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The Relative Value Theory

Abstract

| propose the following theory: rational investors all ocate capital to maximize the probability-
weighted geometric mean of payoffs. | present the theory’s rationale and investigate its implications. |
find that diversification increases cumulative returns and asset values are relative. The theory does not
make assumptions about investors' risk preferences and explains the “risk premium” without using
the utility function concept. In aworld of rational, risk indifferent investors the market tends to a
stable equilibrium characterized by al investors holding the market. | calculate equilibrium prices for
asimple model. The theory uses a unique discount rate (to account for time value of money) and
ignores the required rate of return concept. The theory addresses some of the CAPM’s
inconsistencies. | conclude the theory is coherent and useful in explaining observable finance

phenomena.
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Finance theory rests on the fundamental assumption that rational investors want to maximize
the probability-weighted arithmetic mean of their portfolio’s payoffs (arithmetic expected payoff).*
Given a set of market prices, this rationality criterion is equivalent to maximizing the arithmetic mean
of returns (arithmetic expected return). Empirical studies show that riskier assets have higher
arithmetic expected returns.” To reconcile the rationality criterion with empirical results theorists
introduce the utility function concept and assume investors are risk-averse.® Therisk aversion
assumption plays akey rolein the CAPM theory. *

The proposed relative value theory (RVT) introduces the following rationality criterion:
rationa investors want to maximize the probability-weighted geometric mean of payoffs (geometric
expected payoff). By payoff we mean the present value of an asset’ s stream of cash flows discounted
at aunique rate representing time value of money. Given a set of market prices, RVT’s rationality
criterion is equivalent to maximizing the geometric mean of gross returns (geometric expected
return).

For instance, the geometric expected return for arisky asset R with two possible gross
returns, 1.3 with probability 0.6, and 0.65 with probability 0.4, is approximately 0.985, whereas its
arithmetic expected return is 1.04 (al returns are gross returns):

GER =1.3%°* 0.65%" ~ 0.985

AER=0.61.3+0.4*0.65=1.04
According to current finance theory arational, risk indifferent investor would prefer the risky asset R
over arisk free Ry asset with a gross return of 1 (because R has a higher arithmetic expected return
than Ry). According to the RVT thisinvestor would instead prefer the risk free asset Ry (because Ry
has a higher geometric mean than R).

By continually reinvesting the proceeds in the risky asset R an investor will end up loosing all

his money. This result can be mathematically proved with limits or verified experimentally using a
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computer program. The example points to the geometric mean maximization being a superior
criterion for rationality than the arithmetic mean maximization.

The case supporting the RV T appearsto be particularly strong. It can be mathematically
proved that maximizing the geometric expected return is the investing strategy that, over the long
term, will consistently outperform any other strategy in terms of cumulative returns.

The RVT makes the utility function concept close to irrelevant. The RVT explains observable
finance phenomena without referring to this concept and without assuming investors are risk-averse.
The above-mentioned risky asset has a higher arithmetic expected return than the risk-free asset, but
thisrisk premium is apparent since it cannot be used to outperform the risk free asset in terms of
cumulative returns.

RV T’ simplications on finance theory are significant. Most notably, asset values are relative.
The effect on cumulative returns of adding an asset to a portfolio depends on the correlation between
the asset’ s cash flows and those of the rest of the portfolio. The RVT also indicates that
diversification not only reduces risk but also increases cumulative returns, thus contradicting the view
that returns can be improved by simply undertaking more risk.

The RVT provides the means to investigate the formation of asset pricesin the market. Under
the RVT assumption, it can be proved that, in aworld of rational, risk indifferent investors, the
market evolves toward a stable equilibrium characterized by all investors holding the market.
Equilibrium prices can be determined without using the required rate of return concept. The
equilibrium price formulas provide an explanation for the stock market consistently outperforming
therisk free asset.

The RVT has asimple mathematical foundation, is applicable to any type of security and
circumvents some of CAPM’ s weaknesses and inconsistencies.

The paper proceeds as follows. Section | presents RV T’ srationale. Section |1 describes
market equilibrium and price formation. Section |11 presents RV T’ simplications. Section IV runs a

comparison between the CAPM and the RVT. Section V summarizes the paper’ s findings.
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l. RVT’'srationale

We consider arisky asset with two possible gross returns: R, with probability p., and R. with
probability p. (p. plus p: equals 1). We assume an investor can collect the proceeds and reinvest them
in the same asset over and over again (we'll refer to asingle step as an investing loop). After n
investing loops each dollar initially invested we'll turn into R, dollars (R, is the gross return per
dollar invested). It can be mathematically proved (please refer to Appendix A for a complete

demonstration) that:

limyR =R"xR"™ )

N-oo

In other words, the expected cumul ative gross return per investing loop equals the geometric
expected return. The higher the geometric expected return for a portfolio, the higher its expected
cumul ative return.

We consider two assets A and B. The geometric expected returns are GM 4 and respectively
GMg, with GM4 > GMz. We use R, and R®, to indicate the gross cumul ative returns after n
investing loops. We use P*®,, to indicate the probability of asset A outperforming asset B (R*,, > R®,)
after ninvesting loops. We can now use identity (1) to prove (please see Appendix B for a complete

demonstration) that:

lim P =1 ?)

N- oo

In other words, the probability of portfolio A outperforming portfolio B after n investing
loops tends to 1 when the number of loops tends to infinite. We can conclude that maximizing the

geometric expected return is the investing strategy that will consistently outperform any other

© Copyright 2001, Silviu lulian Alb. All Rights Reserved. 4



strategies over the long term. Since individual investors appear to be interested in investing strategies
that consistently work, the above result provides credibility to RV T’ s rationality criterion.

The arithmetic expected return has a different meaning. We consider m investors that invest
in identical assets (in terms of probability distribution) with uncorrelated payoffs. When m tends to
infinite, the gross return for the investing community as awhole (total final wealth over tota initial
wealth) after one investing loop tends to the arithmetic expected return of the considered class of
assets. If al investors have the same initial capital C, we can write (the demonstration is similar to the

one provided in Appendix A for the geometric mean):

IimmFimC=p+><R++P-><R- (3

In other words, the higher the arithmetic expected return the higher the gross return for the investing
community as awhole.

We conclude that maximizing the geometric expected return benefits the individua investor,
whereas maximizing the arithmetic expected return benefits the investing community as awhole. It is
reasonabl e to assume that individual investors are primarily concerned with their own financial
situation, the financial situation of others being a secondary concern. In light of the above, RVT's
rationality criterion appears reasonable.

The RVT’ svalidity is further supported by its ability to explain the observed “risk premium”
without referring to investors' utility functions or postulating investors' aversion to risk. Aswe
previously mentioned, assets with higher arithmetic expected returns than the risk free asset do not
necessarily outperform the risk free asset in terms of cumulative return. Consequently the observed
“risk premium” (or at least most of it) is only apparent. To illustrate the above result we consider a
risky asset that returns either 1.375 with probability 0.5 or 0.88 with probability 0.5. The arithmetic

expected return is 1.1275, and according to the CAPM theory an investor must be risk-averse to
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prefer arisk free asset that returns only 1.1. However, the geometric expected return of the risky asset
isalso 1.1. Consequently, when the number of investing loops tends to infinite, the risky asset will
performin line with the risk free asset. Using (2) we observe that the risky asset will outperform any
risk free asset with a gross return lower than 1.1 and will under perform any risk free asset with a
gross return higher than 1.1. Since a higher arithmetic expected return does not guarantee a better
performance in terms of cumulative returns we conclude the observed risk premium is only apparent.

The main weakness of the RV T isitsreliance on the assumption that the market as awhole
cannot go to zero. In other words, there must be arisk free asset embedded in the market for the RVT
to function. Should this fundamental assumption be violated, the geometric mean for the market asa
whole would be zero. Moreover, the geometric mean would be zero for all portfolios since no
portfolio can be construed to avoid entirely the possibility of a zero payoff. We believe the weakness
isminor. We could defend the RVT by noting the market going to zero would imply the ceasing of
economic activity, which in turn would imply the end of mankind. In such an extreme situation
investor’sinitial capital allocation would not matter anyway. We conclude that investors can ignore
this possibility altogether.

The RVT’ svalidity is also supported by the simplicity of its mathematical foundation, and, as
later discussed in the paper (section I1), by its ability to explain why the market provides a higher
cumulative return than the risk free asset. The RV T also circumvents some of the weaknesses and

apparent inconsistencies of the CAPM theory.

. A simpleworld with two risky assets

Toillustrate how prices are formed and equilibrium is reached, we consider a simple world
with two risky assets A and B. The future evolution of this aworld can follow n different scenarios
(states). In scenario i (i goes from 1 to n) the payoffs of assets A and B are A; and respectively B;

© Copyright 2001, Silviu lulian Alb. All Rights Reserved. 6



(where A, and B; are all positive numbers). By payoff we mean the present value of the stream of
cash flows discounted at a unique rate T representing time value of money.

We note p; the probability of statei (the n probabilities p; add up to 1). Investors can freely
trade ownership in these assets in the market. We further assume that A; and B; cannot all be zero at
the same time (a state in which A; plus B; equals 0 does not exist).

We define equilibrium as a situation in which no transaction exists that will increase the
geometric expected payoff for both investors engaged in it. In other words equilibrium is reached
when all transactions will decrease the geometric expected payoff for at least one of the two investors.

We consider two rational investors (as per RV T’ s definition). Investor 1 owns X 4 of asset A,
and X of asset B; investor 2 owns 'Y 5 of asset A, and Yg of asset B. We say that investors 1 and 2

have the same capita allocation if:

XA/YAZXB/Ygzp,Wherep>0 (4)

We prove that unless the two investors have the same capital allocation as defined by (4) they
will be able to transact to increase the geometric expected payoff for both their portfolios.
Consequently individual investors will keep transacting until the differencesin capital allocation will
disappear and all investors will hold the same portfolio (please refer to Appendix C for afull
demonstration of the statements in this paragraph).

Since the cumulative investor ownership in any given asset must add up to one (representing
100% ownership) it is obvious that, at equilibrium, each individual investor will hold the market. An
investor owning the market means his percentage ownership will be the same for any given asset. For

investors 1 and 2 mentioned above we write:

XA=XB:X,andYA=YB=Y,WhereX/Y=p (5)
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So far we showed that, under the RVT assumption, the market would necessarily evolve
toward a stable equilibrium in which all investors own the market. Considering the above results we
now want to determine asset prices at equilibrium.

At equilibrium individual investors can not increase their portfolio’s geometric expected
payoff by trading assets at market prices. By setting this condition for every possible transaction
(every possible pair of assets), and by setting the total value of the market as a whole (market value of
asset A plus market value of asset B) equal to its geometric expected payoff®, we obtain a system of
two linear equations with two unknowns. The two unknowns are the equilibrium market prices of the
assets A and B. The solution to this system exists, and is unigue.

We consider the general case of aworld with m risky assets Al (j goes from 1 tom), and n
possible statesi (i goes from 1 to n) with probabilities p;. Time value of money is unique and
measured by the discount rate T. We use Al; to denote the present value of asset A”’s stream of cash
flowsin statei. Under the RV T assumption the equilibrium market price of asset Al is given by

(please refer to Appendix D for the related mathematics):

n i
PAJ = & pi G_EEM (6)

M, = Z A“ (thetotal payoff of the market in state i),

where

and

GM = El M, (the geometric mean of payoffs for the market as awhole).
Consequently the geometric expected return of asset A’ is given by (after simplifications):
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_GM(R)

ICH @)
where
R,
Mi
GM(P) = |'J P"
and

AM(R)=Y PP .

=1

Summarizing, we proved that, under the RVT assumption, the market evolves toward a stable
equilibrium characterized by al investors holding the market and asset prices given by (6).

We observe that the geometric expected return of any asset or portfolio is lower than the
geometric expected return of the market as awhole. Since the geometric mean is always smaller than
the arithmetic mean, equation (7) indicates that the geometric expected return of any given asset is
smaller than one, whereas the geometric expected return of the market is equal to one.

Conseguently considering (2) the market as awhole will outperform any given asset
(including the risk free asset) in terms of cumulative returns. The RV T therefore provides aviable
explanation for the market outperforming the risk free asset over the past century.

We must note that the market value of any risky asset depends on the existence and nature
(most importantly payoff correlation) of all other risky assets. Adding a new risky asset to the market
will increase the market value of the existing assets. This effect also contributes to the market
outperforming the risk free asset in periods of economic development in which new companies and
new industries are born. Obviously the past century represents such a period. This result provides

further support to the validity of the RVT.
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[I1.  Implicationson financetheory

The RVT has significant implications, some of them being discussed below.

A. Divergfication not only decreasesrisk but also increases cumulative returns

According to the CAPM theory diversification brings benefits by reducing risk. Lower risk is
considered a benefit because of CAPM’ s basic assumption that investors are risk-averse. According
tothe RVT, diversification not only reduces risk but also increases expected cumul ative returns.
Consequently rational, risk-indifferent (even risk-loving) investors will still diversify their holdings.
The following example illustrates this effect.

We consider two investments A and B. Investment A returns either 1.4 with probability 0.5 or 0.8
with probability 0.5. Investment B returns either 1.35 with probability 0.5 or 0.79 with probability
0.5. The outcomes of the two investments are not correlated. Although A isaclearly better
investment than B, the best portfolio according to the RVT is some combination of the two. Indeed
we can verify that allocating 90% of capita to investment A and 10% to investment B will result in a
higher geometric expected return than allocating all capital to investment A. The result is somewhat
counterintuitive and reveals the descriptive power of the RVT.

B. Thereisno absolutevaluefor assets

Assets do not have an absolute value. Knowing the possible streams of cash flow and related
probabilitiesis not sufficient to compute a price that all investors will agree upon. The equilibrium
prices formula presented in section |1 clearly indicates a dependence on the nature of the other
existing assets. An investor will be willing to pay different prices for the same given asset depending
on the correlation between the cash flows of the asset and those of the investor’ s portfolio. The
following exampleillustrates the relativity of asset values.

We consider an envelope that contains either 200$ with probability 0.5 or 50$ with probability
0.5. We consider an investor with atotal capital of 100$ in cash. For smplicity we assume that the
gross return of keeping the capital in cash is 1 with probability 1 (no return). The geometric expected
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return for a portfolio consisting of 100$ in cash is 1. Thisinvestor will be willing to pay 40$ for a
40% ownership in the envel ope because the transaction will increase the geometric expected return
of his portfolio. The gross return of the resulting portfolio (60$ in cash plus 40% ownership of the
envelope) will be either 1.4 with probability 0.5 or 0.8 with probability 0.5. The geometric expected

return will be:

GER=1.4%*0.8%~1.0583>1

The same investor will not be willing to pay another 40$ for an additional 40% ownershipin
the envel ope because the transaction will decrease the geometric expected return of his portfolio. The
gross returns of the resulting portfolio (20$ in cash plus 80% ownership in the envelope) will be 1.8

with probability 0.5 and 0.6 with probability 0.5. The geometric expected return will be:

GER =1.8%* 0.6%° ~1.0392 < 1.0583

The above example shows that an individual investor will value an asset (in our case 40%
ownership in the envelope) differently depending on the asset’ s correlation with the rest of his
portfolio. Hence the value of an asset isrelative.

C. Therequired rateof returnisan artificial concept

The RVT does not make reference to the required rate of return concept. The RVT refers only to
time value of money, which is unique and alows the present value calculation for any cash flow in
the future, risky or not. Intuitively arational, risk indifferent investor will not require arate of return
but will simply try to maximize his cumulative return.

We revisit the case of the envel ope containing either 200$ with probability 0.5 or 50$ with
probability 0.5. We assume the envel ope trades in the market long before the date when the owner is

allowed to open it and cash its content. The CAPM theory cannot be used to value such a security.
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Just before its opening the envel ope cannot be valued at more than 200$ or less than 50$. No matter
how the CAPM values the envelope just before its opening, discounting its value at arate higher than
therisk free rate would result in an arbitrage opportunity. At an early enough point in time the
envelope would trade for less than the value of the 50$ risk free asset embedded in the envelope. The

CAPM appearsinferior to the RVT for this particular type of asset.

V. W eaknesses of the CAPM

The CAPM theory was thoroughly studied and is broadly accepted by academia and the
investing community in general. This popularity can make the CAPM theory a self-fulfilling
prophecy. At this point any empirical test would do nothing but confirm the CAPM theory. Such a
confirmation would be aweak proof for the CAPM being the best approach to asset valuation.

The CAPM theory appears to be weak. The following paragraphs describe some arguments
against the validity of the CAPM theory. None of these shortcomings apply to the RVT.
A. The CAPM theory appearsto beinconsistent with efficient markets

It is reasonable to assume that some investors are risk indifferent and some arerisk loving. Ina
highly efficient market the cross-section of risk loving investors should be large enough to create an
efficient market for any risky stock. Therisk loving investors will always outbid the risk-averse. Asa
consequence, the cash flows associated with riskier stocks will be discounted using alower rate of
return (presumably lower than the risk free rate). Thisfact would contradict the CAPM theory.
B. Risk indifference should bethe equilibrium stance

Intuitively, being risk loving or risk-averse should come at a cost. A risk loving person will
overpay for risky stocks thus accepting lower rates of return. A risk-averse person will forego good
investment opportunities because of the associated risk. On the other hand, arisk indifferent person
will be free to focus solely on maximizing returns. This constraint-free approach should lead to a
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better performance, which in turn should increase risk indifferent investors' wealth and consequently
influence on the market as awhole. Thisforce should drive the market away from any risk loving or
risk-averse stance to an equilibrium characterized by risk indifference.

C. Companies cannot be valued without a market in place

The CAPM theory does not allow investors to value a business in the absence of the equity
market because without a market in place there would be no beta coefficient and no market premium.
As a consequence investors would not know how much to pay, or how much to ask, for any given
business. The CAPM theory seems to suggest that the market is endowed with a knowledge and
reasoning of its own, apart from the cumulative knowledge and intelligence of all investors. Thisfact
runs against common sense.

D. Betaisnot agood indicator of risk

The beta coefficient incorporates the effect on price of new information. Bad news can drive the
price of a stock down on a day when the market is up, thus polluting the very correlation betatriesto
detect.

Betais calculated using daily movementsin stock price and market index. If betais calculated
using two-day periods (or half-day periods) the resulting value might be totally different from the
“real” beta. Thisfact questions beta’ s meaning and usefulness.

By looking at beta, investors “look in the rear mirror” instead of focusing on the future. If the
market has no memory, beta should be useless in estimating risk.

E. The CAPM theory critically depends on the assumption investors arerisk-aver se

The CAPM theory cannot function in arisk indifferent market. However arisk indifferent world

is at least theoretically possible. The CAPM theory is unable to provide a general framework for asset

valuation, independent of risk preference assumptions.
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V. Conclusions

Unlike the CAPM theory, which assumes rational investors want to maximize the probability-
weighted arithmetic mean of their portfolio’ s payoffs, the RVT assumes rational investors want to
maximize the probability-wei ghted geometric mean of their portfolio’s payoffs.

We find this theory reasonable. The paper provides a mathematical demonstration of the fact
that maximizing the geometric expected return is equivalent to maximizing long term cumulative
returns. We find it reasonable to assume investors are primarily interested in their own long-term
cumul ative returns.

The RVT provides asimple explanation for the “risk premium” without referring to
investors' utility functions or risk preferences. Basically the RV T shows that the risk premium (higher
arithmetic expected returns for riskier assets) is apparent in the sense it does not alow investorsto
outperform the market over the long term (on a cumulative return basis).

The RVT does not use the elusive required rate of return concept, resting instead on asimple
mathematical foundation that uses only two basic concepts: time value of money, and the probability
distribution of payoffs. This simple mathematical foundation allows the theoretical investigation of
how prices are formed and market equilibrium is reached.

We proved that in aworld of rational, risk indifferent investors the market tends toward a
stable equilibrium characterized by al investors owning the market. The RVT also shows that asset
values are relative, and that diversification not only reduces risk but also increases cumul ative returns.
The RVT isapplicable to any type of financial security.

The RVT circumvents some of CAPM’ s weaknesses and inconsistencies as described in
section IV of the paper. RVT’s main weakness consistsin itscritical reliance on the assumption the
market cannot go to zero.

The RVT does not try to predict asset prices’ evolution in the market. According to the RVT,
at any given point in time market prices are determined by the perceived probability distribution of
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asset payoffs. Obvioudly the evolution of these probability distributions cannot be predicted and
consequently neither can market prices.
We conclude that the RVT rests on asolid logical foundation, is consistent with most finance

phenomena, and provides a workable theory of investing.

Appendix A

In this appendix, we prove the cumulative return per investing loop tends to the probability weighted

geometric mean of returns when the number of loopstends to infinite:

limyR, =R xR™ (A1)

n- o

After ninvesting loops the asset will return R, atotal of n. times and will return R. atotal of n. times.

We have that n, plusn. isequal to n. We have that:
R=R™R"™ (A2)

Replacing R, from (A2) in (A1) the limit becomes:

lim /R, =R, )R ) (A3)

n- oo

We have that:
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lim "™/, = p. and [im"/, = p. (A%)

n-oo n- o

Replacing (A4) in (A3) we conclude that:

limyR, =R"R"™ QED.

n- o

We must note that this demonstration can be easily generalized to assets with many possible

returns.

Appendix B

In this appendix, we prove that if GM is greater than GMg then the probability P*®, of asset
A outperforming asset B after n investing loops tends to 1 when the number of loops tendsto infinite.

Since GM, is greater than GMg a positive number R exists so that:
GM4 >R >GMjg (B1)
We use Ry to indicate arisk free asset with agross return equal to R. Since Risrisk freeits

gross return after ninvesting loopsis R" (R to the power of n).

Considering that GM, is greater than R, a small positive number € exists so that:

GM,-¢ >R (B2)
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We know that:

limyR:, =GM, (B3)

n-oo

Using the definition of limits we can say that no matter how small a positive number ¢, a

positive integer n, exists so that for every integer n greater than n, we have that:

YR >GM,, —¢ (82)

Given (B2), (B3) and (B4) we conclude that a positive integer n, exists so that for every

integer n greater than n, we have that:
A
Ry >R (85)

We can similarly show that another positive integer n’, exists so that for every integer n

greater than n’, we have that:
B
R">R, (B6)

Using (B5) and (B6) we can now conclude that for every integer n greater than Max (n', , n’,)

we have that R*, is greater than R®,,, which is equivalent with:

limPR" =1 QED.

n - oo
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Appendix C

In this appendix, we prove that unless two investors have the same capital allocation they will
be able to transact to increase the geometric mean of payoffs for both their portfolios. Consequently,
they will end up owning the same portfolio (same capita allocation).

We use O,, and Og for the cumulative ownership of the two investorsin each of the two

assets. We have that:
Xa+Ya=0a, Xg +Ys=0g (C1)
The two investors can transact freely and consequently divide the cumulative portfolio into
two portfolios. Considering (C1) the pair X, and Xg describes al possible ways of splitting the

cumulative portfolio. We use F as a notation for the sum of the geometric means of the two individual

portfolios. Using (C1) we can write F asafunction of x, and Xg:

F(Xa, Xg) = G(AXA +B XB)R + Iil[AOA +B GO, _(AXA +B XB)]R (C2

We operate the following substitutions:
A =AO0,, B =B0Og, X, =X,/0,, Xz =X%3/04 (C3)

We rewrite (C2) asfollows:

n

FO6%) = [1(A% +B ) +[]1A +B ~(Ax, +B %) ()

1=1
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where X,, Xg D[O,ZI].

For all the pointsin the definition space of function F that satisfy the condition x, equals X
(the points along the bisector) the value of F is constant and equal to the geometric expected payoff of

the cumulative portfolio of the two investors:
F(mm) = I_l (A +B ), foral mo[o]] (C5)

We will prove that function F has a unique (and consequently global) local maximum along
the bisector. Before proceeding with the demonstration it is useful to present a 3D graph of function F
for asimple case with two assets and three possible states. The probability distribution of payoffs for

thissimple caseisincluded in Table 1.

Tablel Probability distribution of payoffs
The table describes a smple world with two risky assets and three possible states. Columns A and B

indicate an asset’ s payoffsin each particular state. Rows 1, 2, and 3 indicate all the asset payoffsin a
given state. The last column indicates the probabilities for each state.

Assets
States A B Probabilities

1 $100 $10 0.1
2 $120 $80 0.5
3 $0 $300 0.4

A 3D graph of function F is provided in Figure 1. The graph of function F is shaped like a

wave oriented along the bisector of the definition space. Changing the probability distributions of
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payoffs does not affect the shape of the graph in afundamental way (even when considering extreme

situations).
240
220 -
g 200 -
£ 1a0-| Z e e e
H R NN ENY
£ = S SANNNNRN
160 :
c ~ )
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g // :

#b - percentage ownership in B

¥a - percentage ownership in A

Figurel 3D graph of function F

Thefigure illustrates the sum of the geometric expected payoff for the two investors as a function of
their capital allocation. Xa and Xb are the percentage ownership of investor 1 in asset A and
respectively asset B. Sinceinvestor 2 owns the remaining portion of the two assets, the pair Xa and

Xb entirely describes the capita alocation of the two investors. We notice that the sum of the
geometric means is maximized when the two investors own the market (which is along the bisector).

We can smplify formulas by using the following notations:
X ZAX*BXo, T =A B, X=[]X" aa T-X=[](-X) (o

© Copyright 2001, Silviu lulian Alb. All Rights Reserved. 20



Considering (C6) we can now write F as.
F(Xa:Xg) =X +T =X (c7)
Weuse F', and F''4 for the first and respectively second degree derivatives of F in x.. We can write:

| 2 OX  T-x0
FA(XA’XB)_Z piAK T _Xig (C8)

' _wHrpAH & FAHE ——U pA H & pAQH
o X S e B2 S elpln @

Similarly we can write the first and second degree derivatives of Fin xg. Due to symmetry these

expressions will be similar to (C8) and (C9).

We can now easily verify the first derivative is zero in every point that satisfies the condition
Xa equals Xg (the points along the bisector). We can also prove the second derivative is negative
because the two expressions within square parenthesis represent a difference between the square of an
arithmetic mean and the arithmetic mean of the squares. This difference is negative because the
square of the arithmetic mean is always smaller than the arithmetic mean of the sgquares.

To prove thisresult we start from a simple case of two positive numbers n, and n, and note

w; and w, the weights (obvioudy w; plus w; equals 1).We must prove that:

2 2 2
Wlnl + W2n2 2 (Wlnl + W2n2) (Cg)

Replacing w, with (1- w;), developing the square parenthesis, moving all factorsto the right
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hand side, and dividing by w;w,, we obtain an obvious equival ent inequality:

(n,-n,)*=0 (C10)

We can now use this demonstration to extend the result to arithmetic means of three or more

numbers. We can write the arithmetic mean of the squares of three numbers as:

b nZE[+wn2 (C11)
(W1+W2) o

wn® +w,n,” +w,n,? > (w, +w,
E(W+W

The expression within sguare parenthesis is an arithmetic mean of squares and using the previous

result we can write;

H
W1n12 + Wznz2 + V\/ana2 2 (Wl + WZ)E(W V_:_IIW )n1 + (W V_\I_IZW )nz E + Wane,2 (C12)

We can now apply the previous result to obtain that:

Wlnl2 + W2n22 + W3n32 2 (Wlnl + W2n2 + W3n3 )2 (C13)

The second degree derivative of Fin x, is strictly negative unless x, and xg are both zero or

we have that assets A and B are identical in the sense that:
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% = const. for all i O[O, n]

For the purpose of our demonstration we can ignore both singularities and consider that all second
degree derivatives of F are strictly negative.
For every paint (Xa, Xg) in the definition space of function F a positive number m exists so

that:
X, <m, Xz <m, and mD[O,J]
We consider the line L that unites the two points (Xa, Xg) and (m,m). This line makes constant angles

0 and 6 with both axis x and respectively xs. Both the first and the second derivatives of function

F along thisline can be written as:

F (XaXg) =€0SO, Fp (X, Xg) +€0SO, Fg (Xa Xg) (C14)

F" (X Xg) =€0SO, F,' (X, Xg) +€0SO, Fg' (X4 Xg) (C15)
We conclude that along line L function F has a unigue (and consequently global) local maximum at
the point where it meets the bisector. We previoudy showed in (C5) that function F is constant along
the bisector. We can conclude that function F has alocal maximum along the bisector, and this

maximum is unigue (and consequently global). We write:

F (X, Xs) < F(mm), for every (X, X;) 0[01]x[0,] and every mO[0;1]
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Reversing the substitutions we defined in (C3), and using (C1) we find that for the points on the

bisector we have that:

Xa - Xe

(C16)
Ya Ye

Unlesstheinvestors' portfolios satisfy (C16) the two investors can transact to increase the
sum of their portfolios geometric means. Considering (C5) it is obviousthat at least a segment on the
bisector will further satisfy the condition that the geometric mean of both investors' portfolios will
increase following the transaction. We conclude the two investors will transact until they will end up

owning the same capital allocation (their portfolios will be similar).

QE.D.

Appendix D
In this appendix we calculate equilibrium asset prices. To simplify notations we consider the

simple case of two risky assets. We will use the fact that, at equilibrium, each investor holds the

market. We can write that:

Xp = Xg =C ,where c0(0,1) (D1)

We use P, and P; to denote the equilibrium prices of asset A and B. An investor can

exchange x worth of ownership in asset A for x worth of ownership in asset B (or the other way
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around). Conseguently the investor can exchange x / P, ownership in asset A for x / P ownership in
asset B (or the other way around). We can define f afunction of x representing the geometric
expected payoff for the investor’s portfolio consequent to the above mentioned transaction. The
variable x fully describes the transaction. When X is hegative the investor trades ownership in B for

ownership in A, when x is positive the investor trades ownership in A for ownership in B. We write:

n ] !
RRIEER R

The function f must have a maximum in zero. If function f does not have a maximum in zero
then atransaction is possible that would further increase the investor portfolio’ s geometric expected

payoff thus contradicting the equilibrium assumption. We extract ¢ outside the product, and operate

- X :
the substitution X =—. We can now rewrite (D2) as:

f(x):cngb\+8 +XE~2 F‘% (D3)

Thefirst derivative of function f is;

(D4)
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By setting the first derivative in zero equal to zero, eliminating the f (X) factor, and grouping

separately P, and Ps we obtain alinear equation in P, and Pg:

1
B (DY)

P.— A:PBn !
;piMi ;piMi

where M, = A +B

It must also be the case that the geometric expected payoff for the market as awholeis equal
to the total value of the market (since the expected cumulative return must be equal to time value of
money and consequently the geometric expected return for the market as a whole must be equal to

one). We write:
GM =P, + P, (D6)

Equations (D5) and (D6) form a system of two linear equationsin P, and Ps. This system has

aunique set of solutions:

B

A B
M i

PA:GMZpiM_i’andPB:GM.ipi (D7)

The geometric expected return is given by (8). The arithmetic expected return of asset A is

given by:
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AR, =L AMA) 09
A GM AM(P)

where

AM(A)=ZIOA

We must note that all the above calculations remain valid no matter how many risky assets
exist in the market (we considered the case of two assets to simplify notations).

As an example, we can use (D7) to calculate the equilibrium prices of asset A and B
described in Table 1 (Appendix C). We find that the equilibrium price of asset A would be $86.61

and the equilibrium price of asset B would be $134.95.
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FOOTNOTES

! Von Neumann and Morgenstern (1944) proposed axioms describing rational choice under
uncertainty and then showed the utility function can be taken to be linear in the probabilities.

? See Black, Jensen and Scholes (1972), Blume and Friend (1972), and Fama and MacBeth
(1973).

% See Markowitz (1959), and Tobin (1958).

* The development of the CAPM was accomplished by Sharpe (1964) and Lintner (1965) on
the foundation laid down by Markowitz (1959) and Tobin (1958) with their studies on mean variance
choice.

> Since the expected cumulative return form owning the market must be equal to T (the
discount rate describing time value of money) it follows that the geometric expected return of the
market must be equal to one. Consequently the total value of the market must equal its geometric

expected payoff.
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TABLES

Assets
m A B |probabilities
1 $100 $10 0.1
2 $120 $80 0.5
3 $0 $300 0.4
Tablel Probability distribution of payoffs

Thetable describes a ssmple world with two risky assets and three possible states. Columns A and B

indicate an asset’ s payoffsin each particular state. Rows 1, 2, and 3 indicate all the asset payoffsin a

given state. The last column indicates the probabilities for each state.
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sum of geametric means

F (Xa b -
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¥b - percentage ownership in B

Ha - percentage ownership in A

Figurel 3D graph of function F

Thefigure illustrates the sum of the geometric expected payoffs of the two investors as a function of
their capital alocation. Xa and Xb are the percentage ownership of investor 1in asset A and
respectively asset B. Sinceinvestor 2 owns the remaining portion of the two assets, the pair Xa and
Xb entirely describes the capita alocation of the two investors. We notice that the sum of the

geometric expected payoffs is maximized when the two investors own the market.
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