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The Relative Value Theory

Abstract

I propose the following theory: rational investors allocate capital to maximize the probability-

weighted geometric mean of payoffs. I present the theory’s rationale and investigate its implications. I

find that diversification increases cumulative returns and asset values are relative. The theory does not

make assumptions about investors’ risk preferences and explains the “risk premium” without using

the utility function concept. In a world of rational, risk indifferent investors the market tends to a

stable equilibrium characterized by all investors holding the market. I calculate equilibrium prices for

a simple model. The theory uses a unique discount rate (to account for time value of money) and

ignores the required rate of return concept. The theory addresses some of the CAPM’s

inconsistencies. I conclude the theory is coherent and useful in explaining observable finance

phenomena.
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Finance theory rests on the fundamental assumption that rational investors want to maximize

the probability-weighted arithmetic mean of their portfolio’s payoffs (arithmetic expected payoff).1

Given a set of market prices, this rationality criterion is equivalent to maximizing the arithmetic mean

of returns (arithmetic expected return). Empirical studies show that riskier assets have higher

arithmetic expected returns.2 To reconcile the rationality criterion with empirical results theorists

introduce the utility function concept and assume investors are risk-averse.3 The risk aversion

assumption plays a key role in the CAPM theory. 4

The proposed relative value theory (RVT) introduces the following rationality criterion:

rational investors want to maximize the probability-weighted geometric mean of payoffs (geometric

expected payoff). By payoff we mean the present value of an asset’s stream of cash flows discounted

at a unique rate representing time value of money. Given a set of market prices, RVT’s rationality

criterion is equivalent to maximizing the geometric mean of gross returns (geometric expected

return).

For instance, the geometric expected return for a risky asset R with two possible gross

returns, 1.3 with probability 0.6, and 0.65 with probability 0.4, is approximately 0.985, whereas its

arithmetic expected return is 1.04 (all returns are gross returns):

GER = 1.3 0.6 * 0.65 0.4 ~ 0.985

AER = 0.6*1.3 + 0.4*0.65 = 1.04

According to current finance theory a rational, risk indifferent investor would prefer the risky asset R

over a risk free Rf asset with a gross return of 1 (because R has a higher arithmetic expected return

than Rf). According to the RVT this investor would instead prefer the risk free asset Rf (because Rf

has a higher geometric mean than R).

By continually reinvesting the proceeds in the risky asset R an investor will end up loosing all

his money. This result can be mathematically proved with limits or verified experimentally using a
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computer program. The example points to the geometric mean maximization being a superior

criterion for rationality than the arithmetic mean maximization.

The case supporting the RVT appears to be particularly strong. It can be mathematically

proved that maximizing the geometric expected return is the investing strategy that, over the long

term, will consistently outperform any other strategy in terms of cumulative returns.

The RVT makes the utility function concept close to irrelevant. The RVT explains observable

finance phenomena without referring to this concept and without assuming investors are risk-averse.

The above-mentioned risky asset has a higher arithmetic expected return than the risk-free asset, but

this risk premium is apparent since it cannot be used to outperform the risk free asset in terms of

cumulative returns.

RVT’s implications on finance theory are significant. Most notably, asset values are relative.

The effect on cumulative returns of adding an asset to a portfolio depends on the correlation between

the asset’s cash flows and those of the rest of the portfolio. The RVT also indicates that

diversification not only reduces risk but also increases cumulative returns, thus contradicting the view

that returns can be improved by simply undertaking more risk.

The RVT provides the means to investigate the formation of asset prices in the market. Under

the RVT assumption, it can be proved that, in a world of rational, risk indifferent investors, the

market evolves toward a stable equilibrium characterized by all investors holding the market.

Equilibrium prices can be determined without using the required rate of return concept. The

equilibrium price formulas provide an explanation for the stock market consistently outperforming

the risk free asset.

The RVT has a simple mathematical foundation, is applicable to any type of security and

circumvents some of CAPM’s weaknesses and inconsistencies.

The paper proceeds as follows. Section I presents RVT’s rationale. Section II describes

market equilibrium and price formation. Section III presents RVT’s implications. Section IV runs a

comparison between the CAPM and the RVT. Section V summarizes the paper’s findings.
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I. RVT’s rationale

We consider a risky asset with two possible gross returns: R+ with probability p+, and R- with

probability p- (p- plus p+ equals 1). We assume an investor can collect the proceeds and reinvest them

in the same asset over and over again (we’ll refer to a single step as an investing loop). After n

investing loops each dollar initially invested we’ll turn into Rn dollars (Rn is the gross return per

dollar invested). It can be mathematically proved (please refer to Appendix A for a complete

demonstration) that:

−+
−+

∞→
×= ppn

n
n

RRRlim (1)

In other words, the expected cumulative gross return per investing loop equals the geometric

expected return. The higher the geometric expected return for a portfolio, the higher its expected

cumulative return.

We consider two assets A and B. The geometric expected returns are GMA and respectively

GMB, with GMA > GMB. We use RA
n and RB

n to indicate the gross cumulative returns after n

investing loops.  We use PAB
n to indicate the probability of asset A outperforming asset B (RA

n > RB
n)

after n investing loops. We can now use identity (1) to prove (please see Appendix B for a complete

demonstration) that:
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∞→

AB
n

n
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In other words, the probability of portfolio A outperforming portfolio B after n investing

loops tends to 1 when the number of loops tends to infinite. We can conclude that maximizing the

geometric expected return is the investing strategy that will consistently outperform any other
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strategies over the long term. Since individual investors appear to be interested in investing strategies

that consistently work, the above result provides credibility to RVT’s rationality criterion.

The arithmetic expected return has a different meaning. We consider m investors that invest

in identical assets (in terms of probability distribution) with uncorrelated payoffs. When m tends to

infinite, the gross return for the investing community as a whole (total final wealth over total initial

wealth) after one investing loop tends to the arithmetic expected return of the considered class of

assets. If all investors have the same initial capital C, we can write (the demonstration is similar to the

one provided in Appendix A for the geometric mean):

−−++
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×
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Cm

Rm

n
lim (3)

In other words, the higher the arithmetic expected return the higher the gross return for the investing

community as a whole.

We conclude that maximizing the geometric expected return benefits the individual investor,

whereas maximizing the arithmetic expected return benefits the investing community as a whole. It is

reasonable to assume that individual investors are primarily concerned with their own financial

situation, the financial situation of others being a secondary concern. In light of the above, RVT’s

rationality criterion appears reasonable.

The RVT’s validity is further supported by its ability to explain the observed “risk premium”

without referring to investors’ utility functions or postulating investors’ aversion to risk. As we

previously mentioned, assets with higher arithmetic expected returns than the risk free asset do not

necessarily outperform the risk free asset in terms of cumulative return. Consequently the observed

“risk premium” (or at least most of it) is only apparent. To illustrate the above result we consider a

risky asset that returns either 1.375 with probability 0.5 or 0.88 with probability 0.5. The arithmetic

expected return is 1.1275, and according to the CAPM theory an investor must be risk-averse to
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prefer a risk free asset that returns only 1.1. However, the geometric expected return of the risky asset

is also 1.1. Consequently, when the number of investing loops tends to infinite, the risky asset will

perform in line with the risk free asset. Using (2) we observe that the risky asset will outperform any

risk free asset with a gross return lower than 1.1 and will under perform any risk free asset with a

gross return higher than 1.1. Since a higher arithmetic expected return does not guarantee a better

performance in terms of cumulative returns we conclude the observed risk premium is only apparent.

 The main weakness of the RVT is its reliance on the assumption that the market as a whole

cannot go to zero. In other words, there must be a risk free asset embedded in the market for the RVT

to function. Should this fundamental assumption be violated, the geometric mean for the market as a

whole would be zero. Moreover, the geometric mean would be zero for all portfolios since no

portfolio can be construed to avoid entirely the possibility of a zero payoff. We believe the weakness

is minor. We could defend the RVT by noting the market going to zero would imply the ceasing of

economic activity, which in turn would imply the end of mankind. In such an extreme situation

investor’s initial capital allocation would not matter anyway. We conclude that investors can ignore

this possibility altogether.

The RVT’s validity is also supported by the simplicity of its mathematical foundation, and, as

later discussed in the paper (section II), by its ability to explain why the market provides a higher

cumulative return than the risk free asset. The RVT also circumvents some of the weaknesses and

apparent inconsistencies of the CAPM theory.

II. A simple world with two risky assets

To illustrate how prices are formed and equilibrium is reached, we consider a simple world

with two risky assets A and B. The future evolution of this a world can follow n different scenarios

(states). In scenario i (i goes from 1 to n) the payoffs of assets A and B are Ai and respectively Bi
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(where Ai, and Bi are all positive numbers). By payoff we mean the present value of the stream of

cash flows discounted at a unique rate T representing time value of money.

We note pi the probability of state i (the n probabilities pi add up to 1). Investors can freely

trade ownership in these assets in the market. We further assume that Ai and Bi cannot all be zero at

the same time (a state in which Ai plus Bi equals 0 does not exist).

We define equilibrium as a situation in which no transaction exists that will increase the

geometric expected payoff for both investors engaged in it. In other words equilibrium is reached

when all transactions will decrease the geometric expected payoff for at least one of the two investors.

We consider two rational investors (as per RVT’s definition). Investor 1 owns XA of asset A,

and XB of asset B; investor 2 owns YA of asset A, and YB of asset B. We say that investors 1 and 2

have the same capital allocation if:

XA / YA = XB / YB = p, where p > 0 (4)

We prove that unless the two investors have the same capital allocation as defined by (4) they

will be able to transact to increase the geometric expected payoff for both their portfolios.

Consequently individual investors will keep transacting until the differences in capital allocation will

disappear and all investors will hold the same portfolio (please refer to Appendix C for a full

demonstration of the statements in this paragraph).

Since the cumulative investor ownership in any given asset must add up to one (representing

100% ownership) it is obvious that, at equilibrium, each individual investor will hold the market. An

investor owning the market means his percentage ownership will be the same for any given asset. For

investors 1 and 2 mentioned above we write:

XA = XB = X, and YA = YB = Y, where X / Y = p (5)
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So far we showed that, under the RVT assumption, the market would necessarily evolve

toward a stable equilibrium in which all investors own the market. Considering the above results we

now want to determine asset prices at equilibrium.

At equilibrium individual investors can not increase their portfolio’s geometric expected

payoff by trading assets at market prices. By setting this condition for every possible transaction

(every possible pair of assets), and by setting the total value of the market as a whole (market value of

asset A plus market value of asset B) equal to its geometric expected payoff5, we obtain a system of

two linear equations with two unknowns. The two unknowns are the equilibrium market prices of the

assets A and B. The solution to this system exists, and is unique.

We consider the general case of a world with m risky assets Aj (j goes from 1 to m), and n

possible states i (i goes from 1 to n) with probabilities pi. Time value of money is unique and

measured by the discount rate T. We use Aj
i to denote the present value of asset Aj’s stream of cash

flows in state i. Under the RVT assumption the equilibrium market price of asset Aj is given by

(please refer to Appendix D for the related mathematics):
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 (the total payoff of the market in state i),
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 (the geometric mean of payoffs for the market as a whole).

Consequently the geometric expected return of asset Aj is given by (after simplifications):
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Summarizing, we proved that, under the RVT assumption, the market evolves toward a stable

equilibrium characterized by all investors holding the market and asset prices given by (6).

We observe that the geometric expected return of any asset or portfolio is lower than the

geometric expected return of the market as a whole. Since the geometric mean is always smaller than

the arithmetic mean, equation (7) indicates that the geometric expected return of any given asset is

smaller than one, whereas the geometric expected return of the market is equal to one.

Consequently considering (2) the market as a whole will outperform any given asset

(including the risk free asset) in terms of cumulative returns. The RVT therefore provides a viable

explanation for the market outperforming the risk free asset over the past century.

We must note that the market value of any risky asset depends on the existence and nature

(most importantly payoff correlation) of all other risky assets. Adding a new risky asset to the market

will increase the market value of the existing assets. This effect also contributes to the market

outperforming the risk free asset in periods of economic development in which new companies and

new industries are born. Obviously the past century represents such a period. This result provides

further support to the validity of the RVT.
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III. Implications on finance theory

The RVT has significant implications, some of them being discussed below.

A. Diversification not only decreases risk but also increases cumulative returns

According to the CAPM theory diversification brings benefits by reducing risk. Lower risk is

considered a benefit because of CAPM’s basic assumption that investors are risk-averse. According

to the RVT, diversification not only reduces risk but also increases expected cumulative returns.

Consequently rational, risk-indifferent (even risk-loving) investors will still diversify their holdings.

The following example illustrates this effect.

We consider two investments A and B. Investment A returns either 1.4 with probability 0.5 or 0.8

with probability 0.5. Investment B returns either 1.35 with probability 0.5 or 0.79 with probability

0.5. The outcomes of the two investments are not correlated.  Although A is a clearly better

investment than B, the best portfolio according to the RVT is some combination of the two. Indeed

we can verify that allocating 90% of capital to investment A and 10% to investment B will result in a

higher geometric expected return than allocating all capital to investment A. The result is somewhat

counterintuitive and reveals the descriptive power of the RVT.

B. There is no absolute value for assets

Assets do not have an absolute value. Knowing the possible streams of cash flow and related

probabilities is not sufficient to compute a price that all investors will agree upon. The equilibrium

prices formula presented in section II clearly indicates a dependence on the nature of the other

existing assets. An investor will be willing to pay different prices for the same given asset depending

on the correlation between the cash flows of the asset and those of the investor’s portfolio. The

following example illustrates the relativity of asset values.

We consider an envelope that contains either 200$ with probability 0.5 or 50$ with probability

0.5. We consider an investor with a total capital of 100$ in cash. For simplicity we assume that the

gross return of keeping the capital in cash is 1 with probability 1 (no return). The geometric expected
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return for a portfolio consisting of 100$ in cash is 1. This investor will be willing to pay 40$ for a

40% ownership in the envelope because the transaction will increase the geometric expected  return

of his portfolio. The gross return of the resulting portfolio (60$ in cash plus 40% ownership of the

envelope) will be either 1.4 with probability 0.5 or 0.8 with probability 0.5. The geometric expected

return will be:

GER = 1.4 0.5 * 0.8 0.5 ~ 1.0583 > 1

The same investor will not be willing to pay another 40$ for an additional 40% ownership in

the envelope because the transaction will decrease the geometric expected return of his portfolio. The

gross returns of the resulting portfolio (20$ in cash plus 80% ownership in the envelope) will be 1.8

with probability 0.5 and 0.6 with probability 0.5. The geometric expected return will be:

GER = 1.8 0.5 * 0.6 0.5 ~ 1.0392 < 1.0583

The above example shows that an individual investor will value an asset (in our case 40%

ownership in the envelope) differently depending on the asset’s correlation with the rest of his

portfolio. Hence the value of an asset is relative.

C. The required rate of return is an artificial concept

The RVT does not make reference to the required rate of return concept. The RVT refers only to

time value of money, which is unique and allows the present value calculation for any cash flow in

the future, risky or not. Intuitively a rational, risk indifferent investor will not require a rate of return

but will simply try to maximize his cumulative return.

We revisit the case of the envelope containing either 200$ with probability 0.5 or 50$ with

probability 0.5. We assume the envelope trades in the market long before the date when the owner is

allowed to open it and cash its content. The CAPM theory cannot be used to value such a security.
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Just before its opening the envelope cannot be valued at more than 200$ or less than 50$. No matter

how the CAPM values the envelope just before its opening, discounting its value at a rate higher than

the risk free rate would result in an arbitrage opportunity. At an early enough point in time the

envelope would trade for less than the value of the 50$ risk free asset embedded in the envelope. The

CAPM appears inferior to the RVT for this particular type of asset.

IV. Weaknesses of the CAPM

The CAPM theory was thoroughly studied and is broadly accepted by academia and the

investing community in general. This popularity can make the CAPM theory a self-fulfilling

prophecy. At this point any empirical test would do nothing but confirm the CAPM theory. Such a

confirmation would be a weak proof for the CAPM being the best approach to asset valuation.

The CAPM theory appears to be weak. The following paragraphs describe some arguments

against the validity of the CAPM theory. None of these shortcomings apply to the RVT.

A. The CAPM theory appears to be inconsistent with efficient markets

It is reasonable to assume that some investors are risk indifferent and some are risk loving. In a

highly efficient market the cross-section of risk loving investors should be large enough to create an

efficient market for any risky stock. The risk loving investors will always outbid the risk-averse. As a

consequence, the cash flows associated with riskier stocks will be discounted using a lower rate of

return (presumably lower than the risk free rate). This fact would contradict the CAPM theory.

B. Risk indifference should be the equilibrium stance

Intuitively, being risk loving or risk-averse should come at a cost. A risk loving person will

overpay for risky stocks thus accepting lower rates of return. A risk-averse person will forego good

investment opportunities because of the associated risk. On the other hand, a risk indifferent person

will be free to focus solely on maximizing returns. This constraint-free approach should lead to a
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better performance, which in turn should increase risk indifferent investors’ wealth and consequently

influence on the market as a whole. This force should drive the market away from any risk loving or

risk-averse stance to an equilibrium characterized by risk indifference.

C. Companies cannot be valued without a market in place

The CAPM theory does not allow investors to value a business in the absence of the equity

market because without a market in place there would be no beta coefficient and no market premium.

As a consequence investors would not know how much to pay, or how much to ask, for any given

business. The CAPM theory seems to suggest that the market is endowed with a knowledge and

reasoning of its own, apart from the cumulative knowledge and intelligence of all investors. This fact

runs against common sense.

D. Beta is not a good indicator of risk

The beta coefficient incorporates the effect on price of new information. Bad news can drive the

price of a stock down on a day when the market is up, thus polluting the very correlation beta tries to

detect.

Beta is calculated using daily movements in stock price and market index. If beta is calculated

using two-day periods (or half-day periods) the resulting value might be totally different from the

“real” beta. This fact questions beta’s meaning and usefulness.

By looking at beta, investors “look in the rear mirror” instead of focusing on the future. If the

market has no memory, beta should be useless in estimating risk.

E. The CAPM theory critically depends on the assumption investors are risk-averse

The CAPM theory cannot function in a risk indifferent market. However a risk indifferent world

is at least theoretically possible. The CAPM theory is unable to provide a general framework for asset

valuation, independent of risk preference assumptions.
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V. Conclusions

Unlike the CAPM theory, which assumes rational investors want to maximize the probability-

weighted arithmetic mean of their portfolio’s payoffs, the RVT assumes rational investors want to

maximize the probability-weighted geometric mean of their portfolio’s payoffs.

We find this theory reasonable. The paper provides a mathematical demonstration of the fact

that maximizing the geometric expected return is equivalent to maximizing long term cumulative

returns. We find it reasonable to assume investors are primarily interested in their own long-term

cumulative returns.

The RVT provides a simple explanation for the “risk premium” without referring to

investors’ utility functions or risk preferences. Basically the RVT shows that the risk premium (higher

arithmetic expected returns for riskier assets) is apparent in the sense it does not allow investors to

outperform the market over the long term (on a cumulative return basis).

The RVT does not use the elusive required rate of return concept, resting instead on a simple

mathematical foundation that uses only two basic concepts: time value of money, and the probability

distribution of payoffs. This simple mathematical foundation allows the theoretical investigation of

how prices are formed and market equilibrium is reached.

We proved that in a world of rational, risk indifferent investors the market tends toward a

stable equilibrium characterized by all investors owning the market. The RVT also shows that asset

values are relative, and that diversification not only reduces risk but also increases cumulative returns.

The RVT is applicable to any type of financial security.

The RVT circumvents some of CAPM’s weaknesses and inconsistencies as described in

section IV of the paper. RVT’s main weakness consists in its critical reliance on the assumption the

market cannot go to zero.

The RVT does not try to predict asset prices’ evolution in the market. According to the RVT,

at any given point in time market prices are determined by the perceived probability distribution of
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asset payoffs. Obviously the evolution of these probability distributions cannot be predicted and

consequently neither can market prices.

We conclude that the RVT rests on a solid logical foundation, is consistent with most finance

phenomena, and provides a workable theory of investing.

Appendix A

In this appendix, we prove the cumulative return per investing loop tends to the probability weighted

geometric mean of returns when the number of loops tends to infinite:
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After n investing loops the asset will return R+ a total of n+ times and will return R- a total of n- times.

We have that n+ plus n- is equal to n. We have that:
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Replacing Rn from (A2) in (A1) the limit becomes:
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We have that:
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Replacing (A4) in (A3) we conclude that:
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We must note that this demonstration can be easily generalized to assets with many possible

returns.

Appendix B

In this appendix, we prove that if GMA is greater than GMB then the probability PAB
n of asset

A outperforming asset B after n investing loops tends to 1 when the number of loops tends to infinite.

Since GMA is greater than GMB a positive number R exists so that:

GMA > R > GMB                (B1)

We use Rf to indicate a risk free asset with a gross return equal to R. Since R is risk free its

gross return after n investing loops is Rn (R to the power of n).

Considering that GMA LV JUHDWHU WKDQ 5� D VPDOO SRVLWLYH QXPEHU 0 H[LVWV VR WKDW�

RGM A >−ε             (B2)
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We know that:
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positive integer n0 exists so that for every integer n greater than n0 we have that:

ε−> A
n A

n GMR             (B4)

Given (B2), (B3) and (B4) we conclude that a positive integer n0 exists so that for every

integer n greater than n0 we have that:

nA
n RR >             (B5)

We can similarly show that another positive integer n’0 exists so that for every integer n

greater than n’0 we have that:

B
n

n RR >             (B6)

Using (B5) and (B6) we can now conclude that for every integer n greater than Max (n’0 , n’0)

we have that RA
n is greater than RB

n, which is equivalent with:

1lim =
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n

n

P Q.E.D.
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Appendix C

In this appendix, we prove that unless two investors have the same capital allocation they will

be able to transact to increase the geometric mean of payoffs for both their portfolios. Consequently,

they will end up owning the same portfolio (same capital allocation).

We use OA, and OB for the cumulative ownership of the two investors in each of the two

assets. We have that:

xA + yA = OA, xB + yB = OB              (C1)

The two investors can transact freely and consequently divide the cumulative portfolio into

two portfolios. Considering (C1) the pair xA and xB describes all possible ways of splitting the

cumulative portfolio. We use F as a notation for the sum of the geometric means of the two individual

portfolios. Using (C1) we can write F as a function of xA and xB:
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We operate the following substitutions:

BBBAAABiiAii OxxOxxOBBOAA /,/,, ====             (C3)

We rewrite (C2) as follows:
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where [ ]1,0, ∈BA xx .

For all the points in the definition space of function F that satisfy the condition xA equals xB

(the points along the bisector) the value of F is constant and equal to the geometric expected payoff of

the cumulative portfolio of the two investors:

( ) ,),(
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+=
n

i
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ii

iBAmmF  for all [ ]1,0∈m (C5)

We will prove that function F has a unique (and consequently global) local maximum along

the bisector. Before proceeding with the demonstration it is useful to present a 3D graph of function F

for a simple case with two assets and three possible states. The probability distribution of payoffs for

this simple case is included in Table 1.

Table I Probability distribution of payoffs

The table describes a simple world with two risky assets and three possible states. Columns A and B
indicate an asset’s payoffs in each particular state. Rows 1, 2, and 3 indicate all the asset payoffs in a
given state. The last column indicates the probabilities for each state.

$100 $10 0.1

$120 $80 0.5

$0 $300 0.4

B P robabilit ies
                   A s s ets   
S tates

1
2
3

A

A 3D graph of function F is provided in Figure 1.  The graph of function F is shaped like a

wave oriented along the bisector of the definition space. Changing the probability distributions of
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payoffs does not affect the shape of the graph in a fundamental way (even when considering extreme

situations).

Figure 1  3D graph of function F

The figure illustrates the sum of the geometric expected payoff for the two investors as a function of
their capital allocation. Xa and Xb are the percentage ownership of investor 1 in asset A and
respectively asset B. Since investor 2 owns the remaining portion of the two assets, the pair Xa and
Xb entirely describes the capital allocation of the two investors. We notice that the sum of the
geometric means is maximized when the two investors own the market (which is along the bisector).

We can simplify formulas by using the following notations:
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Considering (C6) we can now write F as:

XTXxxF BA −+=),(             (C7)

We use FI
A and FII

A for the first and respectively second degree derivatives of F in xA. We can write:
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Similarly we can write the first and second degree derivatives of F in xB. Due to symmetry these

expressions will be similar to (C8) and (C9).

We can now easily verify the first derivative is zero in every point that satisfies the condition

xA equals xB (the points along the bisector). We can also prove the second derivative is negative

because the two expressions within square parenthesis represent a difference between the square of an

arithmetic mean and the arithmetic mean of the squares. This difference is negative because the

square of the arithmetic mean is always smaller than the arithmetic mean of the squares.

To prove  this result we start from a simple case of two positive numbers n1 and n2 and note

w1 and w2 the weights (obviously w1 plus w2 equals 1).We must prove that:

2
2211

2
22

2
11 )( nwnwnwnw +≥+             (C9)

Replacing w2 with (1- w1), developing the square parenthesis, moving all factors to the right
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hand side, and dividing by w1w2, we obtain an obvious equivalent inequality:

0)( 2
21 ≥−nn           (C10)

We can now use this demonstration to extend the result to arithmetic means of three or more

numbers. We can write the arithmetic mean of the squares of three numbers as:
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The expression within square parenthesis is an arithmetic mean of squares and using the previous

result we can write:
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We can now apply the previous result to obtain that:

( )2332211
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11 nwnwnwnwnwnw ++≥++           (C13)

The second degree derivative of F in xA is strictly negative unless xA and xB are both zero or

we have that assets A and B are identical in the sense that:
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.const
B

A

i

i =  for all [ ]ni ,0∈

For the purpose of our demonstration we can ignore both singularities and consider that all second

degree derivatives of F are strictly negative.

For every point (xA, xB) in the definition space of function F a positive number m exists so

that:

[ ]1,0,, ∈≤≤ mandmxmx BA

We consider the line L that unites the two points (xA, xB) and (m,m). This line makes constant angles

�A and �B with both axis xA and respectively xB. Both the first and the second derivatives of function

F along this line can be written as:
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L xxFxxFxxF θθ +=           (C14)

)(cos)(cos)( ,,, BA
II
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II

L xxFxxFxxF θθ +=           (C15)

We conclude that along line L function F has a unique (and consequently global) local maximum at

the point where it meets the bisector. We previously showed in (C5) that function F is constant along

the bisector. We can conclude that function F has a local maximum along the bisector, and this

maximum is unique (and consequently global). We write:

),(),( mmFxxF BA < , for every [ ] [ ]1,01,0)( , ×∈BA xx and every [ ]1,0∈m
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Reversing the substitutions we defined in (C3), and using (C1) we find that for the points on the

bisector we have that:

B

B

A

A

y

x

y

x =                 (C16)

Unless the investors’ portfolios satisfy (C16) the two investors can transact to increase the

sum of their portfolios geometric means. Considering (C5) it is obvious that at least a segment on the

bisector will further satisfy the condition that the geometric mean of both investors’ portfolios will

increase following the transaction. We conclude the two investors will transact until they will end up

owning the same capital allocation (their portfolios will be similar).

Q.E.D.

Appendix D

In this appendix we calculate equilibrium asset prices. To simplify notations we consider the

simple case of two risky assets. We will use the fact that, at equilibrium, each investor holds the

market. We can write that:

cxx BA ==  , where ( )1,0∈c             (D1)

We use PA and PB to denote the equilibrium prices of asset A and B. An investor can

exchange x worth of ownership in asset A for x worth of ownership in asset B (or the other way
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around). Consequently the investor can exchange x / PA ownership in asset A for x / PB ownership in

asset B (or the other way around). We can define f a function of x representing the geometric

expected payoff for the investor’s portfolio consequent to the above mentioned transaction. The

variable x fully describes the transaction. When x is negative the investor trades ownership in B for

ownership in A, when x is positive the investor trades ownership in A for ownership in B. We write:
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The function f must have a maximum in zero. If function f does not have a maximum in zero

then a transaction is possible that would further increase the investor portfolio’s geometric expected

payoff thus contradicting the equilibrium assumption. We extract c outside the product, and operate

the substitution 
c

x
x = . We can now rewrite (D2) as:
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The first derivative of function f is:
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By setting the first derivative in zero equal to zero, eliminating the )(xf  factor, and grouping

separately PA and PB we obtain a linear equation in PA and PB:
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where iii BAM +=

It must also be the case that the geometric expected payoff for the market as a whole is equal

to the total value of the market (since the expected cumulative return must be equal to time value of

money and consequently the geometric expected return for the market as a whole must be equal to

one). We write:

BA PPGM +=             (D6)

Equations (D5) and (D6) form a system of two linear equations in PA and PB. This system has

a unique set of solutions:
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The geometric expected return is given by (8). The arithmetic expected return of asset A is

given by:
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where
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=
n

i
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1

We must note that all the above calculations remain valid no matter how many risky assets

exist in the market (we considered the case of two assets to simplify notations).

As an example, we can use (D7) to calculate the equilibrium prices of asset A and B

described in Table 1 (Appendix C). We find that the equilibrium price of asset A would be $86.61

and the equilibrium price of asset B would be $134.95.
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FOOTNOTES

1 Von Neumann and Morgenstern (1944) proposed axioms describing rational choice under

uncertainty and then showed the utility function can be taken to be linear in the probabilities.

2 See Black, Jensen and Scholes (1972), Blume and Friend (1972), and Fama and MacBeth

(1973).

3 See Markowitz (1959), and Tobin (1958).

4 The development of the CAPM was accomplished by Sharpe (1964) and Lintner (1965) on

the foundation laid down by Markowitz (1959) and Tobin (1958) with their studies on mean variance

choice.

5 Since the expected cumulative return form owning the market must be equal to T (the

discount rate describing time value of money) it follows that the geometric expected return of the

market must be equal to one. Consequently the total value of the market must equal its geometric

expected payoff.
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TABLES
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Table I Probability distribution of payoffs

The table describes a simple world with two risky assets and three possible states. Columns A and B

indicate an asset’s payoffs in each particular state. Rows 1, 2, and 3 indicate all the asset payoffs in a

given state. The last column indicates the probabilities for each state.
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FIGURES

Figure 1  3D graph of function F

The figure illustrates the sum of the geometric expected payoffs of the two investors as a function of

their capital allocation. Xa and Xb are the percentage ownership of investor 1 in asset A and

respectively asset B. Since investor 2 owns the remaining portion of the two assets, the pair Xa and

Xb entirely describes the capital allocation of the two investors. We notice that the sum of the

geometric expected payoffs is maximized when the two investors own the market.


