2
(1 + (γ − 1)D(τ))

)
, (17)

where τ , C(τ), and D(τ) are defined by Eqs. (11) – (15) and Xt = x, Wt = w.

We will prove the theorem in the Appendix.
Note that the optimal position is linear in both wealth Wt and spread Xt. The term under the

last exponent in (17) measures the expected utility of the immediate trading opportunity. If Xt = 0
i.e. there are no immediate trading opportunities, the value function (17) simplifies to

J(w, 0, t) =
1
γ

wγ
√

eτC(τ)γ−1.

The 1
γ wγ term is just the expected utility generated by the present wealth. The square root term

can be thought of as the value of the time. We will analyze Eqs. (16) and (17) in more detail in
section 3.

3 Analysis

In this section, we analyze the behavior of solution (16) - (17). Unless specified otherwise, the
parameters used for illustrations were k = 2, σ = 1, and γ = −2. From Eq. (2), it follows that the
long-term standard deviation of the price process value is

√
2/2, so, roughly, an absolute value of X

greater than 0.7 presents a reasonable trading opportunity.

3.1 Position management

Let us look at how the value function and trading position change as Xt changes. Using Ito’s lemma,
we see from (16) that the diffusion term of dαt is

−D(τ) (Wt + αtXt) .

Thus, the covariance of dα and dX is

Cov (dα, dX) = −D(τ)(Wt + αtXt) = WtD(τ)
(
−1 + X2

t D(τ)
)
. (18)

This is negative whenever
|X| ≤

√
1/D(τ).

Consequently, as Xt diverges from 0 either way, we start slowly building up the position αt of the
opposite sign than Xt. If Xt diverges further from 0, our position is making a loss, but we are still
increasing the position until the squared spread X2

t reaches 1/D(τ). If the spread widens beyond
that value, we start cutting a loss-making position. Another interpretation of Eq. (18) is that we
start cutting a loss-making position as soon as the position spread −αXt exceeds total wealth Wt.
Fig. 2 shows how D(τ) depends on remaining time τ for different values of γ.

Not surprisingly, for the log-utility case γ = 0, the threshold 1/D(τ) equals identically one and
we are getting the same result as in [M] and [M-VMN].
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Figure 2: D(τ) as a function of the remaining time τ for five different values of γ.

3.2 Value function dynamics

Let us check now how the value function J(Wt, Xt, t) evolves with Xt. In [M-VMN], it is shown
that a log-utility agent’s value function always decreases as the spread moves against his position. It
might be the case that a more aggressive agent’s value function sometimes increases as the spread Xt

moves against his position because the investment opportunity set improves. Let us check whether
this ever happens to a power utility agent.

Using Ito’s lemma, we see from (17) that the diffusion term of dJt is

JtXt (1−D(τ)) .

Thus,
Cov (dJ, dX) = JtXt (1−D(τ)) . (19)

For γ < 0, the utility function is always negative, so the value function is also always negative.
Similarly, for γ > 0 the value function J is always positive. It is easy to check that the sign of
1−D(τ) is opposite to the sign of γ for all τ . Thus, Cov (dJ, dX) is positive for Xt < 0 and negative
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for Xt > 0. This means that any power utility agent suffers decrease in his value function J as the
spread moves against his position. This is true even for an agent with an almost linear utility γ → 1.

For 0 < γ < 1 there is a non-zero bankruptcy probability.

3.3 Time value

Let us look once more at how the value function depends on the time left for trading. Recall that

J(w, x, t) =
1
γ

wγ︸︷︷︸
A

√
eτC(τ)γ−1︸ ︷︷ ︸

B

exp
(

x2

2
(1 + (γ − 1)D(τ))

)
︸ ︷︷ ︸

C

, (20)

where τ , C(τ), and D(τ) are defined by Eqs. (11) – (15) and Xt = x, Wt = w. Thus, the value
function J can be split into three multiplicative terms. Term A is the value derived from the present
wealth, term B is the time value, and term C is the value of the immediate investment opportunity.
Fig. 3 shows2 dependence of the value function J on time τ assuming that there is no immediate
opportunity, i.e. X = 0.

Figure 3: Adjusted time value, X = 0, W = 1.

Since log-utility agent’s strategy does not depend on time, his value function J grows linearly
with time (the green line on Fig. 3.) Extension of the trading period beyond a certain minimal

2The figure shows the graphs of the function J(w, x, τ)− 1
γ

for w = 1, x = 0, 0 ≤ τ ≤ 1 and several different values of

γ. Substraction of 1
γ

from the value function makes easier the comparison with the log-utility case γ = 0.
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length does not significantly increase the value function of a sufficiently risk-averse agent (the pink
and the red lines on Fig. 3.)

The value of time grows roughly exponentially in X2
t if there is an immediate investment oppor-

tunity.

3.4 Effect of risk-aversion on time inhomogeneity

The ratio D(τ) defined by Eq. (15) plays a crucial role in most of our formulas: it determines the
position size in Eq. (16), the threshold at which we start unwinding a loosing position (Eq. (18)),
and it also enters equations (17) for the value function and (19) for the covariance of J and X. Fig. 2
shows the graphs of D(τ) for different values of γ. Recall that Eq. (16) implies that for given wealth
Wt and spread Xt, position size is proportional to D(τ).

We see that for γ = 0 (log-utility) optimal position does not depend on time. For γ > 0 the agent
is less risk-averse than a log-utility agent. So, for given price Xt and wealth Wt, his position increases
as the final time approaches. In practice, traders often tend to become less aggressive as the bonus
time approaches. This is consistent with the optimal behavior of a power utility agent with γ < 0.
For example, assume that k = 8 and γ = −2 an let us measure the time in years. Then for the same
wealth W and spread X, the position just a week before the year-end is a third lower than it is at
the beginning of the year.

Figure 4: A simulated price sample together with position and wealth dynamics.
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3.5 Simulation results

To study the effect of parameter misspecification, we performed a Monte-Carlo simulation. Fig. 4
shows a sample price trajectory with the corresponding optimal position and the wealth trajectories.
A simulation without variance reduction also gives a good proxy to the discretisation and sampling
errors, i.e. to the deviations of accumulated wealth from the predicted wealth due to the sampling
error and non-continuous rehedging.

In reality, it is very hard to predict the mean-reversion parameter k. Even if we assume that
the price series is stationary, k has to be estimated from the past data. Figure 5 shows the effect of
trading with wrong k.

Figure 5: A simulated price sample together with position and wealth dynamics.

In a Monte carlo simulation, we generated a set of Ornstein-Uhlenbeck process trajectories with
k = 2, σ = 1 and then simulated trading with a wrong value of k. To look at the dependence of
optimal position α∗ on mean reversion coefficient K, it is convenient to invert transforms (7) and to
rewrite Eq. (16) as

α =
k

σ2
wxD(τ/k). (21)

Thus, we took K in the interval (1, . . . , 3.2) and simulated trading with position determined by (21),
but with K substituted for k. On the horizontal axis of the graph we have log(K/k). Blue and
red dashed lines show the two standard deviations confidence interval bounds for the mean terminal
utility when trading with a given value of K. The black cross shows the value function from Eq. (17)
for K = k.
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We can see that the influence of mean reversion coefficient misspecification is asymmetric. Trading
with a conservatively estimated k reduces greatly the utility uncertainty. Not surprisingly, overesti-
mation of the mean reversion leads to excessively aggressive positions and big discretisation errors.
It is much safer to underestimate k than to overestimate it.

4 Conclusions and possible generalizations

We solved the optimal portfolio selection problem assuming that there is a single risky asset following
an Ornstein-Uhlenbeck process with known parameters and there is a representative agent with given
wealth, investment horizon and power utility function. The other assumptions used were the absence
of market frictions and perfect liquidity of the asset traded.

Most of these assumptions are similar to ones made in the Black-Scholes model. Each of these
assumptions is not quite realistic. Even when one manages to find a mean-reverting trading asset,
one will need to estimate the parameters of the process. The prices usually seem to follow non-
stationary processes, with periodic regime switches and jumps. Market frictions make continuous
trading unviable, while the presence of other traders competing for the same trading opportunity
and the feedback between trades and prices affect the optimal strategy. A trader usually does not
commit all of his capital to trade a single asset, so the real-world problems involve multiple risky
asset portfolio selection.

The model considered can be extended to include many of these more realistic features. The
resulting PDE is not very likely to have an explicit solution, but singular perturbation theory may
be used to obtain approximations by expansions around our solution. A similar problem in discrete
setting is considered in [V]. The discrete framework allows to introduce easily transaction costs but,
in most cases, lacks explicit solutions. The attraction level of the mean reverting process Xt may be
assumed not known a priori and to be inferred from observations of Xt. This problem can be treated
in the Bayesian framework similarly to [L].

On the other hand, our simple model can serve as a benchmark in practical situations. Quite often,
practitioners prefer to introduce ad hoc corrections to a simple model than using a more involved
model with a large number of parameters.

5 Appendix A.

5.1 A technical lemma

To prove the theorem we need the following lemma.

Lemma 1 The functions α∗ = α∗(w, x, t) and J = J(w, x, t) defined by Eqs. (16) and (17) have the
following properties

1. J = J(w, x, t) is a solution to Eq. (10);

2. boundary condition at T :

J(w, x, T ) =
1
γ

(wγ − 1);

3. concavity in current wealth:

Jww ≤ 0, for all w ≥ 0, x ∈ R, 0 ≤ t ≤ T ;

4. α∗ satisfies the first order optimality condition (9).
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Proof of the lemma. All properties can be checked by direct calculations. 4

5.2 Proof of the theorem

Let J(w, x, t, α) be the expected terminal utility if the trader follows a particular strategy α. It is
enough to show that J(Wt, Xt, t) and α∗(Wt, Xt, t) given by Eqs. (16), (17) satisfy two standard
stochastic optimal control conditions:

(A) For any control α = α(w, x, t)

J(w, x, t, α) ≤ J(w, x, t) for all x ∈ R, w ≥ 0, 0 ≤ t ≤ T

(B) The control α∗ = α∗(w, x, t) satisfies

J(w, x, t, α∗) = J(w, x, t).

Condition (A). Applying Ito’s formula to J (Ws, Xs, s)t≤s≤T , we obtain

J(Ws, Xs, s) = J(Wt, Xt, t) +
∫ s

t

L(α)J(Wu, Xu, u)du +

+
∫ s

t

Jx(Wu, Xu, u)dBu +
∫ s

t

αuJw(Wu, Xu, u)dBu, (22)

where
L(α)J = Jt − xJx − αxJw +

1
2
Jxx +

1
2
α2Jww + αJxw. (23)

Using the Lemma, we see that

L(α)J =
1
2
Jww

(
α−

(
x

Jw

Jww
− Jxw

Jww

))2

+ (Jt +
1
2
Jxx − xJx −

1
2
Jww

(
Jxw

Jww
− x

Jw

Jww

)2

) =

=
1
2
Jww

(
α−

(
x

Jw

Jww
− Jxw

Jww

))2

≤ 0. (24)

Taking the mathematical expectation Et of J(Ws, Xs, s), from (22) we obtain

EtJ(Ws, Xs, s) = J(Wt, Xt, t) + Et

∫ s

t

L(α)J(Xu,Wu, u)du +

+ Et

∫ s

t

Jx(Wu, Xu, u)dBu + Et

∫ s

t

αJw(Wu, Xu, u)dBu (25)

The stochastic integrals in (25) are martingales, so the mathematical expectation of these integrals
is zero. Thus, the last two summands in (25) vanish. Now let t → T . Using (24), we can rewrite (25)
as

J(Wt, Xt, t) = EtJ(WT , XT , T )−Et

∫ T

t

L(α)J(Xu,Wu, u)du ≥

≥ Et(
1
γ

W γ
T ) = Jα(Wt, Xt, t, α),
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i.e. condition (A) is satisfied.

Condition (B). It is clear from the Lemma that

L(α∗)J = 0.

So for α = α∗ we have

J(Wt, Xt, t) = EtJ(WT , XT , T )−Et

∫ T

t

L(α∗)J(Xu,Wu, u)du =

= Et(
1
γ

W γ
T ) = Jα(Wt, Xt, t, α

∗),

i.e. condition (B) is satisfied. This concludes the proof of the Theorem.
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