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Abstract

In this paper, we assume that log returns can be modelled by a Levy process.

We give explicit formulae for option prices by means of the Fourier transform. We

explain how to infer the characteristics of the Levy process from option prices.

This enables us to generate an implicit volatility surface implied by market data.

This model is of particular interest since it extends the seminal Black Scholes

[1973] model consistently with volatility smile.

1 Introduction

It is now widely accepted that markets differ from the seminal Black Scholes [1973]

model. The empirical literature has extensively reported on these abnormalities, espe-

cially on two of them, which indeed are closely linked. First, it is has been shown that

unconditional return show excess kurtosis and skewness, inconsistent with normality

assumptions (see Mandelbrot [1963] and Fama [1965] for the former ones, Kon [1984]

and Jorion [1988] for more recent works, Bates [1996] for more references). Second,

research has concentrated its attention on the implied volatility smile or skew (see

Dumas et al. [1995] for a survey). Interestingly, the second fact is just another hint of
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the non-normality of returns. However, research has focussed at implied Black Scholes

volatility since implied volatility has become a key concept for option pricing. Option

prices are often quoted by their implied volatility. A more rigorous justi&cation is

the less volatile character as well as the better predictability of volatility compared to

prices.

Research has extensively offered methods to cope with the smile effect. Classi-

cally, these attempts can be divided into two different families: parametric and non

parametric ones.

In the parametric methods, the equation of the evolution of the underlying process

is speci&ed as a particular functional form. This description can consist either in

a continuous diffusion process with a so called deterministic volatility (Rubinstein

[1994], Dupire [1993] and Derman and Kani [1994]) or with a stochastic volatility

process (Hull and White [1987], Wiggings [1987], Melino and Turnbull [1990], Stein

and Stein [1991], Amin and Ng [1993] and Heston [1992]) or in a model with jumps

(Aase [1993], Ahn and Thompson [1988], Amin [1993], Bates [1991] , Jarrow [1984],

Merton [1976]).

Other works close in spirit are assuming constant elasticity of volatility distribution

often called power-law(Cox Ross [1976]) or a mapping principle between normal and

lognormal distributions (Hagan [1998], Pradier and Lewicki [1999]).

The second type of methods is the inference of the underlying distribution from

market data. This has been called the expansion methods where one infers the different

terms of the expansion and can reconstitute the distribution (Jarrow and Rud [1982],

Bouchaud et al.[1998], Abken et al. [1996]).

The motivation of this paper is to present a semi-parametric method for modelling

the smile effect. We assume that the underlying price process can be modelled as Levy

process. However, we give no speci&c conditions on the underlying price process except

some technical conditions. Since Levy processes include continuous time diffusion as

well as jump process, this approach encompasses many of the previous method. It

extends the Black Scholes model to any type of Levy process for the underlying.

The remainder of this paper is organized as follows. In section 2, we introduce

some characteristic of Levy processes, its Laplace and Fourier transform. Section 3

explains how to compute option prices. Section 4 examines the volatility smile issue.

We conclude brie! y giving further developments.
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2 Levy process and properties

2.1 Modelling assumptions

We consider a continuous time trading economy with in&nite horizon. The uncertainty

in this economy is classically modeled by a complete probability space (Ω, F,Q) . The

information evolves according to the augmented &ltration {Ft, t ∈ R+} generated by
a standard Brownian motion (Wt)t∈R+ . We assume that there exits a Levy process

(Xt)t∈R+ . We de&ne a Levy process as a stochastic process, adapted to the Brownian

&ltration {Ft, t ∈ R+}, which satis&es the following property: (Xt)t∈R+ is with inde-
pendent stationary increments and is centered in its origin. X0 = 0 almost surely.

This Levy process is not assumed to be a stable Levy process, with stable Levy law.

This process does not necessary satisfy a scaling law. We assume as well that the

Laplace transform of the Levy process is bounded. There exits τ > 0, λu > 0 so that

for every λd ∈]−∞,λu], t ∈ [0, τ ], the Laplace transform λ 7−→ E
£
eλXt

¤
is bounded

by two strictly positive constant over [λd,λu]. There exist Bd > 0, Bu > 0 so that

∀λ ∈ [λd,λu], ∀t ∈ [0, τ ]

Bd ≤ E
h
eλXt

i
≤ Bu (1)

We assume that the underlying (St)t∈R+ can be modelled as a continuous time

process, written as a function of a geometric Brownian motion times the exponential

of a Levy process with no Brownian part. This leads to the following decomposition

St = S0e

³
r−σ2

2

´
T+σWT+Xt (2)

It is worth noticing that the condition on the Laplace transform of the Levy process

for negative values of λ implies that the event that the underlying equals zero, is of

nul measure: P (St = 0) = 0 for every t ∈ R+. It is worth noticing as well that we take
the de&nition of an �extended�Laplace transform since we allow for both positive and

negative values for λ as opposed to the traditional Laplace only de&ned for positive

values of λ.We can then introduce two characterizations of the Levy process. The &rst

one is based on the Laplace transform, whereas the second on the Fourier transform
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2.2 First Characterization of the Levy process

2.2.1 Exponent for the Laplace transform

Proposition 1 There exists a function φ :]−∞,λu]→ R de&ned as for every t ∈ R+,
λ ∈]−∞,λu]

E
h
eλXt

i
= etφ(λ)

This function is called the Levy-Laplace exponent.

Proof: Let take λ ∈]−∞,λu]. We can &rst show that for every t ∈ R+, E
£
eλXt

¤
exits and is &nite

£
eλXt

¤
< +∞. For every n ∈ N∗, t ∈ R+,

E
h
eλXnt

i
= E

h
eλ(Xnt−X(n−1)t)eλXt(n−1)

i
= E

h
eλ(Xnt−X(n−1)t)

i
E
h
eλXt(n−1)

i
= E

h
eλXt

i
E
h
eλXt(n−1)

i
where we have used in the last two equation &rst the independence between increments

and second the stationarity of increments. This leads to

E
h
eλXt

i
= E

h
eλXt/n

in
For n so that t/n < τ , this proves that the above quantity exists and is bounded. The

independence and stationarity of increments leads as well that for every u ∈ R+and
v ∈ R+,

E
h
eλXu

i
E
h
eλXv

i
= E

h
eλXu+v

i
This indicates that the function fλ : t 7→ E

£
eλXt

¤
satis&es

fλ (u+ v) = fλ (u) .fλ (v) (3)

This function is as well continuous in zero. First, it is easy to see that this function

should satisfy fλ (0) = 0 or 1. Because of assumption (1), the only possible case is

fλ (0) = 1. Second, if the function were not continuous in zero, it would imply that

there would exist a sequence (εn)n∈N of real numbers strictly decreasing to zero so

that lim
ε↓0
E
£
e−λXε

¤
is not equal to 1. This would mean that there exist η > 0 so that

¯̄̄
E
h
eλXε

i
− 1
¯̄̄
> η
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Denoting by (qn)n∈N a sequence of rational numbers so that εnqn ∈
£
τ
2 , τ
¤
, we have

qn →
n→+∞ +∞ leading to

E
h
eλXqn εn

i
=
³
E
h
eλXεn

i´qn
We have then two cases: either E

£
eλXεn

¤ ≥ 1+η for an in&nity of terms and the value
+∞ is an accumulation point of the sequence (Xεn)n∈N or it is the case of E

£
eλXεn

¤ ≤
1− η to be satis&ed by an in&nity of terms and the value 0 is an accumulation point
of the sequence (Xεn)n∈N. Both of cases contradict the original assumption (1). We

have proved that the function fλ : t 7→ E
£
eλXt

¤
is an automorphism from (R+,+)

to (R+, ∗) which is continuous in zero. It can therefore be written as an exponential
function

fλ (t) = e
tφ(λ)

The preceding arguments assume only λ ∈]−∞,λu]. As a conclusion, we have built
a function φ : t 7→ φ (λ) .¤

Remark 1 It is straightforward to get the different momentum of the underlying pro-

cess

E
h
Sλt

i
= Sλ0 e

t
³
λ
³
µ−σ2

2

´
+σ2λ2

2
+φ(λ)

´
(4)

2.2.2 Particular Cases

Let us de&ne (Wt)t∈R+ as a Brownian motion, (Nt)t∈R+ a Poisson process of intensity

θ and a sequence of independent variable independent identically distributed (Uj)j∈N∗

with value in ]− 1,+∞[ and U0 = 1 almost surely. The common law of the variables
(Uj)j∈N∗ is denoted by L, associated with a variable U . For u ∈]−∞, 1], we assume
that E [(1+ U)u] is &nite. Let us assume that the respective &ltrations spanned by

(Wt)t∈R+ , (Nt)t∈R+ and (Uj)j∈N∗ are independent. Let us denote by (Ft)t∈R+ the

&ltration spanned by the stochastic variables (Ws)s≤t, (Ns)s≤t and (Uj)j≤Nt . In this

framework, (Wt)t∈R+ is still a Brownian motion adapted to the &ltration (Ft)t∈R+
respectively (Nt)t∈R+ a Poisson process of intensity θ. The jump time of the Pois-

son process denoted by (τ j)j∈N∗ are still stopping time for the &ltration (Ft)t∈R+ .
We assume that the underlying security can be modelled as a risky asset with some

stochastic jumps of stochastic intensity (Uj)j∈N∗ which occur according to the Poisson
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process (Nt)t∈R+ . Between two jumps, the risky asset can be modelled by a standard

geometric Brownian motion, as in the Black Scholes model [1973] with a determin-

ist drift µ and a volatility σ. This leads to the following formula for the underlying

security

St = e

³
µ−σ2

2

´
t+σWt

NtY
j=1

(1+ Uj) (5)

with the convention that
Q0
j=1 (1+ Uj) = 1. This can be seen as a particular example

of our example since in this case the Levy process is

Xt = ln

 NtY
j=1

(1+ Uj)


We have the following proposition so as to calculate the Levy exponent φ :]−∞,λu]→
R.

Proposition 2

E
h
Sλt

i
= e

t
³
λ
³
µ−σ2

2

´
+σ2λ2

2
+θ(E(1+U)λ−1)

´

Proof:

E
h
Sλt

i
= E

eλ³µ−σ2

2

´
t+λσWt

NtY
j=1

(1+Uj)
λ


= e

λ
³
µ−σ2

2

´
t+ (λσ)2t

2 E

 NtY
j=1

(1+ Uj)
λ


The last equation holds because of the independence of the stochastic variables (Ws)s≤t,

(Ns)s≤t and (Uj)j≤Nt . We have then

E

 NtY
j=1

(1+ Uj)
λ

 =
+∞X
n=0

E

Nt=nY
j=1

(1+ Uj)
λ

¯̄̄̄
¯̄Nt = n

P (Nt = n)
=

+∞θX
n=0

³
E
³
(1+ U)λ

´´n
e−θt

(θt)n

n!

= exp
³
θt
³
E
³
(1+ U)λ

´
− 1
´´

¤

The proposition 2 leads to the following Levy exponent function:

φ (λ) = θ
³
E
³
(1+ U)λ

´
− 1
´
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2.3 Second Characterization: Characteristic function

Another characteristic of the Levy process is its characteristic function which can be

analyzed as its Fourier Transform. This has the advantage to be very ! exible since

the Fourier transform E
£
eiλX

¤
is always de&ned and no condition is required on the

momentum. It is also numerically very efficient by means of Fast Fourier transform

algorithms.

2.3.1 Fourier transform and characteristic function

Let us remind some preliminary results. We assume that Xt is a Levy process. We

have the following proposition:

Proposition 3 There exists a function ψ :]−∞,+∞[→ R so that for every t ∈ R+,
for every λ ∈ R

E
h
eiλXt

i
= etψ(λ)

with ψ (λ) = iµλ− σ2

2 λ
2 − RR ¡1− eiλx + iλx1{|x|<1}Π (dx)¢ with µ ∈ R and Π, called

the Levy measure, is a positive measure on R so that
R
RMin

¡
1, x2

¢
Π (dx) <∞. The

term σ2

2 λ
2 is called the Brownian part of the process. The parameter µ is the drift of

the Levy process.

Proof: See Bertoin [1997].¤

The function ψ :] − ∞,+∞[→ R is called the Levy-Khintchine exponent. To

estimate the Brownian part, we use the following proposition:

Proposition 4 There exists a limit to the following ratio:

lim
|λ|→∞

ψ (λ)

λ2
= −σ

2

2

Proof: We &rst notice that

lim
|λ|→∞

1− eiλx + iλx1{|x|<1}
λ2

= 0

It can be shown (see Bertoin [1997]) for every x ∈ R

|1− cosx| ≤ 2Min ¡1, x2¢
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as well as for every x ∈ R, for every λ ∈ R
¯̄− sin (λx) + λx1{|x|<1}¯̄ ≤Min³1+ |λ| , (λx)2´

Combining the different results, we get that for |λ| ≥ 2¯̄
1− eiλx + iλx1{|x|<1}

¯̄
λ2

≤ 3Min ¡1, x2¢
We can conclude by dominated convergence that

lim
|λ|→∞

1

λ2

Z
R

³
1− eiλx + iλx1{|x|<1}Π (dx)

´
= 0

¤

2.3.2 Particular case

In the case of the process given in the section 2.2.2 by equation (5), we can calculate

explicitly the characteristic function. This is summarized by the following proposition

Proposition 5 For every t ∈ R, and every λ ∈ R

E
h
eiλXt

i
= e

t
³
iλ
³
µ−σ2

2

´
−σ2λ2

2
+θ(E(1+U)iλ−1)

´

Proof: same as in proposition 2.¤

3 Option price

The interest of this extension of the Black Scholes model is its tractability. We can &nd

explicit formula for the price of vanilla option as shown in the following subsection.

To get a price, we assume that the discounted asset is a martingale under the natural

probability measure Q of our probability space (Ω, F,Q). We impose this restriction

so as to be have a unique martingale-measure used for pricing purposes. It can be

shown that there exists an in&nity of equivalent martingale measures under which¡
e−rTST

¢
T∈R is a martingale. The correct price is obtained as the expected discounted

payoff under this measure. The price of the call option of strike K, maturity T ,

with an initial underlying level of S0 calculated as the expectation of the discounted

payoff e−rT (ST −K)+ under one of this equivalent martingale measure is dense in
the interval of

h¡
S0 − e−rTK

¢+
, S0

i
(see Erberlein and Jacod [1997]).
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3.1 Laplace transform and option price

The &rst restriction on the process is that
¡
e−rTST

¢
is a martingale under P. This

leads to the following constraints:

Proposition 6

µ = r − φ (1) (6)

Proof:
¡
e−rtSt

¢
t∈R+ is a martingale. This implies that

E
£
e−rtSt

¤
= S0

or using the proposition 2 this leads to

e
t
³
−r+

³
µ−σ2

2

´
+σ2

2
+φ(1)

´
= 1

or the condition (6).¤

3.1.1 General formula

Let us denote by PCall respectively PPut the price of a call option, respectively the

price of a put option, and by PCallBS (S0,K, T, r,σ) (respectively PPutBS (S0,K, T, r,σ))

the price of a Black Scholes call (respectively put) with an initial underlying level of

S0 a strike of K, a maturity of T , a risk free rate of r and a volatility of σ. Similarly

to the formula given by Hull and White [1987] for stochastic volatility, the price of

the option is given by the following proposition

Proposition 7 The price of a vanilla option is given by

P i = E
h
P iBS

³
S0e

−Tφ(1)eXT ,K, T, r,σ
´i

(7)

where i stands for either call or put.

Proof: Since a put option on ST with strike can be seen as a call option on (−ST )
with a strike −K (K − ST )+ = (−ST − (−K))+, we only examine the case of the
call option. The price of the option is calculated as the expectation of the discounted

payoff

E
£
e−rT (ST −K)+

¤
= E

"
e−rT

µ
S0e

³
µ−σ2

2

´
T+σWteXT −K

¶+#

= E

"
e−rT

µ³
S0e

−Tφ(1)
´
e

³
r−σ2

2

´
T+σWteXT −K

¶+#
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where we have used the no-arbitrage condition on the drift term (6). Using conditional

expectation, we get

E
£
e−rT (ST −K)+

¤
= E

"
E

"
e−rT

µ³
S0e

−Tφ(1)eXT
´
e

³
r−σ2

2

´
T+σWt −K

¶+ ¯̄̄̄¯XT
##

Where the conditional expectation can be interpreted in the Black Scholes model as

a closed formula, leading to the &nal result.¤

The same methodology can be applied to binary and range option with payoff

equal to

f (x) = 1{ex>K}

for a binary option and

f (x) = (ex −K1) 1{K1≤ex<K2}

Denoting by PBinBs respectively PRangeBS the Black Scholes price of a binary respectively

a range option, we have the following proposition

Proposition 8 The price of a binary respectively a range option is given by

P i = E
h
P iBS

³
S0e

−Tφ(1)eXT ,K, T, r,σ
´i

(8)

where i stands for either Bin or Range.

Proof: same as above.¤

3.1.2 Particular case

In the case of the process given in the section 2.2.2 by equation (5) this leads to the

following results

Proposition 9 The no arbitrage condition (6) leads to

µ = r − θE (U) (9)

and the price of a vanilla option is given by

P i = E

P iBS
S0e−TθE(U) NTY

j=1

(1+ Uj) ,K, T, r,σ

 (10)
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Let us now assume that the intensity process of the jumps modelled by the variable

(1+ U) follows a lognormal distribution with mean m and volatility v2. We then get

an explicit formula for the vanilla option price, as stated by the following proposition,

similar to the Merton�s formula [1976]:

Proposition 10

P i = e−θ(1+c)T
+∞X
i=1

(θ (1+ k)T )n

n!
P iBS (S0,K, T, rn,σn) (11)

with

c = E [U ] = em+v2/2 − 1

rn = r − θc+ n
¡
m+ v2/2

¢
T

σn =

µ
σ2 +

nv2

T

¶1/2
with i = c or p corresponding to a call or put option.

Proof: Introducing the variable ε = 1 for a call option and ε = −1 for a put
option, we treat the two options in the same way. Since U +1 follows a lognormal law

with mean m and volatility v2, the expectation of U is given by E [U ] = em+v2/2 − 1.
Denoting by S0e−Tcθ and using the pricing formula (10), we can write the price of the

option

P i =
+∞X
i=0

E

P iBS
S0e−Tcθ nY

j=1

(1+ Uj) ,K, T, r,σ

 e−θT (θT )n
n!

(12)

The random variables (1+ Ui)i∈N∗ are independently distributed, with a lognormal

distribution with mean m and volatility v2. Their product
Qn
j=1 (1+ Uj) follows a

lognormal distribution with mean nm and volatility nv2. Denoting by g a centered

normalized normal distribution (g ∼ N (0, 1)), by S = S0e−Tcθ, the equation (12) can
be rewritten as

P i =
+∞X
i=0

E


εSenm+

√
nvgN

Ã
ε

Ã
ln
³

S

e−rTK

´
+nm+

√
nvg

σ
√
T

+ σ
2

√
T

!!
−εKe−rTN

Ã
ε

Ã
ln
³

S

e−rTK

´
+nm+

√
nvg

σ
√
T

− σ
2

√
T

!!
 e−θT (θT )

n

n!
(13)

It can be shown that for g ∼ N (0, 1) and for every a, b, c ∈ R,

E [eagN (bg + c)] = ea2/2N
µ
c+ ab√
1+ b2

¶
(14)
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Using the equation (14), we get

E


³
εSenm+

√
nvg
´

N

Ã
ε

Ã
ln
³

S

e−rTK

´
+nm+

√
nvg

σ
√
T

+ σ
2

√
T

!!


= εSenm+
nv2

2 N

ε ln ¡ S
e−rTK

¢
+ nm+ σ2

2 T + nv
2

σ
√
T
q
1+ nv2

σ2T


and

E

"
εKe−rTN

Ã
ε

Ã
ln
¡

S
e−rTK

¢
+ nm+

√
nvg

σ
√
T

− σ
2

√
T

!!#

= εKe−rTN

ε ln ¡ S
e−rTK

¢
+ nm− σ2

2 T

σ
√
T
q
1+ nv2

σ2T


which can be rewritten as

P i =
+∞X
i=0



εS0e

Ã
nm+nv

2

2
T

−θc
!
T

N

ε
ln
³
S0
K

´
+

 n

µ
m+v

2

2

¶
T

+r−θc
T+ 1

2

³
σ2+nv2

T

´
T

³
σ2+nv2

T

´1/2√
T



−εKe−rTN

ε
ln
³
S0
K

´
+

 n

µ
m+ v2

2

¶
T

+r−θc
T− 1

2

³
σ2+nv2

T

´
T

³
σ2+nv2

T

´1/2√
T





e−θT
(θT )n

n!

which leads to the result (11).¤

Corollary 11 The price of a binary or a range option is given by

P i = e−θ(1+c)T
+∞X
i=1

(θ (1+ k)T )n

n!
P iBS (S0,K, T, rn,σn) (15)

with

c = E [U ] = em+v2/2 − 1

rn = r − θc+ n
¡
m+ v2/2

¢
T

σn =

µ
σ2 +

nv2

T

¶1/2
with i = Bin or Range according to the option type

Proof: same as above.¤
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3.2 Fourier transform and convolution product

3.2.1 Preliminary results

We denote by L1 (R) the linear space of integrable function de&ned on R, and by F (f)
the Fourier transform of the function f . It is interesting to see that we can interpret

any expectation as the convolution product of a function with the density function of

our stochastic variable. Let us assume that our underlying security can be written as

the exponential of a Levy process with some Brownian part and drift term

St = e
Xt

Let dpXT (x) be the probability measure of the process XT . Any option price which

can be written as the expectation of some discounted payoff can be reinterpreted as a

convolution product as stated by the following proposition

Proposition 12 Let f be a function f : R → R, continuous, bounded, element of

L1 (R) so that F (f) belongs to L1 (R) . We have

E [f (Xt)] =
³
F−1

³
F ef (.) eTψ(.)´´ (0) (16)

with ψ the Fourier exponent as de&ned in proposition (3) and F ef (.) the Fourier trans-
form of the function ef : ef (x) = f (−x)

Proof: Let g denote the convolution product of ef with dpXT
g (y) =

Z +∞

−∞
ef (y − x)dpXT (x)

g is well de&ned since f and ef is bounded. g is integrable sinceZ +∞

−∞
|g (y)| dy ≤

Z +∞

y=−∞

Z +∞

x=−∞

¯̄̄ ef (y − x)¯̄̄ dpXT (x)dy
≤

Z +∞

x=−∞

µZ +∞

y=−∞

¯̄̄ ef (y − x)¯̄̄ dy¶ dpXT (x)
≤

°°° ef°°°
L1(R)

Z +∞

x=−∞
dpXT (x)

≤ kfkL1(R)
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The expectation of f (Xt) can be seen as the value in zero of this convolution product

since

E [f (Xt)] =

Z +∞

−∞
f (x) dpXT (x)

=

Z +∞

−∞
ef (−x) dpXT (x)

= g (0)

The efficient way of calculating convolution product (see Benhamou [2000] is to use

the property of Fourier transform. The Fourier transform of a convolution product is

simply the product of the Fourier transform. This leads to multiply the two Fourier

transform and invert the Fourier transform of the &nal result. We verify that g (y)

is a continuous function since by assumption f is continuous and bounded. We have

veri&ed as well that g belongs to L1 (R). Using the fact that the Fourier transform of

a convolution product is simply the product of the Fourier transform and that F (f)

belongs to L1 (R) as well as the characteristic function of the Levy process F (pXT ) ,
we get the F (g) belongs as well to L1 (R). The validity of the Fourier transform and

its inversion is then given by the lemma below.¤

Lemma 13 If f belongs to L1 (R) is a continuous function so that F (f) belongs to
L1 (R), then F−1 (F (f)) = f

Proof: standard in the Fourier theory (see Bracewell [1965].¤
We cannot apply the result of proposition 12 equation (16) straightforward to the

call or put option. This is due to the fact that the payoff function equal to (ex −K)+

for a call or (K − ex)+ does not belong to L1 (R) . However, it is possible to &nd a
solution to this problem.

3.2.2 General formula

One solution is to use a truncated version of the payoff function. Let Mc,Mp be two

real numbers satisfying

Mc > lnK >Mp (17)

Let α be a real number so that α > 1 Let us de&ne the standard payoff of a vanilla

option

fc (x) = (ex −K)+
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for a call option and

fp (x) = (K − ex)+

the truncated payoff de&ned as

f cMc
(x) = (ex −K)+

³
1{x≤Mc} + e

−α(x−Mc)1{x>Mc}
´

for a call option and

fpMp
(x) = (K − ex)+

³
1{x≥Mp} + e

−α(x−Mp)1{x<Mp}
´

Proposition 14 These two functions are continuous, with positive values. They be-

longs as well to L1 (R) and are bounded. They satisfy as well that their Fourier

transform belongs to L1 (R).

Proof: We examine the case of the call truncated payoff. The proof goes along the

same line for the second function. The function fcMc
(x) is continuous as the product

of continuous functions. It is positive as the product of two positive functions. It

is integrable since for values of x smaller than lnK, it is equal to zero and for large

values of x it is equivalent to the function e−(α−1)xeαMp . Moreover, this implies that

this function is bounded since it is a continuous function with asymptotic limits equal

to zero. Its Fourier transform can be written asZ +∞

−∞
fcMc

(x) eiλxdx

=

Z Mc

lnK
(ex −K) eiλxdx+

Z +∞

Mc

(ex −K) e−α(x−Mc)eiλxdx

= −Ke
iλ lnK (λ+ i)¡
1+ λ2

¢
λ

−KαeiλMc
λ− iα

λ
¡
α2 + λ2

¢
+αe(1+iλ)Mc

λ2 + (α− 1) + iλ (2− α)¡
1+ λ2

¢ ³
(α− 1)2 + λ2

´
For large values of λ, the three different terms are equivalent to 1

λ2
, which proves the

absolute integrability of the Fourier transform of fcMc
.¤

We can then prove that these functions converges to the call and put option when

|M | tends to in&nity.
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Proposition 15 for i representing either a call or a put, the expectation of the trun-

cated payoff converges to the standard payoff

lim
|M |→+∞

E
£
e−rT f iMi

¤
= E

£
e−rT f i

¤
with i = c or p representing either a call or a put option

Proof: Let ε be equal to 1 (call) or −1 (put) according to the option type. We
have for every Mi ∈ R satisfying the conditions (17)Z ¯̄

e−rT f iMi

¯̄
dpXT (x) ≤

Z ¯̄
e−rT f i

¯̄
dpXT (x)

≤ +∞

as well as

lim
|M |→+∞

f iMi
= f i

This gives the result by dominated convergence.¤

The same methodology can be applied to the case of a binary option. The trun-

cated function can be the following

fRangeMRange
(x) = 1{ex≥K}

³
1{x≤Mc} + e

−α(x−Mc)1{x>Mc}
´

with α > 0.

3.2.3 Methodology for option pricing with the Fourier transform

We have seen that when we know the Fourier exponent of the Levy process as well

as the Fourier transform of the truncated payoff, using the proposition 12, we need

to multiply these two function and invert their Fourier transform. The proposition

15 shows us that the limit of these truncated payoff option converges to the standard

option. This gives us a methodology for pricing option with the Fourier transform.

4 Volatility Smile

The true motivation of Levy process is to infer some characteristic of our process that

take account for the volatility smile. Let us remind the result of static replication (see

Carr [1997]), which is used for the static hedging of derivatives product
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Proposition 16 If f belongs to C2 (R+∗) (set of functions twice differentiable with

continuous second order derivative function), then for every x ∈ R+, for every κ ∈ R+

f (x) =

Z κ

0
(x− u)+ f 00 (u)du+

Z +∞

κ
(u− x)+ f 00 (u)du

Proof: see Car [1997].¤

4.1 Estimation of the Levy process

Let λ ≤ 0. If we want to estimate the Laplace exponent, an interesting property is to
use the proposition 16, leading to the following proposition:

Proposition 17 Denoting by Put (u) (respectively Call (u)) the price of a put (re-

spectively a call) on ST with strike u, we can calculate the Levy-Laplace exponent as

φ (λ)

=
1

T
ln

µ
λ (λ− 1)
Sλ0

Z +∞

0
erTPut (u)u(λ−2)du

¶
− λ

µ
µ− σ

2

2

¶
+
σ2λ2

2

=
1

T
ln

µ
λ (λ− 1)
Sλ0

Z +∞

0
erTCall (u)u(λ−2)du

¶
− λ

µ
µ− σ

2

2

¶
+
σ2λ2

2

Proof: The function f : x → xλ belongs to C2 (R+∗). The proposition 16 leads

to

E
·

SλT
λ (λ− 1)

¸
=

Z κ

0
E
h
(ST − u)+ u(λ−2)

i
du+

Z +∞

κ
E
h
(u− ST )+ u(λ−2)

i
du

using the two limiting case κ = 0 and κ = +∞, we get

E
·

SλT
λ (λ− 1)

¸
=

Z +∞

0
erTPut (u)u(λ−2)du

=

Z +∞

0
erTCall (u)u(λ−2)du

Using the de&nition of the Levy exponent (equation (4)) , we get the &nal result.¤

4.2 Particular case

In the case of the process given in the section 2.2.2 by equation (5), we get that for

the Levy-Laplace exponent the following formula

φ (λ) = θ
³
E
³
(1+ U)λ

´
− 1
´

=
1

T
ln

µ
λ (λ− 1)
Sλ0

Z +∞

0
erTPut (u)u(λ−2)du

¶
− λ

µ
µ− σ

2

2

¶
+
σ2λ2

2
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which gives us a way of calibrating our model by means of call and put prices of the

markets. If we assume furthermore that 1+ U follows a lognormal law with mean m

and volatility v2, we get the closed formula

θ

µ
eλm+

λv2

2 − 1
¶

=
1

T
ln

µ
λ (λ− 1)
Sλ0

Z +∞

0
erTPut (u)u(λ−2)du

¶
− λ

µ
µ− σ

2

2

¶
+
σ2λ2

2

=
1

T
ln

µ
λ (λ− 1)
Sλ0

Z +∞

0
erTCall (u)u(λ−2)du

¶
− λ

µ
µ− σ

2

2

¶
+
σ2λ2

2

The same case provides us as well an explicit formula for the Levy-Khintchine

exponent

ψ (λ) = iµλ− σ
2

2
λ2 + θ

µ
eimλ−

v2

2
λ2 − 1

¶
we need to estimate the different parameters so that the price of the different options

assuming this Levy process is consistent with market data.

4.3 Implication

We have implemented this for different level of λ, taking σ equal to the implied Black

Scholes volatility, µ satisfying the no-arbitrage condition (6)

µ = r − θ
µ
em+

v2

2 − 1
¶

If the model above is realistic, we should get that the following function

g (λ) =
1

T
ln

µ
λ (λ− 1)
Sλ0

Z +∞

0
erTCall (u)u(λ−2)du

¶
− λ

µ
µ− σ

2

2

¶
+
σ2λ2

2

=
1

T
ln

µ
λ (λ− 1)
Sλ0

Z +∞

0
erTPut (u)u(λ−2)du

¶
− λ

µ
µ− σ

2

2

¶
+
σ2λ2

2

should be equal to a polynomial expression in λ since it is equal to θ
µ
em+

v2

2

¶λ
− θ.

4.4 Impact on the smile

This leads to the complicated issue of calibrating the model. This is a very compli-

cated issue and no simple answer exits. However, we have taken different values of

parameters for the Levy process and we have obtained realistic form of smiles. This is

summarized by the &gure 1, which shows the evolution of the implied volatility with

the time to maturity for the set of parameters θ = 1, m = −0.15, v2 = 0.20



5 CONCLUSION 19

22.50%

32.50%

42.50%

52.50%

62.50%

72.50%

-2 -1 0 1 2

6 month
9 month
12 month
15 mpnth
18 month
21 month
24 month

Figure 1: Volatility Smile implied by a Levy process with jumps

modelled as a Poisson process with a lognormal intensity

5 Conclusion

In this paper, we have seen that the use of Levy processes enables us to take account

for the volatility smile. The approach adopted here is a semi-parametric one based on

a Levy process description of our economy. This has the great advantage to encompass

many previous works since Levy process includes Brownian motion as well as many

jump processes. We show that the Fourier transform can lead to an efficient way of

getting prices after inferring the Levy-Khintchine exponent.

There are many possible extensions to this work. The &rst one concerns some

empirical studies to quantify the &t of this model with market data. This is a com-

plicated issue like all calibration procedure and test of goodness of &t. The second

one is to develop more efficient numerical procedure based on Fast Fourier Transform

algorithm that take account of the particular situation developed here.
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