Does It Pay To Pray?
Evaluating the Economic Return to Religious Ritual

Bradley J. Ruffle Richard H. Sosis
Department of Economics Department of Anthropology
Ben-Gurion University University of Connecticut
and
Harvard Business School

September 2003

Abstract

Time-consuming and costly religious rituals pose a puzzle for economists committed to rational choice theories of human behavior. We propose that religious rituals promote in-group trust and cooperation that help to overcome collective-action problems. We test this hypothesis on communal societies for whom mutual cooperation is a matter of survival. We design field experiments to measure the in-group cooperative behavior of members of religious and secular Israeli kibbutzim. Our results show that religious males (the primary practitioners of collective religious ritual in Orthodox Judaism) are more cooperative than religious females, secular males and secular females. Moreover, the frequency with which religious males engage in collective religious rituals predicts well their degree of cooperative behavior. We use our results to understand differences in the return to religious observance in capitalist and developing economies.

Keywords: economics of religion, experimental economics, religious ritual, cooperation, signaling, field experiment, kibbutz.

JEL classification codes: C72, C93, P32.

Contact Information: Bradley Ruffle, Harvard Business School, Boston, MA, 02163, tel.: (617) 496-7462, fax: (617) 496-7379, e-mail: bruffle@hbs.edu; Richard Sosis, Department of Anthropology, U-2176, University of Connecticut, Storrs, CT 06269-2176, tel.: (860) 486-4264, fax (860) 486-1719, e-mail: richard.sosis@uconn.edu.

Acknowledgements: We wish to thank Suleiman Abubader, Eli Berman, Ananish Chaudhuri, Jeremy Clark, Yakov Gilboa, Ernan Haruvy, Laurence Iannaccone, Emma Iglesias, Moshe Schwartz and seminar participants at Bar-Ilan University, Hebrew University-Rehovot, McMaster University, University of Exeter, University of New Brunswick-Saint John, University of Oxford, University of Toronto and the ESA meetings in Boston and Strasbourg for valuable comments. Our team of experimenters deserves special thanks: David Amar, Yifat Arbeli, Guy Attias, Inbar Avraham, Revital Chapani, Moti Dahan, Avishai Diner, Gil Eichholz, Sarit Fhima, Hagit Gilad, Tsahi Hasday, Avi Levy, Ronen Matmon, Hila Moshkovits, Limor Polak, Tatiyagorsky-Ruffle, Ze’ev Shtudiner, Amihai Toledano and Limor Zahavi. Ella Ginsburg provided valuable technical support. We also thank each of the kibbutz movements and the participating kibbutzim for their cooperation, Yad Tabenken for agreeing to provide economic data as well as Shlomo Getz for supplying timely data on privatization. Funding for this project has been provided by grants from the Binational Science Foundation, the Pinhas Sapir Center for Development, the Ushi Friedman Foundation and the University of Connecticut Large Faculty Grants.
1. Introduction

1.1 Background

“Religion … is a nearly ubiquitous form of human behavior, culturally established in complex elaborations, but absolutely useless, from a crudely technological standpoint, in the accomplishment of the primary economic, domestic, and political tasks of mankind” (Wallace 1966, vi).

The enormous resources devoted to religious ritual across cultures pose a challenge to economists committed to rational choice theories of economic behavior. One traditional response has been to write off religious behavior as primitive, superstitious and outside the realm of economic calculus. However, the universality and widespread revitalization of religion demands a more thoughtful response. A growing number of economists have recently proposed plausible benefits associated with exacting ritual practices.

Iannaccone (1992) models religion as a club good with a positive externality to increased participation. An individual’s utility thus depends not only on his or her own inputs in religious activities, but also increases with others’ inputs. Individuals who are less committed to the religion’s doctrine are tempted to free ride off those who are more devout. Costly sacrifices and prohibitions in Iannaccone’s model serve to screen out free riders with the result that members’ average participation levels, and thus their utility levels, are higher.

Berman (2000) extends Iannaccone’s club-good model of religion to understand the Israeli Ultra-Orthodox community’s need for costly sacrifices to signal commitment and to exclude free riders from their network of charity and mutual insurance. Berman shows that subsidies to club membership are largely dissipated since they induce even more costly sacrifices to signal group commitment. He uses his model to argue that the Israeli government’s subsidies to the Ultra-Orthodox sector has resulted in inefficient sacrifices, such as male Yeshiva attendance (and thus their non-participation in the labor force) until age 40 on average, well beyond that of Ultra-Orthodox males outside of Israel.

Anthropologists have long noted that one of the primary functions of religion is to promote group solidarity, and most have recognized ritual as the mechanism through which this solidarity is achieved. Guided by Durkheim (1995 [1912]), who was among the first to appreciate the unifying nature of religious ritual, anthropologists have explored how ritual sustains the social order within a community
(e.g., Douglas 1966, Radcliffe-Brown 1952). They have argued that collective rituals enable the expression and reaffirmation of shared beliefs, norms, and values and are thus essential for maintaining communal stability and group harmony. For Durkheim, collective rituals are the means by which individuals bond with one another in the community. He claims that the “effervescent” state of ritual performance minimizes individual distinctions and emphasizes the unity of the group. Turner (1969) also views this “effervescent” state as central to ritual’s efficacy. He observes that the temporary removal of adolescents from society during rites of passage increased a sense of *communitas*, which he characterizes as a strengthening of social bonds and heightened solidarity among ritual performers.

More recently, evolutionary researchers have extended these early anthropological analyses and argued that religious behaviors serve to promote cooperation among their performers (Cronk 1994, Irons 2001, Rappaport 1999, Sosis 2003, Sosis and Alcorta 2003, Steadman and Palmer 1995, Wilson 2002). For example, Irons maintains that rituals have enhanced our ability to overcome the collective-action problems we have likely faced throughout our evolutionary history. The significant time and energetic costs incurred in the performance of ritual serve as signals of group commitment and loyalty and thus permit a net benefit from successful collective action.

To date, there has been little empirical research demonstrating that costly religious rituals promote group commitment, solidarity and increased cooperation between group members (Kress et al. 2003, Sosis 2000, Sosis and Bressler 2003, Sosis and Ruffle 2003). This relationship can be readily tested in the framework of the Israeli kibbutz since kibbutzim (the plural of kibbutz) are divided into those that are religious and those that are secular. Members of the 16 religious kibbutzim are modern Orthodox Jews. By contrast, secular kibbutzim are known to be the most secular element of Israeli society. Indeed, studies of secular kibbutz members indicate antagonistic sentiments toward religion (see Spiro 1970 for a classic ethnography of the kibbutz). This distinction allows us to measure the degree of cooperation of kibbutz members toward fellow members as a function of whether they belong to a religious or a secular kibbutz.

To do so, we design a common-pool resource game that resembles the types of day-to-day problems confronted by kibbutz members. Kibbutz members play the game in pairs. Members of religious kibbutzim are paired with anonymous members
from their own kibbutz, and likewise for members of secular kibbutzim. By comparing the cooperative behavior of religious kibbutz members with that of secular kibbutz members, we put forward a clean test of the hypothesis that religious ritual promotes in-group cooperation in a setting in which cooperation is a matter of economic survival.

Moreover, the naturally occurring variation in collective ritual performance on religious kibbutzim, especially along gender lines, offers an opportunity to explore whether differences in individual cooperativeness can be explained by variation in the performance of collective ritual. Collective ritual obligations fall disproportionately upon men in Judaism. We gather individual-level data on collective ritual performance and explore the relationship between the extent of ritual participation and cooperative behavior. Because the lives of members of secular kibbutzim are not structured by religious ritual (but are otherwise very similar to those of religious kibbutz members), they provide a natural comparative population to assess the impact of collective ritual performance on cooperation.

Our results show that not all kibbutz members are equally cooperative: religious men (the primary practitioners of collective religious ritual in Judaism) are more cooperative than religious women. What is more, religious men who attend synagogue daily (the primary collective ritual obligation for men only) are more cooperative than any other group, including religious women, secular men, secular women and religious men who attend synagogue less frequently. In fact, religious men who do not attend synagogue daily are no more cooperative than religious women. Nonetheless, from previous research (Ruffle and Sosis 2003) in which city residents played the same common-pool resource game, we conclude that all of subgroups of kibbutz members who self-selected a communal and cooperative lifestyle behave more cooperatively than city residents.

Our results are used to explain the finding that religious kibbutzim have been economically more successful than their secular counterparts (see, e.g., Fishman and Goldschmidt 1990). Moreover, the persistence of religion and religious ritual in the developing world in particular can be seen as mechanisms to solve frequently encountered collective-action problems in the absence of substitute economic, institutional and legal structures.
1.2 The Economic Benefits of Religious Ritual

Iannaccone’s pioneering model illustrates the effectiveness of costly sacrifices in screening out free riders. He tests his model’s predictions using self-reported survey data from the National Opinion Research Center’s General Social Survey, 1986-1990. The individual-level data include measures of religious observance and participation. He categorizes the different churches to which respondents belong according to the stringency of their demands. Controlling for demographic factors, Iannaccone finds that the stricter the church, the higher the average levels of church attendance, contributions and frequency of prayer. Subsequent research also supports the screening role of costly sacrifices in Iannaccone’s model (see, for example, Iannaccone 1994, Berman 2000).

Notice that sacrifice in Iannaccone’s model provides a benefit in the production of religious goods. In this paper, we demonstrate an economic benefit offered by religious behavior that extends beyond the place of worship. The benefit upon which we focus is economic cooperation. We hypothesize that collective religious ritual promotes economic cooperation among the practitioners of the ritual. As proposed by Iannaccone, strict, demanding rituals screen out opportunistic members not wholly committed to the religion’s ideals. However, members willing to incur the costs of regular ritual performance are likely to vary considerably in their degree of ritual participation. Screening cannot account for how such individual variation may explain differences in members’ cooperative behavior. Costly signaling theory can: the extent to which an individual partakes in time-consuming collective religious ritual, and thus foregoes other activities, signals to members of the religion that individual’s degree of commitment (Irons 2001; Sosis 2003). To be effective, religious rituals must be performed collectively so that a member’s participation is publicly observable. The anthropological literature on the functionality of religion and religious ritual suggests that high levels of mutual, observable ritual practice create a sense of solidarity, group bonding, trust and willingness to cooperate among

1 Iannaccone’s (1998) comprehensive survey of the economics of religion also includes a review of studies that associate religious observance with beneficial social behavior (e.g., lower rates of crime and drug and alcohol abuse), more stable marriages and mental and physical health benefits.

2 Private rituals appear to serve an alternative purpose, such as convincing oneself that one believes in the theology ascribed to the rituals (Rappaport 1999, Sosis 2003).
practitioners. Increased cooperation may be observed in a business transaction, a collective enterprise such as farming, building a house or providing a public good, or day-to-day interactions requiring cooperation.

Others have also documented economic benefits associated with religious observance. Ensminger (1997) argues that the vast number of African societies that have converted to Islam can be understood in terms of increased trade opportunities for those who convert. By adopting Islam, Ensminger contends, the African converts earned the trust of traders from North Africa and the Middle East, which allowed for the extension of credit to expand further trade possibilities. Moreover, Islam provided a legal code to adjudicate financial contracts and disputes and a common language of trade (Arabic). The high entry costs into Islam in the form of daily prayer, abstinence from alcohol and pre-marital sex, fasting during Ramadan, and the pilgrimage to Mecca served as signals of trustworthiness among traders. In other words, these rituals and taboos are costly signals of commitment that screen out free-riders, restricting the benefits of more efficient trade to those who are willing to undertake such demanding rituals and prohibitions.

Berman (2000) discusses the network of mutual aid established by Ultra-Orthodox communities in Israel and the government subsidies and draft deferments offered to these communities. Access to the economic benefits is restricted by strict religious observance, epitomized by an exacting adherence to a spate of costly religious prohibitions and rituals. Adherence to these practices serves to signal commitment to the community, tax competing secular activities outside of the community like work, and screen out opportunistic individuals seeking the diverse forms of mutual insurance and charitable activities furnished by the community.

The success of Ultra-Orthodox Jews in the diamond industry is another example of the economic benefits achieved by close-knit religious communities. Shield (2002, p. 104) describes the level of trust among Ultra-Orthodox Jews who work in New York’s diamond district is “unheard of.” Indeed, despite the large sums of money involved, multi-million dollar transactions are sealed by nothing more than Yiddish and a handshake (Shield 2002, p. 2). Among those who work in the diamond industry, trust is essential for business activity since traders are often handling valuable stones that could easily be lost or pocketed. Ultra-Orthodox Jews attain this high level of trust and mutual cooperation through costly religious demands, such as particular dress and hairstyle, restrictions on permitted food, thrice daily prayer,
among many others, which are required for entry into their community. This has enabled them to outcompete others unable to achieve such high levels of cooperation, thus resulting in their prominence in the industry throughout the world.

Nowhere is cooperation more necessary than for communes whose survival and success hinge on it. In comparative work on a sample of 200 19th century U.S. communes, Sosis (2000) shows that religious communes are between two and four times more likely to survive in every year of their life course than their secular counterparts (also see Kanter 1972). In subsequent work, Sosis and Bressler (2003) use historical documents and monographs to construct a database on the requirements and constraints that these communes imposed on their members. Their analyses show a robust, positive correlation between the costliness of the requirements and constraints that communes imposed on their members and communal success. Here we examine the impact of ritual performance on the cooperative behavior of an extant communal population, the Israeli kibbutz.

The Israeli kibbutz is among the best known, most enduring and successful examples of a modern commune. Kibbutz members live together, typically work and socialize together, and share equally all earned income, independent of an individual member’s occupation, skills or work effort. Moreover, the kibbutz pays for individual members’ consumption of housing, food, utilities and transportation, among other goods. These facts make the kibbutz rife with occasions for free riding and opportunistic behavior. The imposition of costly, collective religious rituals can serve to increase the participant’s sense of commitment to the group, signal this commitment to others and increase the participant’s willingness to cooperate with other members. At the same time, the screening role ritual plays in Iannaccone’s model can also operate in the kibbutz setting: costly rituals can serve as a tax, too costly to bear for potential members merely seeking the guaranteed standard of living offered by the kibbutz.

In the next section, we provide some background on the Israeli kibbutz. In section 3, we outline the strategy we adopted to select the religious and secular kibbutzim that participated in our research. We also detail the experimental game and procedures. Section 4 makes explicit the experimental hypotheses we test. The results are presented in section 5. In Section 6, we discuss the necessity of frequent costly collective rituals, offer an explanation and a mechanism underlying the success of
religious kibbutzim and discuss some implications of our results for religious practice in developing countries. Section 7 concludes.

2. The Israeli Kibbutz

2.1 Background on the Kibbutz

The kibbutz was originally conceived as a small collective farming settlement in which members based their social and cultural lives on the collective ownership of property and wealth. The first kibbutz, Degania, was established in the Galilee in 1909. Today there are approximately 270 kibbutzim located in every region in Israel. The 124,000 or so kibbutz members comprise around 2% of the Israeli population.

The kibbutz developed out of an egalitarian ideology rooted in Socialist-Zionism as well as the pragmatism of group living by Eastern European Jews during the years leading up to the establishment of the modern State of Israel. Guided by the dictum “From each according to his abilities, to each according to his needs;” the traditional model of the kibbutz prescribes that each member receives food, shelter, clothing, education, health care, and an equal share of the income generated by the kibbutz. That all kibbutz members earn an equal income holds whether one is the dishwasher in the communal dining hall, the CEO of the computer chip plant, the kibbutz gardener, an eye surgeon who works in Tel Aviv or retired. Income earned on and off the kibbutz is thus divided equally between all members regardless of profession, skill or effort level. In this sense, production or the generation of income is a public goods problem. Consumption on the kibbutz, by comparison, represents a classic tragedy of the commons problem: kibbutz members enjoy equal and unrestricted access to rival consumption goods. For example, in the traditional kibbutz, the costs associated with an individual’s consumption of housing, food, water, electricity and the use of communal cars are borne by the kibbutz, not the individual.

We design an experimental game that focuses on the common-pool-resource aspect of kibbutz consumption. Unlike other common-pool-resource problems, such as fishing grounds, groundwater basins, oil fields and grazing areas, for which licenses, externally-enforceable agreements restricting access to the resource and the
assignment of private-property rights are possible solutions,\(^3\) such measures are impractical for the kibbutz without drastically altering its fundamental nature. Rather, cooperation and voluntary self-restraint are necessary to prevent the depletion of its common-pool resources and to ensure the continuity of the kibbutz.

Indeed, the continuation of the kibbutz should not be regarded as self-evident for several reasons. First, the short-lived communal experiments throughout history (the American communes of the 18\(^{th}\) and 19\(^{th}\) centuries and the 1960s are among the best known examples) attest to the difficulty in sustaining cooperation over time and across generations. Moreover, many kibbutzim have shown signs of decline and economic hardship in recent years. Beginning in the 1950s and 1960s, kibbutzim found themselves economically unable to survive by farming alone. Consequently, through bank loans, kibbutzim started to diversify their range of economic activities by developing manufacturing and service industries. Today, kibbutzim are engaged in the production of the entire gamut of goods and services in high technology, manufacturing, tourist and agricultural industries using the most modern production techniques.

The decline of many kibbutzim began in the mid-1980s when the Israeli economy experienced hyperinflation, soaring interest rates and a sharp drop in exports. Those kibbutzim that took on large amounts of debt in the late 1970s and early 1980s (at a time when banks began to index loans to the rate of inflation and to the dollar exchange rate) were particularly hard hit. Concerns for economic viability set in motion numerous structural changes on the kibbutz (see Ben-Rafael 1997 for further details). The most significant change adopted by some kibbutzim involved the transfer of control of certain resources from the collective to the individual household. This process, referred to as “privatization”, consists of numerous measures including: the requirement that individual households, rather than the kibbutz, pay for their private consumption of goods like travel, electricity, telephone calls and clothing; the cancellation of dinner in the communal dining hall thereby requiring kibbutz members to eat in their own homes at their own expense; and the encouragement of kibbutz members to seek work outside of the kibbutz. However, the most radical change – and typically the last one implemented by the small minority of kibbutzim that have

\(^3\) Ostrom (1991) examines the success and failure of such methods through numerous case studies involving the collective management of natural resources. See also Ostrom, Gardner and Walker (1994) for a thorough theoretical, experimental and empirical treatment of common-pool resources.
decided to implement privatization fully – is differential salaries according to which individual kibbutz members earn incomes that reflect, at least in part, their productivity.4

Interestingly, religious kibbutzim emerged from the economic crisis of the 1980s relatively unscathed. For this reason, the banks did not force the religious kibbutzim to privatize nor did they choose to adopt such measures. Section 6.2 will invoke our findings as a possible explanation of the relative economic success of the religious kibbutzim.

\section*{2.2 Religious and Secular Kibbutz Distinction}

All kibbutzim belong to one of three kibbutz movements. The secular kibbutzim belong to either the Kibbutz Ha’Artzi or TAKAM federation,5 while the 16 religious kibbutzim belong to the Religious Kibbutz Federation.6 The clean distinction between religious and secular kibbutzim and the corresponding attitudes toward religion of their members provide a natural environment for our hypotheses concerning the role of religious observance and religious ritual in intra-group cooperation.

As mentioned in the introduction, secular kibbutzim are well known for their antagonistic attitude toward religion. By contrast, members of religious kibbutzim practice a form of Judaism known as Modern Orthodoxy. Modern Orthodox Jews adhere to traditional Jewish law (halacha), but unlike Ultra-Orthodox Jews they do not shun modernity; for instance, they serve in the Israeli military, own televisions and read mainstream newspapers. Numerous prohibitions apply equally to men and women, most noticeably, kosher dietary laws, modest dress and the forbiddance of work on the Sabbath. Religious ritual plays a central and defining role in the lives of Modern Orthodox Jews. Yet the injunction to perform collective rituals does not fall equally upon men and women. Male ritual requirements are primarily publicly oriented, whereas female requirements are generally in the home or private. Indeed, of the three main ritual requirements imposed on women, two are private (namely, the

4 We also conducted this research on a sample of privatized kibbutzim and a matched sample of traditional, highly collectivized kibbutzim (see Ruffle and Sosis, in progress).
5 In 2001, approximately one year after the completion of our experiments, the merger of the Kibbutz Ha’Artzi and the TAKAM federations was announced.
6 There are two Ultra-Orthodox kibbutzim (Hefetz Haim and Sha’alabim) that belong to their own movement known as the Workers’ Union of Israel and three kibbutzim associated with the Progressive
laws of family purity such as attending a ritual bath (mikveh) and separating a portion of dough when baking bread), and the third is performed in the presence of the family only (lighting Sabbath candles). Males, by contrast, are obliged to engage in a variety of collective rituals, thrice-daily public prayer in a minyan (a quorum of at least 10 men) being the most notable among them.

Our hypothesis that collective rituals promote group commitment and cooperative behavior leads us to expect that religious males will exhibit higher levels of cooperation than religious females. Moreover, the more frequently a religious male partakes in religious ritual, the more cooperatively we expect him to behave. By conducting a common-pool resource game that measures kibbutz members’ cooperative behavior with one another and by following up the game with a questionnaire that elicits individuals’ degrees of participation in ritual performance, we will be able to evaluate the role that collective ritual plays in promoting cooperation.

3. Experimental Methodology

3.1 Choice of Sample

To control for between-kibbutz differences unrelated to behavior, a matched-pairs design guided our choice of sample religious and secular kibbutzim: each of the seven religious kibbutzim was matched with one or more secular kibbutzim. The latter were chosen for their similarity to religious kibbutzim along four measures that may potentially affect cooperation. In forming these matched sample pairs, we controlled for the kibbutz’s population size, year of establishment, degree of economic success, and degree of privatization. Because religious kibbutzim are, on average, economically more successful (Fishman and Goldschmidt 1990) and much less privatized (i.e., more communal) than secular kibbutzim, our paired secular kibbutzim constitute some of the most successful and highly collectivized secular kibbutzim in a movement that is otherwise economically struggling and becoming much less

(Reform) Judaism Movement that belong to the TAKAM. These kibbutzim have been excluded from our sample, although they would make interesting case studies.
communal (Leviatan et al. 1998). In total, 558 kibbutz members from 18 kibbutzim throughout Israel participated in our research.\(^7\)

Table 1 displays the means and standard deviations of the control variables used to construct our samples of religious and secular kibbutzim. The number of members (“Kibbutz Size”) and the number of changes adopted by the kibbutz in the direction of privatization (out of a possible 23) are identical in the religious and secular kibbutz samples. As for the variables “Year of Establishment” and “Economic Strength”, the distributions of these variables are not significantly different across the religious and secular kibbutzim (the p-values from Wilcoxon-Mann-Whitney non-parametric tests are .42 and .54 for the respective variables). Whatever slight differences remain between the two samples follow from the impossibility of matching these kibbutzim along all four variables simultaneously. When we were unable to find a secular kibbutz that was similar to a particular religious kibbutz on all four variables, we opted to compromise on the need to match the two kibbutzim on the exact year of establishment. Where two or more candidate secular kibbutzim differed only in their degree of economic strength, we chose the more successful secular kibbutz, believing that this should favor higher in-group cooperation on the secular kibbutz – opposite to our hypothesis thereby making more difficult its validation. A fortuitous by-product of controlling for these four variables is that we have created two sample populations that are also very similar in terms of a number of demographic variables, such as the age composition of the kibbutz, educational attainment, and gender ratio (see Table 1).

[insert Table 1 here]

3.2 Experimental Design

The logistics of our field experiments and the nature of our subject pool raise several essential considerations in the choice of an experimental game. For example, assuring subject anonymity is of prime importance since kibbutz members live together, and work and socialize with one another on a daily basis. For this reason, we chose to

\(^7\) That some of the religious kibbutzim are quite similar with regard to the control variables means that we were able to match one secular kibbutz with three different religious kibbutzim and another with two religious kibbutzim.
conduct these experiments in the privacy of the individual members’ homes rather than in a public space.

We also require a symmetric game to allow us to compare kibbutz members’ choices with one another. As for the particular nature of the experimental game, issues of cooperation and self-restraint confront kibbutz members on a daily basis. As discussed in section 2.1, almost all consumption goods on a kibbutz are common-pool resources in the sense that they are exhaustible and freely accessible to all kibbutz members. We therefore sought a game that captures an element of the common-pool resource dilemmas familiar to kibbutz members.

We select a one-shot game for two reasons. First, we want to capture participants’ instinctive willingness to cooperate. A kibbutz member’s instinct to cooperate is cultivated by his daily interactions with fellow members. Our question of interest is not whether one group is able to learn to be more cooperative than another. Second, the diversity of the subject pool in terms of education, age and occupation means that we have to choose a conceptually simple game – one that can be understood by all. A one-shot game contributes to this aim.

Indeed, simplicity was the overwhelming consideration in our choice of an experimental game. For this reason, we settled on the following two-player game. There are 100 shekels available in a joint envelope to which each pair member has access. Each pair member independently decides how much of the available 100 shekels to remove from the envelope to keep for himself. If the sum of the amounts of money removed exceeds 100 shekels, then both players receive zero and the game is over. If the sum of the amounts removed is less than or equal to 100, then each player keeps the respective amount that he removed. In addition, whatever money is leftover in the envelope is multiplied by 1.5 and divided equally between the two players.

Appendix A contains the instructions.

8 All of the experiments in this paper were conducted between January and May 2000. At this time, 4 Israeli shekels equaled approximately $1 US.
9 We tested three different variations of this experimental game on student subjects and members of three kibbutzim. The most familiar design we tested was a parameterization of the public goods game in which there are 100 shekels to be divided and each pair member may claim up to 50 shekels, that is, any amount between 0 and 50. The amounts that each player leaves in the envelope are summed together, multiplied by 1.5 and divided equally between the two players. Feedback from subjects indicated that they found this design (in particular, the summing together of the amounts each player leaves in the envelope) difficult to understand. For this reason, we decided on the game presented above.
Note that any pair of amounts that sum to 100 is a Nash equilibrium of this game. For any amount, x_j, that player j removes from the envelope, player i’s best response is to remove 100 minus x_j. However, the Nash equilibria of this game are socially inefficient. That is, the sum of the pairs’ payoffs is higher if together they remove less than 100. The socially optimal outcome is achieved when both players remove 0.\(^{10}\)

The amount a player removes therefore provides a measure of his cooperative behavior. For every shekel a player leaves in the envelope, he adds three-quarters of a shekel to his opponent’s payoff and three-quarters of a shekel to his own payoff, provided their claims sum to less than 100.

3.3 Experimental Procedures

3.3.1 Preliminaries to Conducting the Experiments

Identical procedures were followed in recruiting subjects and conducting the experiments on the religious and secular kibbutzim. After receiving permission from the kibbutz general secretary, a letter of introduction describing the nature of the research, the sources of funding and a request to participate was sent to every household on the participating kibbutz. These letters were mailed out to all households on the kibbutz about a week before our planned visit. One or two days prior to our visit, we telephoned kibbutz members inviting them to participate in the research and, for those who agreed, arranged a specific time to meet.

3.3.2 Upon Arrival at the Kibbutz

To facilitate data collection and to minimize the chances that participants who completed the experiment could contact others who may be scheduled to participate, 20 Ben-Gurion University graduate and undergraduate students (who had completed a class in experimental economics) were trained and employed. Between 8 and 14 subjects (i.e., between 4 and 7 pairs) participated simultaneously at any given time.

\(^{10}\) Our game resembles the Nash demand game (Nash 1953). The difference is that whatever money is leftover in our game gets multiplied by 1.5 (rather than disappears) and divided equally between the two players. This distinction encourages players to remove less money so that more is available for the pair. In the Nash demand game, the Nash equilibria and socially optimal outcomes coincide.
Upon arrival at the kibbutz, each experimenter searched for the home of his first subject. Once an experimenter found his subject’s home, he called the other experimenter by cellular phone to let him know that he had arrived. He waited outside until the other experimenter had also found his participant’s home, at which point they entered their respective subjects’ homes simultaneously. This ensured that the paired subjects began the experiment at the same time.

Upon entering the subject’s home, the experimenter introduced himself and requested a quiet place where they could sit undisturbed for the next 30 minutes. Once seated, the experimenter conveyed some preliminary details concerning the experiment (see the “Introduction” in Appendix A). The subject was then given the instruction sheet and told to take his time to read the instructions carefully. Once finished, the experimenter read the instructions aloud.

To ensure full comprehension of the game, two numerical examples were performed. In each example, a pair of numbers was randomly drawn from a bag containing numerical values between 0 and 100. The numbers were meant to be the amounts chosen by two hypothetical participants in the experimental game. Thus, for instance, if the numbers 20 and 60 were drawn from the bag, the participant was shown step-by-step that the first player would receive 35 shekels and the second player would receive 75 shekels, since the 20 shekels left over would increase to 30 and be split evenly between them.

After any clarifying questions were answered, a decision was elicited regarding the amount the subject wished to remove from the envelope as well as the amount the subject believed the other person would remove from the envelope. The experimenter of the subject who decided first telephoned the other experimenter by cellular phone and informed him that a decision had been reached.11 The experimenter did not convey the amount of the decision in this conversation in order to avoid any reaction or facial expression on the part of the second experimenter, which could influence the second participant’s decision. Further, immediately revealing the subject’s decision might raise his suspicions that his decision was being conveyed to the other subject who could then use this information to make a decision. The second experimenter simply thanked the first experimenter and said goodbye. Thus, the second subject was unaware of the nature of the phone call or even who called. After

11 Cellular phones were used instead of the kibbutz member’s home phone to prevent the subject from discovering the identity of his paired partner.
the second subject reached a decision, her experimenter telephoned the first experimenter to exchange their decisions. Each experimenter then communicated to his subject the other player’s decision, the amount remaining in the envelope, and the amount that he will receive after the amount leftover in the envelope (if anything) is multiplied by 1.5 and divided equally between both players.

The subject was then asked to complete a short questionnaire (see Appendix A). Upon completion of the questionnaire, the subject was paid his earnings from the experiment and asked to sign a payment stub confirming receipt of payment. The experimenter then left the subject’s home and proceeded to his next scheduled subject. At each kibbutz visited we sampled between 24 (at smaller kibbutzim) and 48 members (at larger ones).

4. Experimental Hypotheses

In light of the background provided on ritual obligations in Judaism and on the centrality of cooperation for the kibbutz, we derive three testable hypotheses in the context of our experimental game.

1. Religious males are more cooperative than religious females.

 As already noted, while men and women share many religious responsibilities, collective ritual obligations fall disproportionately on males in Judaism. If collective rituals indeed promote group commitment and cooperation, then religious males’ additional collective rituals (most notably public prayer) lead us to hypothesize that religious men will play our experimental game more cooperatively than religious women.

2. The more frequently religious males attend synagogue, the more cooperative they are.

 In the follow-up questionnaire (question 4b), we asked subjects to report the frequency with which they visit the synagogue. If synagogue attendance really does signal one’s commitment to the community and its values, then we would expect those males who most frequently attend to exhibit most abundantly one of the kibbutz’s fundamental values, cooperation.
3. Religious males are more cooperative than secular male and secular female kibbutz members.

In the absence of comparably costly communal rituals on secular kibbutzim, we expect religious males to be the most cooperative of the four subpopulations.

5. Results

Result 1: Religious males are more cooperative toward fellow kibbutz members than religious females.

[insert Figure 1 here]

Religious males removed on average 29.9 shekels (median=32.0, n=108) compared to 33.7 (median=35.0, n=108) for religious females (t=1.68, p=.048, df=211, one-tailed test of means, equal variances not assumed). The histograms in Figure 1 offer visual support for this result. Closer inspection of the histograms reveals that the most striking difference between the two distributions appears in the proportions of males and females that claimed amounts between 0 and 9 shekels. Twenty-eight of the 216 participants from the religious kibbutzim claimed between 0 and 9. Among these 28 subjects, 20 were males ($\chi^2=5.66, p=.017, df=1$). Moreover, 22 of these 28 subjects claimed 0, 18 of whom were males ($\chi^2=9.63, p=.002, df=1$).

The presence of 28 observations at 0, the left extreme value of the censored decision space, necessitates the use of Tobit regressions, since OLS estimates are biased on censored data. Table 2 reports the estimates from left-censored Tobit regressions (heteroskedasticity-consistent standard errors in parentheses). Regression (1) offers further support for the relative cooperativeness of religious

12 We can reject the explanation that religious males are better educated, understand the game better and thus claim lower amounts. The years of education among religious females (14.0 on average) and religious males (13.8 on average) are nearly identical and this variable is not significant in any of the Tobit regressions reported below.

13 We use a one-sided Tobit regression model because there is only one observation in our entire database at the right limit value of 100. Thus, the left-censored and double-censored Tobit estimates are identical. The decision to claim an amount less than zero (the left limit value) has a natural interpretation: the subject is willing to contribute money from his own pocket to the envelope, which means that for each shekel he contributes he gets back only 0.75 NIS and gives his paired partner 0.75 NIS. Entertaining the possibility of claiming negative amounts leads to an interpretation of the decision to remove more than 100: the subject believes his paired partner will put money in the envelope (i.e. claim a negative amount) allowing him to remove more than 100.
males: controlling for a number of other explanatory variables, religious male kibbutz members claim about five shekels less than their female cohorts. The other highly significant variable in this regression is the amount the subject believes his opponent will remove from the envelope ("predict"). The positive coefficient (p<.001) on the "predict" variable suggests that subjects’ behavior is on the whole motivated by reciprocity: the more cooperative the subject believes his opponent is (i.e., the less he believes his opponent will remove from the envelope), the more he is willing to cooperate, and vice-versa. Along these same lines, religious women predict that their fellow kibbutz members will remove larger amounts (mean=41.0, median=45.0) than those predicted by men (mean=38.6, median=43.0); although the difference is not significant, t=1.21, p=.23, df=200, two-tailed.

The “frackib” variable expresses the fraction of one’s life spent on the kibbutz. It is calculated as the year the experiments were conducted (2000) minus the year the member arrived on the kibbutz, divided by the member’s age. The regression coefficient of 8.74 suggests that for every additional 10% of one’s life spent on the kibbutz, one can be expected to claim 0.87 NIS more from the envelope. Someone born on the kibbutz can be expected to remove almost 9 shekels more than a new arrival.

[insert Table 2 here]

Result 2: The more frequently religious males attend synagogue, the more cooperatively they behave on average toward other kibbutz members in the game; whereas, the cooperative behavior of religious females is unrelated to their synagogue attendance.

14 We also tested a host of other potential explanatory variables. Since none of them were significant in this or any other regression we conducted on this sample of kibbutzim, we have omitted them from the table. These variables include the kibbutz member’s age, years of education, number of children, percentage of children living on the kibbutz and the number of kin on the kibbutz. We also tested for several kibbutz-level variables such as the number of members, year of establishment, economic success, degree of privatization and the number of holidays celebrated communally by the kibbutz. None of these variables were significant.

15 In regression (2), we include a term for the amount predicted squared ("predict^2") to allow for a non-linear, and possibly non-monotonic, relationship between the amount predicted and the amount removed by the kibbutz member himself. This variable however is not significant in this or any of the other regressions performed on religious kibbutz members. We will return to “predict^2” in our discussion of the results from the secular kibbutzim.

16 This same finding (that the larger the fraction of one’s life spent on the kibbutz, the less cooperative one behaves toward fellow kibbutz members) was previously noted in Ruffle and Sosis (2003) on a different sample of four kibbutzim. See that paper for an in-depth discussion of the role of self-selection versus socialization in the cooperative behavior of kibbutz members.
The difference in cooperative behavior between religious males and females appears to be attributable to the ritual participation of males. The right-hand (darkly shaded) bars of Figures 2a and 2b display the mean amounts claimed by religious males and females, respectively, as a function of their frequency of synagogue attendance. The figures draw attention to the fact that daily prayer is required of Orthodox males, while no such requirement exists for Orthodox females. 68/102 males who responded indicated daily synagogue attendance. The remaining 34 male respondents attend at least weekly (on the Sabbath) plus on holidays. By contrast, only five of the 102 female respondents attend synagogue several times a week or more.17

More importantly, the figures point to a negative relation between the frequency of synagogue attendance and the amount males removed from the envelope. That is, the more frequently religious males participate in synagogue services, the more cooperative they are. For example, men who attend synagogue daily remove 27.2 shekels compared to men who do not attend daily who claim 33.1 shekels on average. No such relation appears to exist among females. Table 3 provides descriptive statistics for the amount claimed as well as other variables, according to subpopulation.

Regressions (3), (4), (5) and (6) in Table 2 lend additional support to the positive relation between the cooperative behavior of religious males and their synagogue attendance. We replace the “male” dummy variable with two interaction dummies, “religious male*daily synagogue” and “religious male*not daily synagogue”. The former variable assumes the value of one for religious males who attend synagogue daily and zero otherwise. The negative and highly significant coefficients ranging from -6.84 to -6.43 in regressions (3), (4) and (5) indicate that religious males who attend synagogue daily remove about six and a half shekels less than religious females; whereas, the latter variable is not significantly different from zero suggesting that religious males who don’t attend synagogue daily are no more cooperative than religious females. Regression (6) includes a dummy variable “religious female*weekly”, which equals one for religious females who attend

17 Note that the total number of respondents (204) does not equal 216 due to missing observations.
synagogue at least once a week (i.e., on Sabbath and holidays, several times a week or daily) and zero otherwise. The statistically insignificant coefficient reveals that these women are no more cooperative than women who attend synagogue less frequently. Other regression specifications not included here confirm that female synagogue attendance is unrelated to their cooperative behavior in the game.

The left-hand (lightly shaded) bars of Figures 2a and 2b display the mean amounts that religious male and religious female kibbutz members predicted their opponents would remove from the envelope. The data show that the more frequently males attend synagogue, the less they believe their opponents will claim in the game. Together with the positive relation between cooperative behavior and synagogue attendance, this again suggests that the desire to cooperate and to reciprocate motivate male kibbutz members who claim small amounts. Among religious females, no relation between synagogue attendance and “predict” exists.

Having examined in depth the cooperative behavior of religious men and women, we turn now to our secular sample.

Result 3: Secular male and secular female kibbutz members exhibit similar levels of cooperation toward fellow kibbutz members.

This result indicates that inherent sex differences cannot account for the observed disparity in the way religious males and females play the game. Males from secular kibbutzim remove on average 30.1 shekels (median=32.5, n=170), while females from secular kibbutzim removed on average 30.5 shekels (median=30.0, n=172), t=.21, p=.83, df=327. Furthermore, regressing the amount claimed by secular kibbutz members only on a host of explanatory variables, including a dummy variable for sex, shows that secular males and secular females claim similar amounts (p=.210 in (7) and p=.184 in (8) of Table 4). The positive and highly significant coefficient on the “predict” variable again suggests that, by and large, secular kibbutz members’ decisions are motivated by reciprocity. Yet the inclusion of “predict²”, the fact that it is negative and highly significant and its magnitude imply that the positive relation between “predict” and the amount removed from the envelope holds as long as “predict” is less than 69.75 shekels. This relationship is consistent with the reciprocity motive. For values of “predict” greater than 69.75, on the other hand, an increase in the amount predicted accompanies a decrease in the amount removed from the
envelope. This relationship is consistent with the fear of exceeding the available 100 shekels. In our sample, only 15/342 secular kibbutz members predicted that their opponents would remove more than 69.75 shekels.

Recall from the Tobit regressions in Table 2 that this non-monotonic relationship between the amount removed from the envelope and the amount predicted was not observed among religious kibbutz members. Along similar lines, religious males predict the lowest amounts of the four subpopulations (mean=38.56, median=45), while secular females predict the highest amounts (mean=43.0, median=50). The rank-order, non-parametric Kruskal-Wallis test indicates that the four subpopulations predict significantly different amounts ($\chi^2=6.41$, $p=.093$, df=3).

The amount a participant believes his opponent will claim can be interpreted as his degree of trust in his opponent. By this measure, religious males are the most trusting (i.e. predict less) of their fellow kibbutz members of any of the four subpopulations. What is more, those religious males who pray daily at the synagogue are even more trusting, predicting only 36.12 on average, significantly less than any other subgroup (see Table 3 for the details.) As we will now show, a controlled comparison of the amounts claimed reveals that they are also the most cooperative.

Result 4: Religious male kibbutz members are the most cooperative subpopulation in the religious and secular kibbutzim. They remove significantly less money from the envelope than secular males, secular females and religious females, controlling for a number of explanatory variables.

Inspection of the raw data and summary statistics offers little indication of Result 4: at first glance, religious males would appear to behave quite similarly to secular males and secular females, with religious females as the outliers, exhibiting less cooperative behavior than the other three groups.

Regression (9) in Table 5 involving all kibbutz members (religious and secular) provides a controlled comparison of the cooperative behavior of the four subpopulations. Three of the four subpopulations are represented in this regression

18 Thus, for instance, the religious woman who claimed 100 shekels (see Figure 1) and predicted that her opponent would remove 0 is very trusting, but uncooperative in that she chooses to exploit what she believes to be her very cooperative opponent.
with dummy variables, with religious males as the base category. The regression results show that religious males remove about five shekels less than religious females (p=.038). Both the sign and the magnitude of this coefficient on the “religious female” variable are reassuring since they confirm Result 1 and match the regression estimate in (1) of Table 2. What is new is that religious males remove about 12 shekels less than secular males (p=.009) and nine shekels less than secular females (p=.030).

These results control for the amount a kibbutz member believes his opponent will remove from the envelope (“predict”), “predict^2” and the fraction of a member’s life spent on the kibbutz (“frackib”). This last variable was found to be significant on the religious kibbutzim only; thus, an interaction variable composed of “frackib” and “religious” only is reported.

Another significant interaction variable is “work off kibbutz*secular”. This dummy variable equals one for secular kibbutz members who work off the kibbutz, and zero otherwise. The negative and highly significant coefficient of –6.91 implies that secular kibbutz members who work outside the kibbutz claim on average about seven shekels less than all other groups. To understand this, note that those individuals who work outside the kibbutz are typically professionals and earn salaries well above the Israeli average. As kibbutz members they are required to contribute these high salaries to the kibbutz. Their choice to remain on the kibbutz rather than join mainstream, capitalist society therefore signals their commitment to the kibbutz values of egalitarianism, community and cooperation. The significance of this “work off kibbutz” variable is limited to the secular kibbutzim: it is not significant in any of the three regressions involving religious kibbutz members only (shown in regression (5) only), even though the fractions of members who work outside the kibbutz are very similar on the religious (23%) and secular (25%) kibbutzim.

We also asked all participants to indicate the number of meals they eat in the communal dining hall during an average week (question 11 of the Questionnaire in Appendix A). The frequency with which a kibbutz member eats in the dining hall (rather than in the privacy of his home or outside the kibbutz) may serve as solidarity-

19 Nonetheless, all of these groups play this experimental game more cooperatively than Israeli city residents. Using the same experimental game, Ruffle and Sosis (2003) find that city residents remove 35.63 shekels on average (median=40, n=61), even though the sample of city residents chosen is similar in age, education and standard of living to the kibbutz sample. However, when kibbutz
promoting ritual signaling the member’s involvement in the kibbutz and commitment to its ideals. The distributions of frequencies of eating in the communal dining hall are very similar among religious and secular kibbutz members (e.g. religious members eat an average of 8.94 meals a week in the dining hall ($s = 5.74$) compared to an average of 8.51 meals a week for secular members ($s = 5.48$), $t=0.84$, $p=.40$, df=425). Nonetheless, in the secular kibbutzim only, the frequency with which one eats in the dining hall is negatively correlated with the amounts members removed from the envelope. The regression coefficient of -0.287 in (7) in Table 4 indicates that for every additional meal a secular kibbutz member eats in the dining hall, he removes 0.287 NIS less from the envelope. Returning to regression (9) on all kibbutz members, we see that the coefficient on the interaction variable “meals*secular” is negative ($p=.097$). Frequent dining in the dining hall is correlated with cooperation on secular kibbutzim only. Those secular kibbutz members most committed to the ideals of the kibbutz engage in this ritual most frequently.

Religious kibbutz members appear to have their own forms of religious collective ritual and costly signals. While religious kibbutz members work outside the kibbutz and eat in the communal dining hall with the same frequency as their secular counterparts, these actions do not convey the same information as they do on secular kibbutzim. Because Judaism does not oblige women to attend the synagogue regularly, the action ceases to be a community-wide ritual or signal for women, even for those who do attend regularly. Likewise, the very rare secular kibbutz member who may attend the synagogue infrequently conveys no meaningful message about his willingness to cooperate since synagogue attendance is not required in the secular community. The point is that for a collective ritual to be meaningful as a signal of intention in a particular community, it must be valued by members of that community, or by outsiders.²⁰

Two additional regressions that convey the relative cooperativeness of religious kibbutz members in general and observant religious males in particular are shown in (10) and (11) of Table 5. Controlling for all of the significant explanatory variables explained above, religious kibbutz members take out on average about 7.2

²⁰That outsiders can attribute meaning to the collective ritual practice of others is exemplified by a phenomenon described in Frank (1988): affluent New York City families place advertisements in the
shekels less than secular kibbutz members (regression (10)). Regression (11) shows that religious males who attend synagogue daily are the primary source of this difference: religious men who attend synagogue daily remove about 6.5 shekels less than religious women (the base category). Moreover, pairwise t-tests comparing this estimate with those for other subpopulations show that religious males who attend synagogue daily remove significantly less than secular males (t=3.25, p=.001) and secular females (t=2.77, p=.006).

6. Discussion

6.1 The Necessity of Frequent Costly Collective Ritual

The question arises, what is it about religious observance or religious ritual that is associated with higher levels of cooperation among group participants? Costly signaling theory suggests the importance of observable collective rituals. Mere faith or belief in God not accompanied by costly actions may be less effective at promoting cooperation among fellow believers. Here we have shown the relation between frequent costly collective ritual (i.e., regular synagogue attendance) and cooperative behavior. Religious females and religious males who attend synagogue less frequently are less cooperative than males who attend daily. Research by Orbell et al. (1992) supports the importance of regular ritual in cooperative behavior. They conduct a repeated \(n \)-person prisoner’s dilemma game on university students in Logan, Utah (a largely church-going Mormon population) and Eugene-Springfield, Oregon (a mixed population with one of the lowest church attendance rates in the U.S.). Their results show that whether a person considers himself to be religious is unrelated to his cooperative behavior. However, the frequency of church attendance of the Mormon participants in Logan is positively correlated with cooperative behavior, while no correlation between cooperation and church attendance was observed among non-Mormons in Logan and church frequenters in Eugene-Springfield.

Of course, one need not belong to a religion to engage in costly collective rituals. Rituals are characteristic of groups that perform collective tasks, such as sports teams, armies, volunteer groups, and fraternities and sororities, the success of which

newspapers of Salt Lake City for Mormon governesses for their children. Apparently, “persons raised in the Mormon tradition are trustworthy to a degree that the average New Yorker is not” (p. 111).
hinge upon group solidarity and cooperation. However, using historical data, Sosis and Bressler (2003) show that in a sample of 19th century U.S. communes, the costliness of rituals is a significant predictor of cooperative success among religious communes only. They suggest that religious rituals are more effective than secular rituals in promoting cooperation because the supernatural beliefs that surround religious rituals are not subject to verification or falsification and are therefore more stable than the secular beliefs that motivate secular rituals (also see Rappaport 1999, Sosis and Alcorta 2003). In the case of secular kibbutzim, communal dining may serve as a group-level ritual. Consistent with Sosis and Bressler’s findings, it is only a weakly significant predictor of cooperative behavior. Moreover, the costliness of communal dining remains in question since the alternative to communal dining is to eat at one’s own expense at home or outside the kibbutz.

What is more, our data show that aside from communal dining, no ritual on the secular kibbutzim is as widespread or as frequent as daily synagogue attendance among Orthodox men on religious kibbutzim. We asked all participants (question 6 in the Questionnaire) to indicate “how many times a month on average [they] participate in events open to all kibbutz members, such as song and dance evenings, movies, kibbutz meetings, sporting events, concerts, plays, lectures, study groups, etc.” Secular kibbutz members attend only two communal events a month on average, with no significant differences between the sexes (t=1.65, p=.23, df=258). Intuitively, this seems too infrequent to promote trust or bonding between individuals in the way that daily synagogue attendance does. Indeed, the attendance of communal events by a secular kibbutz member is uncorrelated with the amount he or she claims in our experimental game (r = .045, p=.45, n=278).

6.2 The Economic Success of Religious Kibbutzim

Religious kibbutzim have been more economically successful than their secular counterparts and this disparity has increased over time. Fishman and Goldschmidt (1990) find that the per capita net production of the religious kibbutzim has been higher than that of the secular kibbutzim in every decade of their 70-year existence (see also Fishman 1983). They construct an economic performance measure and estimate that the economic success differential in favor of the religious kibbutzim increased consistently over the 1958-1982 period. Moreover, the religious kibbutzim
appear to have emerged relatively unscathed from the economic crises of the 1980s, not requiring the government subsidies or debt forgiveness from Israeli banks that assisted the economic recovery of the secular kibbutzim. Indeed, the Religious Kibbutz Movement claims that “the economic position of the religious kibbutzim is sound, and they remain uninvolved in the economic crisis which is affecting so many of the settlement sector”.

Explanations for the economic well being of kibbutzim are undoubtedly multifaceted, including sound investment practices, the differential political influence of the kibbutz federations and historical circumstances. Fishman (1983) speculates that the economic success of the religious kibbutzim is due to low levels of consumption stemming from adherence to Jewish religious law, which demands restraint and limitations. Consistent with this explanation, religious kibbutz members in our game are better able to refrain from consuming the common-pool resource than their secular counterparts. What our results offer beyond Fishman is a mechanism by which religious kibbutz members achieve mutual cooperation. Not all religious requirements are equally effective, rather publicly observable rituals most successfully encourage self-control.

6.3 An Application to the Developing World

In the minds of many Westerners, those who engage in religious rituals are primitive and superstitious. Such stereotypes follow at least in part from the association of religious observance with the poorest communities at home and the poorest countries abroad. Those who make this association often mistakenly attribute religious observance as the cause of poverty.

Our results suggest that, certainly in the case of the developing world, it might be more accurate to say that religious observance is a sophisticated response to underdeveloped legal and economic institutions. Religious rituals promote cooperation. For most Westerners, this benefit alone cannot justify the cost of partaking regularly in time-consuming rituals. Hayek (1988) makes the point that cooperation requires the mutual pursuit of an agreed upon goal among members of the society, whereas capitalism involves individuals “pursuing thousands of different ends of their own choosing in collaboration with thousands of persons whom they will never know” (p. 113). Individuals in advanced capitalist economies face collective-
action problems irregularly, anonymously (e.g. fund-raising campaigns for public goods, like public radio and television stations) and with different individuals each time. What is more, the existence of well-defined property rights, enforceable contracts and an advanced legal system obviate the need for cooperative, trusting behavior. However, these guarantees and substitute institutions for cooperation are unavailable in developing countries. Ill-defined property rights and a backlogged, bureaucratic and corrupt legal system create favorable conditions for the adoption of publicly observable religious rituals as a mechanism to promote group solidarity, trust and cooperation and to avoid disputes.

These religious groups are then able to offer members mutual insurance and (local) public goods like health care, education and defense where the government and marketplace fail. For example, Berman (2003) explains the use of extremely costly practices by religious militias as a means to exclude free riders from the benefit of the club good that they provide to members.

It follows that multinational corporations and foreign institutions investing in the developing world and dependent on collaboration with the indigenous people may profit from preserving indigenous ritual practices and the environment in which they take place. The well-documented water temple system of Bali represents a case in point (see Lansing 1991, for the authoritative study, as well as Wilson 2002, pp. 126-133). A lake in a volcanic crater on the island as well as the rains that run off of the volcano irrigate Bali’s rice fields. The Balinese have developed what has proven to be an ingenious cooperative system of aqueducts to supply water in equitable amounts to the surrounding farmers. At the heart of this coordinated effort lies an indigenous religion that worships, among other deities, Dewi Danu, the goddess of the waters emanating from the volcano in whose honor an immense temple stands at the volcano’s summit. Smaller temples for worship are located at every branch of the irrigation system and at the fields onto which the aqueducts empty. The wisdom and success of the Balinese water temple system became clear when the Asian Development Bank imposed a farming alternative on the Balinese in the 1980s. The Asian Development Bank concluded in 1988 that,

The substitution of the ‘high technology and bureaucratic’ solution … proved counter-productive and was the major factor behind the yield and cropped areas declines experienced between 1982 and 1985 … The cost of the lack of appreciation of the merits of the traditional regime has been high. Project
experience highlights the fact that the irrigated rice terraces of Bali form a complex artificial ecosystem which has been recognized locally over centuries (Lansing 1991, p. 124, from Wilson 2002, p. 130).

7. Conclusions

The predominant rational choice theory of religious behavior suggests that costly prohibitions serve to screen out less committed members and increase the religious participation of remaining members (Iannaccone 1992). Through this screening mechanism, religions are able to overcome free-riding problems associated with the collective production of “religious goods”.

We posit that the benefits of religious ritual extend beyond the production of religious goods to include beneficial economic behavior and proceed to estimate this economic benefit. The Israeli kibbutz presents a host of opportunities for free riding and exploitative behavior. Regularly performed collective religious rituals may enhance the participant’s sense of group commitment, solidarity and trust, which ultimately translate into increased cooperation toward group members. At the same time, these costly rituals may screen out potential members motivated purely by economic opportunism. Instead, only those truly committed to the kibbutz ideology of cooperation would be willing to undertake the significant collective ritual obligations imposed upon men in Orthodox Judaism.

In this paper, we design a test to determine whether the performance of collective religious ritual indeed increases the cooperation of its performers. We take advantage of the natural distinction between religious and secular kibbutzim to compare the cooperative behavior of their members. Even with the careful controls in the choice of sample kibbutzim, we find differences in the levels of cooperation of kibbutz members. These differences can be characterized by the regularity of collective religious ritual performance. Those who most regularly engage in collective religious ritual are the most cooperative. One implication is that religious and secular kibbutzim alike might be well advised to adopt costly collective ritual requirements.

In contradiction to the quote with which we began this paper, religion appears to offer a significant advantage in dealing with day-to-day economic problems. For individuals in capitalist economies who face collective-action problems irregularly,
anonymously or with different individuals each time and who have economic and reputational incentives to ensure a minimal degree of cooperation and legal recourse in case these incentives fail, devout religious observance on purely economic grounds seems unwarranted. However, for communes whose survival depends on solving collective-action problems with the same set of people daily and for individuals in developing countries who lack the economic and legal institutions to assure cooperation, religious ritual may be imperative.

References

Appendix A: Subjects’ Forms (translated from Hebrew)

Instructions

Introduction (read aloud by the experimenter)

We thank you for willingness to participate in this research conducted by Ben-Gurion University and the University of Connecticut. The exercise in which you have agreed to participate relates to decision-making and requires less than 30 minutes of your time. We assure you that during the exercise as well as after its completion and on the short questionnaire that follows the exercise, your identity will remain anonymous. The information collected by the researcher in your home will be used for research purposes only. Under no circumstance will your identity be revealed to anyone or published anywhere.

This exercise in decision-making will take place in pairs. The person with whom you are paired for the purpose of this exercise is another member from your kibbutz. Another researcher from our team is currently at the home of this person. Under no circumstance will you learn the identity of the person with whom you are paired; nor will s/he learn your identity. During the decision-making exercise, you will be asked to make a number of decisions. At the end of the exercise, the researcher will pay you an amount of money. The precise amount of money to be paid to you will be determined by the decisions you make in the exercise as well as the decisions of the anonymous person with whom you have been paired. This research is funded by a number of grants from various research foundations.

Participants’ Instructions (read first by the subject and then read aloud by the experimenter)

Exercise

In this exercise, you and the person from your kibbutz with whom you are paired have access to the same envelope that contains 100 shekels. You must choose an amount of money you wish to remove from the envelope to keep. You may choose any amount between 0 shekels and 100 shekels, inclusive. At the same time, the member of your kibbutz with whom you are paired for this exercise must decide an amount of money (between 0 and 100 shekels inclusive) that he or she wishes to remove from the same envelope. After you have decided how much to keep from the envelope, the researcher will convey your decision by cellular phone to the other researcher who is presently at the home of the person with whom you are paired. You and the person with whom you are paired will learn of the other’s decision only after each of you has made your decision.

If the sum of the amounts you and your paired partner choose to remove from the envelope (the total amount removed) exceeds 100 shekels, then you both receive no payment and the exercise ends. If you and the person whom you are paired choose to remove from the envelope an amount that together is less than 100 shekels, then you each keep the amount you removed from the envelope; in addition, the sum of money left over increases by 50% (in other words, is multiplied by 1.5) and is divided equally between you and your paired partner.

This completes the instructions. Before you make a decision in the exercise, the researcher in front of you will read aloud the instructions an additional time and answer any questions you may have. Also, you will be shown two numerical examples in order to illustrate the exercise and to avoid any unintended loss in earnings.

Thank you – The Research Team.
1. What is your age?

2. Where were you born? 1. this kibbutz 2. another kibbutz 3. in Israel 4. country ________

3. (If participant was not born on the kibbutz) In what year did you arrive at this kibbutz?

4a. Did you grow up in an observant household? Yes No

4b. How frequently do you visit the synagogue?

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>never</td>
<td>seldom</td>
<td>primarily on holidays</td>
<td>primarily on Sabbath and on holidays</td>
<td>several times a week</td>
<td>every day</td>
</tr>
</tbody>
</table>

5. How many years of study have you completed?

6. How many times a month on average do you participate in events open to all kibbutz members such as song and dance evenings, movies, kibbutz meetings, sporting events, concerts, plays, lectures, study groups, etc.?

7. What is your marital status?

8. How many children do you have and what are the ages of each child?

8b. Of your children that have reached the age at which they have had to decide whether to become a member of the kibbutz or to leave the kibbutz,

how many decided to become kibbutz members? _____
how many have left the kibbutz? _____

9. How many people live in your home including yourself?

10. In how many other households on this kibbutz do you or your spouse have family members?

11. On average, how many meals a week do you eat in the dining hall? _____

12. Where do you currently work?

What is your position?
How long have you worked at this position?
Are you (also) employed outside of the kibbutz?

The questions below are a subset of the full questionnaire. We have included only those questions related to this paper. Questions 4a and 4b were asked of participants on religious kibbutzim only. The secular and religious questionnaires were otherwise identical.
Histories displaying the distributions of the amounts taken from the envelope (in shekels) by male and female members of religious kibbutzim.

Bar graphs indicating the mean amount claimed by religious males (left-hand bar) and the mean amount religious males believed their paired partner would claim (right-hand bar) as a function of the frequency of the religious male’s synagogue attendance. The sample sizes for each category of synagogue attendance appear above the bar graphs.
Bar graphs indicating the mean amount claimed by religious females (left-hand bar) and the mean amount religious females believed their paired partner would claim (right-hand bar) as a function of the frequency of the religious female’s synagogue attendance. The sample sizes for each category of synagogue attendance appear above the bar graphs.

Table 1
Comparison of Religious and Secular Kibbutz Samples

<table>
<thead>
<tr>
<th>Variable</th>
<th>Religious kibbutzim</th>
<th>Secular kibbutzim</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Deviation</td>
</tr>
<tr>
<td>Kibbutz size</td>
<td>658.3</td>
<td>185.1</td>
</tr>
<tr>
<td>Year of establishment</td>
<td>1946.9</td>
<td>7.6</td>
</tr>
<tr>
<td>Economic Strength</td>
<td>2.21</td>
<td>0.74</td>
</tr>
<tr>
<td>1=Very Strong</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2=Strong</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3=Fair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4=Weak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5=Very Weak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Privatization changes adopted by kibbutz</td>
<td>2.10</td>
<td>1.56</td>
</tr>
<tr>
<td>Age (years)</td>
<td>49.96</td>
<td>18.07</td>
</tr>
<tr>
<td>Education (years)</td>
<td>13.89</td>
<td>3.03</td>
</tr>
<tr>
<td>Sex</td>
<td>0.500</td>
<td>0.500</td>
</tr>
<tr>
<td>0=female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1=male</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Means and standard deviations for a number of kibbutz-level and demographic variables reported separately for the religious and secular kibbutzim in our sample. The “Kibbutz Size” variable refers to the number of members on the kibbutz. The “Economic Strength” variable is a weighted index constructed by the kibbutz research institute Yad Tabenken. This measure is composed of the kibbutz’s assets and level of debt. The “number of Privatization changes adopted by kibbutz” variable reflects the degree to which the kibbutz remains a traditional, collectivized kibbutz. Each kibbutz received a score between 0 and 23 according to the number of changes it had implemented at the time the research was conducted.
Table 2
Left-Censored Tobit Regressions on Religious Kibbutzim

<table>
<thead>
<tr>
<th>variable</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>6.92</td>
<td>-0.94</td>
<td>6.57</td>
<td>-0.97</td>
<td>-1.02</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>(4.85)</td>
<td>(8.77)</td>
<td>(5.04)</td>
<td>(8.76)</td>
<td>(9.01)</td>
<td>(9.83)</td>
</tr>
<tr>
<td>predict</td>
<td>0.54**</td>
<td>1.16**</td>
<td>0.54***</td>
<td>1.15**</td>
<td>1.14**</td>
<td>1.17**</td>
</tr>
<tr>
<td></td>
<td>(.123)</td>
<td>(.501)</td>
<td>(.128)</td>
<td>(.496)</td>
<td>(.496)</td>
<td>(.478)</td>
</tr>
<tr>
<td>predict(^2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>-5.11**</td>
<td>-5.00**</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>(2.42)</td>
<td>(2.47)</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>religious male(^*)</td>
<td></td>
<td></td>
<td>-6.70**</td>
<td>-6.84**</td>
<td>-6.43**</td>
<td>-9.20**</td>
</tr>
<tr>
<td>daily synagogue</td>
<td></td>
<td></td>
<td>(2.87)</td>
<td>(2.85)</td>
<td>(2.96)</td>
<td>(4.69)</td>
</tr>
<tr>
<td>religious male(^*)</td>
<td></td>
<td></td>
<td>-3.99</td>
<td>-3.24</td>
<td>-2.92</td>
<td>-5.54</td>
</tr>
<tr>
<td>not daily synagogue</td>
<td></td>
<td></td>
<td>(3.19)</td>
<td>(3.35)</td>
<td>(3.50)</td>
<td>(4.81)</td>
</tr>
<tr>
<td>religious female(^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3.34</td>
</tr>
<tr>
<td>weekly synagogue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4.14)</td>
</tr>
<tr>
<td>frackib</td>
<td>8.13*</td>
<td>8.74*</td>
<td>8.86*</td>
<td>9.46*</td>
<td>10.53**</td>
<td>10.87**</td>
</tr>
<tr>
<td></td>
<td>(5.07)</td>
<td>(5.03)</td>
<td>(5.19)</td>
<td>(5.15)</td>
<td>(5.25)</td>
<td>(5.67)</td>
</tr>
<tr>
<td>work off kibbutz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.80)</td>
<td></td>
</tr>
<tr>
<td>meals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.02)</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>204</td>
<td>204</td>
<td>198</td>
<td>198</td>
<td>193</td>
<td>193</td>
</tr>
<tr>
<td>adjusted R(^2)</td>
<td>.192</td>
<td>.203</td>
<td>.203</td>
<td>.214</td>
<td>.210</td>
<td>.211</td>
</tr>
</tbody>
</table>

The dependent variable is the amount removed from the envelope by the subject (in shekels).

*** The coefficient is significant at the 1% level.
** The coefficient is significant at the 5% level.
* The coefficient is significant at the 10% level.

Left-censored Tobit regression coefficients (heteroskedasticity-consistent standard errors in parentheses) from religious kibbutzim sample only. The amount removed from the envelope is regressed on, among other variables, the subject’s estimate of how much his opponent will remove (“predict”), “predict\(^2\)”, a dummy variable for the subject’s sex, interaction dummies between religious males, religious females and the frequency of their synagogue attendance, the fraction of one’s life spent on the kibbutz (“frackib”), a dummy variable for whether the kibbutz member works outside of the kibbutz (“work off kibbutz”) and the number of meals a week the kibbutz member eats in the communal dining hall (“meals”).
Table 3
Descriptive Statistics of Key Variables by Subpopulation

<table>
<thead>
<tr>
<th>variable amount removed</th>
<th>Religious Kibbutzim</th>
<th>Secular Kibbutzim</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males who Attend Synagogue Daily</td>
<td>Males who Do Not Attend Synagogue Daily</td>
</tr>
<tr>
<td>predict</td>
<td>36.12</td>
<td>42.58</td>
</tr>
<tr>
<td>predict</td>
<td>33.06</td>
<td></td>
</tr>
<tr>
<td>frackib</td>
<td>367.6</td>
<td>678</td>
</tr>
<tr>
<td>% work off kibbutz</td>
<td>22.7%</td>
<td>25.0%</td>
</tr>
<tr>
<td>meals</td>
<td>10.1</td>
<td>10.3</td>
</tr>
<tr>
<td>age</td>
<td>51</td>
<td>54.4</td>
</tr>
<tr>
<td>education</td>
<td>13.4</td>
<td>14.3</td>
</tr>
<tr>
<td>n</td>
<td>68</td>
<td>34</td>
</tr>
</tbody>
</table>

Descriptive statistics for key variables by subpopulation. Means are indicated for the amount removed from the envelope, the amount that the subject predicted his opponent would remove, the fraction of one’s life spent on the kibbutz (“frackib”), the number of meals per week eaten in the communal dining hall, age, and years of education. For the “work off kibbutz” variable, the percentage of kibbutz members who work off the kibbutz is reported.

Table 4
Left-Censored Tobit Regressions on Secular Kibbutzim

<table>
<thead>
<tr>
<th>variable</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>0.92</td>
<td>0.44</td>
</tr>
<tr>
<td>(3.46)</td>
<td>(4.17)</td>
<td></td>
</tr>
<tr>
<td>predict</td>
<td>1.18***</td>
<td>1.18***</td>
</tr>
<tr>
<td>(.143)</td>
<td>(.143)</td>
<td></td>
</tr>
<tr>
<td>predict²</td>
<td>-.008***</td>
<td>-.008***</td>
</tr>
<tr>
<td>(.002)</td>
<td>(.002)</td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>2.38</td>
<td>2.55</td>
</tr>
<tr>
<td>(1.90)</td>
<td>(.194)</td>
<td></td>
</tr>
<tr>
<td>frackib</td>
<td>---</td>
<td>0.40</td>
</tr>
<tr>
<td>(3.52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>work off kibbutz</td>
<td>-6.95***</td>
<td>-7.32***</td>
</tr>
<tr>
<td>(2.42)</td>
<td>(2.44)</td>
<td></td>
</tr>
<tr>
<td>meals</td>
<td>-.287*</td>
<td>-.282</td>
</tr>
<tr>
<td>(.176)</td>
<td>(.181)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>293</td>
<td>291</td>
</tr>
<tr>
<td>adjusted R²</td>
<td>.282</td>
<td>.278</td>
</tr>
</tbody>
</table>

The dependent variable is the amount removed from the envelope by the subject (in shekels).
*** The coefficient is significant at the 1% level.
** The coefficient is significant at the 5% level.
* The coefficient is significant at the 10% level.

Left-censored Tobit regression coefficients (heteroskedasticity-consistent standard errors in parentheses) for secular kibbutz members only. The amount removed from the envelope is regressed on, among other variables, the subject’s estimate of how much his opponent will remove (“predict”), “predict²”, a dummy variable for the subject’s sex, the fraction of one’s life spent on the kibbutz (“frackib”), a dummy variable for whether the kibbutz member works outside of the kibbutz (“work off kibbutz”), and the number of meals a week the kibbutz member eats in the communal dining hall (“meals”).
Table 5
Left-Censored Tobit Regressions on all Kibbutzim

<table>
<thead>
<tr>
<th>variable</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>-7.12</td>
<td>3.19</td>
<td>2.57</td>
</tr>
<tr>
<td></td>
<td>(3.92)</td>
<td>(3.97)</td>
<td>(4.06)</td>
</tr>
<tr>
<td>predict</td>
<td>1.14***</td>
<td>1.14***</td>
<td>1.13***</td>
</tr>
<tr>
<td></td>
<td>(.163)</td>
<td>(.165)</td>
<td>(.163)</td>
</tr>
<tr>
<td>predict²</td>
<td>-.008***</td>
<td>-.008***</td>
<td>-.008***</td>
</tr>
<tr>
<td></td>
<td>(.002)</td>
<td>(.002)</td>
<td>(.002)</td>
</tr>
<tr>
<td>religious</td>
<td>---</td>
<td>-7.24*</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.84)</td>
<td></td>
</tr>
<tr>
<td>religious male*</td>
<td>---</td>
<td>---</td>
<td>-6.54**</td>
</tr>
<tr>
<td>daily synagogue</td>
<td></td>
<td></td>
<td>(2.71)</td>
</tr>
<tr>
<td>religious male*</td>
<td>---</td>
<td>---</td>
<td>-3.61</td>
</tr>
<tr>
<td>not daily synagogue</td>
<td></td>
<td></td>
<td>(3.20)</td>
</tr>
<tr>
<td>frackib*</td>
<td>8.25*</td>
<td>7.27</td>
<td>8.97*</td>
</tr>
<tr>
<td>religious</td>
<td>(4.91)</td>
<td>(4.89)</td>
<td>(5.04)</td>
</tr>
<tr>
<td>work off kibbutz*</td>
<td>-6.91***</td>
<td>-6.87***</td>
<td>-6.91***</td>
</tr>
<tr>
<td>secular</td>
<td>(2.40)</td>
<td>(2.38)</td>
<td>(2.40)</td>
</tr>
<tr>
<td>meals*</td>
<td>-.291*</td>
<td>-.264</td>
<td>-.292*</td>
</tr>
<tr>
<td>secular</td>
<td>(.175)</td>
<td>(.173)</td>
<td>(.175)</td>
</tr>
<tr>
<td>religious</td>
<td>4.92**</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>female</td>
<td>(2.36)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>secular</td>
<td>11.77***</td>
<td>---</td>
<td>7.31*</td>
</tr>
<tr>
<td>male</td>
<td>(4.51)</td>
<td></td>
<td>(3.98)</td>
</tr>
<tr>
<td>secular</td>
<td>9.48**</td>
<td>---</td>
<td>5.03</td>
</tr>
<tr>
<td>female</td>
<td>(4.38)</td>
<td></td>
<td>(3.79)</td>
</tr>
<tr>
<td>n</td>
<td>497</td>
<td>497</td>
<td>491</td>
</tr>
<tr>
<td>adjusted R²</td>
<td>.256</td>
<td>.252</td>
<td>.260</td>
</tr>
</tbody>
</table>

The dependent variable is the amount removed from the envelope by the subject (in shekels).

*** The coefficient is significant at the 1% level.
** The coefficient is significant at the 5% level.
* The coefficient is significant at the 10% level.

Left-censored Tobit regression coefficients (heteroskedasticity-consistent standard errors in parentheses) for all (religious and secular) kibbutz members. The amount removed from the envelope is regressed on, among other variables, the subject’s estimate of how much his opponent will remove (“predict”), “predict²”, a dummy variable for the subject’s sex, interaction variables between religious males and the frequency of their synagogue attendance, the fraction of a religious kibbutz member’s life spent on the kibbutz, an interaction dummy between secular kibbutz members and whether they work outside of the kibbutz, the number of meals a week a secular kibbutz member eats in the communal dining hall. The main effects of these last three interaction variables are excluded due to multicollinearity. Categorical variables by kibbutz type and sex (“religious female”, “secular male”, “secular female”) are also included.