
     

Statistical Modeling of Fishing Activities

in the North Atlantic

Carmen Fernández, Eduardo Ley, and Mark F.J. Steel

Version: December 3, 1997

Abstract. This paper deals with the issue of modeling daily catches
of fishing boats in the Grand Bank fishing grounds. We have data on
catches per species for a number of vessels collected by the European
Union in the context of the North Atlantic Fisheries Organization. Many
variables can be thought to influence the amount caught: a number of ship
characteristics —such as the size of the ship, the fishing technique used,
the mesh size of the nets, etc.—, are obvious candidates, but one can also
consider the season or the actual location of the catch. In all, our database
leads to 23 possible regressors, resulting in a set of 8.4×106 possible linear
regression models. Prediction of future catches and posterior inference will
be based on Bayesian model averaging, using a Markov Chain Monte Carlo
Model Composition (MC3) approach. Particular attention is paid to the
elicitation of the prior and the prediction of catch for single and aggregated
observations.

Keywords. Bayesian model averaging; Grand Bank fisheries; Predictive
inference; Prior elicitation

Address. Carmen Fernández is Research Fellow, CentER for Economic
Research and Assistant Professor, Department of Econometrics, Tilburg
University, 5000 LE Tilburg, The Netherlands. Eduardo Ley is Senior Re-
search Fellow, FEDEA, Jorge Juan 46, 28001 Madrid, Spain. Mark Steel is
Senior Research Fellow, CentER for Economic Research and Associate Pro-
fessor, Department of Econometrics, Tilburg University, 5000 LE Tilburg,
The Netherlands.



    

“Fishing conflicts ara among the most visible of a new set of international security and
diplomatic concerns caused by environmental degradation and resource depletion.” [J.
Friedland: “Catch of the Day: Fish Stories these Days are Tales of Depletion and
Growing Rivalry,” The Wall Street Journal, front page article, 25/11/97]

1. INTRODUCTION

The mismanagement of the world fisheries is one of the most important global environmen-
tal problems that we face today. In the early 90’s, according to the United Nations Food
and Agriculture Organization (FAO), around 70% of the world’s conventional species of
fish were “fully exploited, overexploited, depleted, or in the process of rebuilding as a result
of depletion” (FAO, 1995). Nine of the world’s 17 major fisheries are in serious decline,
and four others are classified as ‘commercially depleted’ by the FAO (Tibbets, 1994). By
far, the largest single pressure on commercial fisheries is overexploitation, which occurs
mostly due to the free open access to fishery resources. This lack of property rights then
results in a tragedy of the commons (Hardin, 1968).

The North Atlantic Fisheries Organization (NAFO) is one of several international or-
ganizations that tries to alleviate overexploitation through voluntary cooperation. The
NAFO was established in 1978 to contribute to the optimal exploitation and rational use
of fisheries resources in the Grand Bank outside Canada’s exclusive economic zone. Coun-
tries which are members of the NAFO (Bulgaria, Canada, Cuba, European Union -EU-,
Federation of Russian States, Iceland, Japan, Letonia, Lithuania, Norway, Poland and
Romania) assign quotas among themselves and grant inspection rights to each other. At
present, there are three inspection ships —two Canadian and one belonging to the EU—
that board vessels of member states and register the information in their logbooks. In
addition, signatory countries’ ships report (through the so-called “hails”) their entry and
exit of the different zones of the fishing grounds. Finally, there are two daily flights over the
Grand Bank and the Flemish Cap made by inspection airplanes with the purpose of locat-
ing and identifying all ships fishing in the area (also including vessels from non-signatory
countries).

However, boarding ships on high seas to verify catch is expensive and disrupts their
operations. Furthermore, ships from non-signatory countries can not be inspected. It then
becomes important to construct models that allow for catch prediction and monitoring
conditional on the information from aerial sightings and hails, ship characteristics and
other variables (such as month of the year). Improvement of the monitoring activities is
crucial for the effectiveness of cooperative organizations such as NAFO. In addition, our
model allows us to study how ship characteristics influence catch —correcting for other
factors. The latter might provide useful information for regulatory measures and guidelines
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related to issues like net size, optimal size of the fleet, etc. An excellent introduction to the
use of quantitative methods in fisheries research is given by Hilborn and Walters (1992).

This paper proposes a statistical model for daily catch per species of fish based on
linear regression combined with a certain probability of zero catch. We work within a
Bayesian framework and formally treat the uncertainty concerning the choice of regressors
through model averaging, using posterior model probabilities as weights. In view of the
large number of potential models, a Monte Carlo Markov chain is generated over the model
space, following the MC3 methodology of Madigan and York (1995). Particular attention is
paid to the choice of the prior, since we wish to combine a relative lack of prior information
with feasible numerical calculations. Finally, efficient coding is seen to result in a software
that can easily deal with problems of practically relevant dimensions.

Section 2 describes the data collected by the EU, while Section 3 introduces the statis-
tical model, as well as model averaging. Posterior and predictive inference is discussed in
Section 4, along with some details of the prior elicitation and the numerical implementa-
tion. The empirical results are presented in Section 5 and a final section concludes.

2. THE DATA

The original data were gathered by the inspection vessels of the EU operating on the Grand
Bank fisheries. These vessels board the fishing boats and record basic characteristics of
the ship and the fishing equipment, as well as the quantities caught of different species
and where and when this catch was effectuated. They use the ship’s logs to collect all the
information accumulated since the last time the ship was boarded. All data correspond to
1993 and the first half of 1994, leading to 6806 observations corresponding to a particular
ship at a given day. More information about the data and the way they are collected can
be found in Ferreira and Tusell (1996). Figure 1 shows a map of the area in question. All
available information relates to zones 3L, 3M, 3N and 3O.

In the recorded data, there are separate entries for ship type (6 categories), whether the
ship was fishing alone or in a pair (2 categories), and the fishing technique (5 categories).
Since the recorded data seem to be less than reliable in the exact categories of ship type
(it is, e.g., not always correctly indicated whether a stern trawler has a freezer or not, and
the same ships seem to change categories often), and there are some logical redundancies
in these data (e.g., a pair trawl can only be used by ships fishing in a pair), we combine
these three categorical variables into one single variable, with four levels, corresponding to
the fishing technique used.

The dependent variable is the live weight of fish caught. Table 1 summarizes the regres-
sors that we can possibly use. These include four categorical variables: the country where
the vessel is registered, denoted by nationality (3 levels), fishing technique (4 levels), zone
(4 levels) and month of the year (12 levels). Each of these variables is handled through
dummies taking the values zero or one (with the possible exception of zone, as shall be
described below). As the model will include an intercept, we retain one reference level for
each of them. In addition, we have four continuous variables, namely net size measured
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Table 1. Data Used
Regressor Description % Observations

1 Danish vessel 0.4

2 Spanish vessel 81.5

ref. Portuguese vessel 18.1

3 drift gillnet 3.6

4 anchored gillnet 1.4

5 otter trawl 79.6

ref. otter trawl pair 15.4

6 zone 3L 34.6

7 zone 3M 25.7

8 zone 3N 35.0

ref. zone 3O 4.7

9 January 4.9

10 February 10.7

11 March 15.0

12 April 12.1

13 May 14.0

14 June 9.5

15 July 7.0

16 August 7.7

17 September 8.0

18 October 7.0

19 November 3.5

ref. December 0.6

Mean Std

20 net size mm. 125.99 7.02

21 length vessel m. 51.57 13.41

22 GRT 749.93 449.41

23 engine kW 1174.97 505.19

in mm., length of vessel measured in m., gross registered tonnage (GRT) and engine kW.
Table 1 indicates the empirical distribution of each of the categorical variables, and the
means and standard deviations of each continuous variable, calculated over the sample of
6806 ship-days.

Table 2. Fish Species
Sp. Description % zeros % of catch

1 Atlantic cod (Gadus morhua) 88.33 9.80

2 Halibut (Hippoglossus reinhardtius)m 18.50 62.40

3 Redfish (Sebastes spp.) 85.73 11.73

4 Grenadier (Macrurus rupestris) 43.20 3.80

5 Skate (Raja spp.) 55.44 8.97

6 rest 72.27 3.30
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Table 2 lists the five most important species caught on the Grand Bank and has one
category for all the other species (“rest”). Every time we observe a ship, we observe its
daily catches for all six species. A look at the data tells us that a ship’s catch on any
given day often does not include all six species. More in particular, the 6806 observed
ship-days give us 6806× 6 = 40, 836 observations of catch per species, and 24,738 of these
are zeros. This important aspect of the data should not be overlooked, and, hence, we
shall model these zero catches explicitly. This feature of the data seems to have been
ignored by Ferreira and Tusell (1996), who analyse the same data set. Table 2 also lists
the percentage of zero observations per species and the fraction of the total live weight
that each species constitutes.

In dealing with this data set, a few other issues arise:

(i) Sometimes a ship is on the fishing grounds but is unable to do any fishing, due, e.g., to
bad weather conditions. This is reflected in the data through a variable called: “# of
fishing days”. If this variable takes a value, say K, bigger than one, it means that the
previous K−1 days the ship was on the fishing grounds but could not fish. Thus, catch
should be recorded as zero for all species during those K − 1 days, whereas the amount
registered in the logbook should be assigned to the Kth day.

(ii) Another issue relates to the zone where the fish is caught. If a ship is in, e.g., 2 different
zones during the same day, the logbook registers 2 entries on that day, each of them
reflecting the amount of fish caught in that particular zone. Since we want to model
the catch per ship per day, we shall sum (for each of the 6 species) the amount caught
over all the zones visited. Then, in the explanatory variables, instead of imputing 1 for
one of the zones, we assign the value 1/(# of zones visited) to each of the zones visited.
Although this is not fully precise, multiple zones in the same day occurs only very rarely
in our dataset (1.2% of the observations).

Regarding the six different species mentioned in Table 2, there are different models that
we could think of:

(i) We could model the total catch per ship-day, without separating per species. This
would mean that for each ship, we sum the catch over all six species (leading to 6,806
observations in all). In the data, the total amount of catch is now always positive except
when (# of fishing days)> 1, which occurs in 8.2% of the observations. The fact that the
data on the total amount of catch seems to be more reliable that its decomposition by
species, is an advantage of such a modeling strategy. Nevertheless, for policy purposes,
a model that can predict for each of the species seems more useful.

(ii) We could model catch per ship-day per species, by considering a single regression model
and introducing a separate individual effect for each of the species, as in Ferreira and
Tusell (1996). We remark that the total amount of observations is now 6806×6 = 40, 836
since zero catches should not be neglected. The drawback of this model is that it seems
somewhat unreasonable to assume that the explanatory variables affect all the species in
the same way, and the species are only distinguished by a difference in the intercept. In
the sequel, we shall present strong data evidence against such an assumption. Therefore,
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the next alternative seems the most interesting:

(iii) We consider a separate model for each of the species, and make inference for each of the
species according to its corresponding model. Thus, we have five models (one for each of
the Species 1-5, whereas we chose not to model the heterogeneous “rest” category) with
6,806 observations per model. This is the approach that we will follow here and, from
now on, we will always implicitly refer to a model for a given species. In the subsequent
discussion we will, however, not explicitly indicate this fact in order to avoid cluttering
the notation.

Given our modeling aims in (iii), there are two distinct issues of relevance to the analysis.
Firstly, we could ask which fish species are targeted by ships with certain characteristics
in a certain location and period, and, secondly, the influence of all these variables on the
actual quantities caught of both targeted and non-targeted species could be of interest.
However, the available data do not allow us to model these aspects separately, and, thus, we
shall model them simultaneously. Since the ultimate aim is to predict the actual quantities
caught, this might not be an unreasonable strategy.

3. THE STATISTICAL MODEL

3.1. The sampling model

The observations will be denoted by si, i = 1, . . . , n (n = 6, 806 in our problem), and
we define s = (s1, . . . , sn)′. Clearly, si ≥ 0 for all i. From the considerations explained
in Section 2, it seems clear that any reasonable model should take account of the fact
that there is a positive probability of zero catch. Thus, we model si = 0 with probability
ω ∈ (0, 1). For the case where si > 0 (which receives probability 1− ω in our model), we
assume a linear regression structure for yi ≡ log(si) with Normal error term. As mentioned
by Ferreira and Tusell (1996), modeling yi through linear regression seems rather natural
since it implies multiplicative effects of the regressors on the actual catch si. See also
Hilborn and Walters (1992, chap. 4). Assuming an intercept and considering the k = 23
variables listed in Table 1, leaves us with 2k (i.e., 8, 388, 608) possible models depending on
whether we choose to include or exclude a certain regressor from the model (while always
including an intercept). Let us denote one such model by Mj , j = 1, . . . , J (J = 2k) and
byM the space of all these models, i.e.,

M = {Mj : j = 1, . . . , J}. (3.1)

Under model Mj , we assume independent observations with the following distribution:

Psi|ω,α,β,σ,Mj
=

{
Dirac at 0 with probability ω,
Lognormal

(
α+ z′i(j)β(j), σ

2
)

with probability 1− ω. (3.2)

The notation in (3.2) means that si takes the value 0 with probability ω, whereas with
probability 1 − ω the observable si > 0 and log(si) follows a Normal distribution with
mean α + z′i(j)β(j) and variance σ2. In general, we will have a sample of n observations
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from (3.2), of which a certain number, say Q, will be positive. For notational convenience,
we shall assume that the first Q observations are positive and denote by y = (y1, . . . , yQ)′

the Q-dimensional vector with components given by yi = log(si).

Throughout, α denotes the intercept and β the k-dimensional vector of all possible
regression coefficients. Under model Mj , the distribution of a positive response si only
depends on kj (0 ≤ kj ≤ k) of the k possible explanatory variables, which we group in
a vector zi(j). The corresponding Q × kj design matrix, assumed of full column-rank, is
given by Zj = (z1(j), . . . , zQ(j))′. Without loss of generality, we assume that

ι′QZj = 0, for all j, (3.3)

where ιQ is the Q-dimensional vector of ones, so that the intercept is orthogonal to all
the regressors. This implies that the regressors are taken in terms of deviations around
the mean and is immediately achieved by substracting the corresponding sample means.
Thus, the intercept α can be interpreted as a typical value for the log catch, given that
the latter is positive. Finally, the k − kj regression coefficients irrelevant under model Mj

are grouped in a vector β(∼j).

As was indicated in Section 2, there are two types of regressors: categorical variables
(nationality, fishing technique, zone and month), which will be handled through dummy
variables taking the values zero or one (with the possible exception of zone): one variable
for each category, minus one which corresponds to the reference case. Secondly, we have
continuous explanatory variables (net size, length of vessel, GRT, engine kW), which will
be transformed to logarithms. All of these variables are subsequently demeaned, leading
to a design matrix Zj that verifies (3.3). The coefficient βl corresponding to a categorical
variable has the following interpretation: exp(βl) is the ratio between the median catch with
the corresponding dummy equal to one and the median catch in the reference category. The
regression coefficients corresponding to continuous variables are unequivocally interpreted
as elasticities, i.e., the relative percentage change in median catch as a consequence of a
1% relative change in the continuous regressor.

3.2. The prior under model Mj

In order to conduct Bayesian inference, we need to complement our sampling assumptions
with a prior distribution for the parameters in the model.

The sampling distribution under model Mj is given in (3.2). For the parameters in
this model, ω, α, β(j) and σ, we specify a prior distribution that incorporates minimal
prior information while leading to analytical tractability. Fernández, Ley and Steel (1997)
provides details about this prior and its consequences for model selection and prediction.

For ω, the probability of zero catch, we take a Beta prior distribution with probability
density function (hereafter denoted by p.d.f.):

p(ω) = fB(ω|a0, b0) ∝ ωa0−1(1− ω)b0−1I(0,1)(ω), (3.4)
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regardless of the model Mj . On the intercept α and the scale parameter σ, which are
present in all the models, we assume the usual non-informative distributions, respectively
defined through

p(α) ∝ 1, (3.5)

and
p(σ) ∝ σ−1, (3.6)

again regardless of the model Mj . For the vector β(j), which groups the relevant regression
coefficients under model Mj , we assume the prior

p(β(j)|σ,Mj) = f
kj
N

(
β(j)|0, σ2(g0jZ ′jZj)

−1
)
, (3.7)

i.e., a kj-variate Normal distribution with zero mean and covariance matrix σ2(g0jZ ′jZj)
−1,

where g0j > 0. This is similar in spirit to the g-prior introduced in Zellner (1986), and
essentially says that the prior precision is a fraction g0j of that of the sample. Finally,
model Mj implicitly assumes that the explanatory variables outside zi(j) do not matter,
which corresponds to taking a Dirac prior distribution for β(∼j) at the (k−kj)-dimensional
vector of zeros:

Pβ(∼j)|Mj
= Dirac(0,...,0). (3.8)

The overall prior structure under Mj is given by the product (3.4)− (3.8).

We remark that the only hyperparameters to elicit in this prior are three positive scalars:
a0, b0 and g0j . Subsection 4.3 will comment on these issues more in detail. Having fully
specified this prior distribution, we can immediately conduct Bayesian inference under
modelMj , by combining this distribution with the sampling model in (3.2). Since this prior
distribution closely resembles a natural conjugate, computing the posterior and predictive
distributions is quite simple, as shall be explained in Section 4.

3.3. Model averaging

So far we have considered one single model Mj from the space of all possible models
M in (3.1), thus neglecting the fact that there is model uncertainty. From a Bayesian
perspective, this uncertainty causes no trouble and can be treated in a coherent fashion by
specifying a prior distribution on the model space M. We therefore complete our model
(3.2)− (3.8) by specifying a distribution overM:

P (Mj) = ej , j = 1, . . . , J, (3.9)

where ej ≥ 0 for all j and
∑J
j=1 ej = 1. Again, {ej : j = 1, . . . , J} are prior hyperparame-

ters that we have to choose.

Note that (3.2)− (3.9) define a hierarchical Bayesian model, with 2 levels of hierarchy
in the prior:

(i) Firstly, in (3.2) we have specified the distribution of the observables si given a model
Mj and the parameters ω, α, β, σ.
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(ii) Secondly, through (3.4) − (3.8), we specify the prior distribution of the parameters
ω, α, β, σ in each given model Mj .

(iii) Finally, (3.9) gives the prior probabilities of each of the models.

The posterior distribution of any quantity of interest, say ∆, is now given by

P∆|s = P∆|s,Mj
with probability P (Mj |s), j = 1, . . . , J (3.10)

i.e., a mixture of the posterior distributions of ∆ under each of the models, with mixing
probabilities corresponding to the posterior model probabilities. If the posterior distri-
bution of ∆ under model Mj corresponds to some density function p(∆|s,Mj), we can
alternatively restate (3.10) as

p(∆|s) =
J∑
j=1

p(∆|s,Mj)P (Mj |s). (3.11)

Thus, Bayesian inference provides a coherent framework for treating model uncertainty,
leading to an inferential procedure which averages over the inferences resulting from each of
the individual models. Madigan and Raftery (1994) find in a series of empirical applications
that, in the presence of model uncertainty, Bayesian model averaging leads to the best
predictive performance, as measured by a logarithmic scoring rule. In a decision-theory
context, mixing over models can be shown to be optimal under predictive squared error
loss, provided the set of models considered is exhaustive [see also Min and Zellner (1993)].
For loss structures depending on observables or on parameters, Osiewalski and Steel (1993)
remark that mixing over models is required to calculate posterior expected loss. We shall,
thus, follow this approach and consider model averaging rather than one single model.

Applying Bayes’ theorem, the posterior probability of model Mj is given by

P (Mj |s) =
ls(Mj)P (Mj)∑J
h=1 ls(Mh)P (Mh)

, (3.12)

where P (Mj) = ej from (3.9) and ls(Mj), the likelihood of model Mj , is obtained as the
likelihood from (3.2), i.e.,

ls(ω, α, β(j), σ,Mj) ∝ ωn−Q(1− ω)QfQN (y|αιQ + Zjβ(j), σ
2IQ), (3.13)

with y as defined after (3.2) and IQ the Q-dimensional identity matrix, with the parameters
integrated out using their prior distribution in (3.4)− (3.7). This leads to

ls(Mj) ∝
(

g0j
g0j + 1

)kj/2
G
−(Q−1)/2
j , (3.14)

with
Gj =

1
g0j + 1

y′MXjy +
g0j

g0j + 1
(y − yιQ)′(y − yιQ), (3.15)
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where y denotes the sample average of the vector y (i.e., y = ι′Qy/Q), Xj = (ιQ : Zj) is the
entire design matrix (including the intercept) and MXj = IQ −Xj(X ′jXj)−1X ′j . Clearly,
Gj > 0 if and only if the sample s contains at least two different positive observations.
This condition will be both necessary and sufficient for posterior and predictive inference
throughout the paper.

Although (3.14) provides us with an explicit expression for ls(Mj), direct computation
of the probability in (3.12) is very difficult due to the large number of terms (remember that
J = 223) in the denominator. Therefore, we shall approximate the posterior distribution on
the model space, PM |s, by simulating a sample from it. Instead of just using the empirical
frequencies of visiting each model, we shall adopt a more efficient way of approximating
posterior model probabilities. We take the generated drawings as an indication of which
models have nonnegligible posterior mass. Let M(1), . . . ,M(L) be the set of different
models visited. Then, for l = 1, . . . , L, we approximate P (M(l)|s) by

P̂ (M(l)|s) =
ls(M(l))P (M(l))∑L

h=1 ls(M(h))P (M(h))
, (3.16)

where ls(M(l)) is computed following (3.14). As is the case in using relative frequencies,
we implicitly assume that models that were never drawn have zero posterior probability.
The fact that we typically only visit a very small fraction of all possible models (i.e.,
L¿ J), renders this procedure feasible. This idea was proposed in Lee (1996) who terms
it Bayesian Random Search (BARS). It is clearly more precise than just using empirical
frequencies, since posterior odds between any two models visited as computed from (3.16)
are the actual posterior odds [computed from (3.12)]. In addition, it has the advantage
that it allows us to compare empirical relative frequencies of model visits with analytical
posterior odds. If these numbers are very close, this provides a strong indication that no
further sampling from the model space is required for an accurate evaluation of posterior
model probabilities.

Finally, there is still the issue of how to generate a sample from PM |s, the posterior
distribution on the model space. As suggested by Raftery, Madigan and Hoeting (1997),
we can apply the MC3 methodology of Madigan and York (1995) which simulates drawings
from a Markov chain with state space M and stationary distribution PM |s. This Markov
chain, described in Raftery et al. (1997), is constructed as follows:

[1] For each model Mj ∈M we define a neighborhood nbd(Mj) which consists of Mj itself
and any other model inM that contains either one regressor more or one regressor less
than Mj .

[2] Given that the chain is currently at state Mj , we generate a model Mh from a uniform
distribution over nbd(Mj).

[3] The chain moves to the new stateMh with probability min{1, P (Mh|s)/P (Mj |s)}, where
P (Mj |s) was described in (3.12)− (3.14). Otherwise the chain stays at Mj .
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4. INFERENCE AND PREDICTION

4.1. Inference on parameters

We shall compute the posterior distribution of the parameters ω, α, β and σ under model
averaging by means of the ideas outlined in Subsection 3.3. We focus on inference on
ω ∈ (0, 1), which gives the probability of zero catch, and on the intercept α and the
regression vector β ∈ <23, which contains the information about the effect of each of the
regressors on the amount of fish caught when the catch is non-zero. Inference on σ is
easily obtained, but usually of lesser importance in itself, as σ is typically just a nuisance
parameter, of no interest to the modeler.

Posterior inference on ω:

Posterior inference on ω is straightforward, since the posterior distribution of ω does
not depend upon the particular model Mj considered. Combining the likelihood function
in (3.13) with the prior in (3.4) by means of Bayes’ theorem, leads to a Beta posterior
distribution with p.d.f.

p(ω|s) = fB(ω|a∗ ≡ a0 + n−Q, b∗ ≡ b0 +Q). (4.1)

Note that, from (3.4), the expected value of zero catch was a0/(a0 + b0) a priori. A
posteriori, this expectation becomes

a∗
a∗ + b∗

=
a0 + n−Q
a0 + b0 + n

, (4.2)

where n−Q is the number of zero catches in the size n observed sample.

Posterior inference on α and β:

The posterior distribution of these parameters is more involved than that of ω, since it
varies with the model Mj . Thus, we shall first compute their posterior distribution under
a given model Mj and then apply the model averaging ideas explained in Subsection 3.3.
For the intercept α, this leads to the following mixture of Student-t distributions:

p(α|s) =
J∑
j=1

p(α|s,Mj)P (Mj |s) =
J∑
j=1

f1
S

(
α|Q− 1, y,

Q(Q− 1)
Gj

)
P (Mj |s), (4.3)

withGj defined in (3.15), and where fqS(x|ν,m,A) denotes the p.d.f. of a q-variate Student-t
distribution with ν degrees of freedom, location vector m (the mean if ν > 1) and precision
matrix A (with covariance matrix ν

ν−2A
−1 provided ν > 2). Clearly, the posterior density

for α is unimodal and symmetric, with mode located at y, and possesses moments up to
(and not including) the order Q− 1.

Let us now consider inference on any given component, say βl, of the regression vector
β ∈ <23. Under model Mj , βl takes the value zero if it is one of the irrelevant components
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under Mj , i.e., if βl ∈ β(∼j) with a slight abuse of notation), whereas its posterior distri-
bution will be a univariate Student-t if βl ∈ β(j). This leads to a posterior distribution for
βl which is a mixture of

1. With probability pl ≡
∑
j:βl∈β(∼j)

P (Mj |s),

Dirac at 0. (4.4)

2. With probability 1− pl,

1
1− pl

∑
j:βl∈β(j)

f1
S

(
βl|Q− 1,

blj
g0j + 1

,
Q− 1
Gj

(g0j + 1)c′ljMZ
(−lj)
j

clj

)
P (Mj |s), (4.5)

where we have assumed that βl corresponds to the lthj component of β(j), blj is the lthj
component of the familiar OLS-estimator (Z ′jZj)

−1Z ′jy, clj denotes the lthj column of Zj
and Z(−lj)

j is the matrix Zj after removing its lthj column. As was the case for α, posterior
moments of each element of β exist up to the order Q− 1 (not including).

4.2. Prediction

We now focus on forecasting the value of a new observable, say sf , given a vector of
explanatory variables zf ∈ <23, and the observed sample s. Our forecast for sf will
be based on the out-of-sample predictive distribution, which is obtained from (3.2) after
integrating out all the parameters and possible models using their respective posterior
distributions. From (3.2) it is immediate that the predictive distribution for sf will be a
mixture of a Dirac distribution at zero and a continuous distribution. Thus, we forecast:

1.
sf = 0 (4.6)

with probability

P (sf = 0|s) =
∫
P (sf = 0|ω, s)p(ω|s)dω =

∫
ωfB(ω|a∗, b∗)dω =

a∗
a∗ + b∗

. (4.7)

2. With probability
b∗

a∗ + b∗
, (4.8)

sf > 0 and it has p.d.f.

p(sf |s) =
1
sf

J∑
j=1

p(log(sf )|s,Mj)P (Mj |s) =
1
sf

J∑
j=1

f1
S

(
log(sf )|Q− 1,

y + z′f(j)
(Z ′jZj)

−1

g0j + 1
Z ′jy,

Q− 1
Gj

{Q+ 1
Q

+ z′f(j)
(Z ′jZj)

−1

g0j + 1
zf(j)

}−1)
P (Mj |s),

(4.9)
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where zf(j) is the kj-dimensional subvector of zf that contains the relevant explanatory
variables under model Mj .

In a practical context, we may not be interested in predicting the catch of one single
ship in a single day, but rather the catch of a number of ships during a certain spell of time.
This means that we should estimate the predictive distribution of s̃ ≡

∑I
i=1 sfi rather than

considering one single observable sf as was the case above. The explanatory variables of
the observable sfi to be forecasted shall be grouped in the 23-dimensional vector zfi .
The predictive distribution of s̃ is computed by averaging its sampling distribution over
parameters and models using the relevant posterior probabilities. It is clear from (3.2) that
in the sampling s̃ is zero with probability ωI and has some p.d.f. with probability 1− ωI .
This means that we forecast:

1.
s̃ = 0, (4.10)

with probability

p̃ ≡ P (s̃ = 0|s) =
∫
P (s̃ = 0|ω, s)p(ω|s)dω =

Γ(a∗ + I)Γ(a∗ + b∗)
Γ(a∗)Γ(a∗ + b∗ + I)

. (4.11)

2. With probability
1− p̃, (4.12)

s̃ > 0 and has a predictive distribution given through some p.d.f. on (0,∞). Although an
explicit expression for the latter p.d.f. is complicated to derive, we can simulate drawings
which will allow us to approximate its characteristics. Such drawings are generated in the
following way:

2.1. Take each of the different modelsM(l), l = 1, . . . , L, visited in the MC3 chain described
in Subsection 3.3, and simulate a set of T drawings {ω(l, t), α(l, t), β(l, t), σ(l, t)}, t =
1, . . . , T from the posterior distribution of the parameters under this model. The
relevant posterior for ω is described in (4.1), whereas it has a Normal-Gamma structure
for (α, β(l), σ

−2), where β(l) groups the nonzero regression coefficients under M(l), and
the other elements of β are zero.

2.2. Conditioning on M(l) and the drawn parameters ω(l, t), α(l, t), β(l, t), σ(l, t), simu-
late a set of forecasted values sf1(l, t), . . . , sfI (l, t) from (3.2) and compute s̃(l, t) ≡∑I
i=1 sfi(l, t), for l = 1, . . . , L and t = 1, . . . T .

2.3. If s̃(l, t) > 0, keep its value. Otherwise discard this drawing.

If we now combine 1 and 2 above, we can approximate the predictive expectation of any
function h(s̃) by

Ê
(
h(s̃)|s

)
= p̃h(0) + (1− p̃) 1

T

L∑
l=1

T∑
t=1

h(s̃(l, t))P̂ (M(l)|s), (4.13)

with P̂ (M(l)|s) computed in (3.16). A function h(·) of particular interest is the indicator
function, which allows us to construct histograms that approximate this distribution.
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4.3. Prior elicitation

In this subsection we briefly discuss the actual implementation of the prior described in
Subsection 3.2. As we do not possess strong prior information, we have avoided choosing
a prior that carries a lot of information. In particular, all we need to elicit are the prior
hyperparameters a0, b0, g0j as well as the prior probabilities for each of the models. In
making these choices, we will again try to incorporate as little subjective input as possible.

For the elicitation of a0 and b0 in the prior of ω in (3.4), we can simply choose any
numbers that are small relative to n−Q and Q, and the data information will swamp the
prior. Thus, we shall take a0 = b0 = 1, which induces a Uniform prior distribution of ω on
(0, 1)

The choice of g0j is a much more delicate issue and is discussed in detail in Fernández
et al. (1997). In particular, we choose

g0j =
√
kj/Q (4.14)

on the basis of both posterior and predictive arguments. Fernández et al. (1997) find
that the use of (4.14) leads to very satisfactory identification of the correct model in a
simulation exercise, whereas out-of-sample predictive behaviour is also quite good. Besides
their empirical simulation justification, they also derive a number of theoretical properties
of this prior.

Finally, the prior model probabilities P (Mj) = ej in (3.9) will be chosen uniformly, i.e.,
ej = 1/J , j = 1, . . . , J , so that posterior odds between any two models are equal to the
Bayes factors.

One important point has to be stressed in this context. We propose a procedure for
eliciting a prior that only uses the data information through the regressors Z, which
we condition on throughout the analysis, and through the discrete part of the response
variable (i.e., whether catch is zero or strictly positive). However, we refrain from using
any information in the continuous part of the response variable (i.e., the actual value of y).
This we consider crucial, as it keeps our analysis within the bounds of probability calculus.
George and McCulloch (1993), Laud and Ibrahim (1995) and Raftery et al. (1997) use
priors that depend on y in this context, and thus formally violate the coherence of the
Bayesian paradigm. Raftery et al. (1997) acknowledge this fact, and consider their data-
dependent prior an approximation to a subjective prior.

4.4. Computational implementation

In the interest of the practical importance of this methodology, and to enhance its appeal
to applied researchers, we have made particular efforts to create a very efficient software
that can easily deal with problems of empirical relevance. The programs are coded in
Fortran-77 and make efficient use of CPU-time, e.g., through storing results for already
visited models in stacks. As a consequence, an MC3 Markov chain of length 50,000 (with
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25,000 burn-in) was generated and posterior model probabilities were computed in 89 to 659
seconds for the five species considered here on a 120 MHz PowerPC 604-based computer.
The entire analysis, including plots for all the regression coefficients, individual predictive
plots and aggregate predictive Q-Q plots (see Subsection 5.1) took from 17 minutes (for
Species 5) to 1 hour and 24 minutes for Species 1, where many models were visited (see
Table 3). After Species 1, the most computationally intensive species was halibut (Species
2), which took less than 37 minutes. The source code is posted on the World Wide
Web at http://www.econwpa.wustl.edu and http://lib.stat.cmu.edu and is freely
available. We think it is crucial for the potential acceptance of a new methodology by
applied researchers that problems of a practically relevant size can be solved with relatively
little computational effort. As far as we know, previous implementations of the MC3

algorithm were coded in S-plus (see Appendix B of Raftery et al. 1997), thus making
serious practical applications prohibitively expensive in CPU-time.

5. DISCUSSION OF RESULTS

5.1. Diagnostic checks

There are two different issues that we will consider here. Firstly, the numerical properties
of the Monte Carlo procedure used, and, secondly, the adequacy of the model fit to the
data.

Table 3. Monte Carlo Performance
Species

1 2 3 4 5

Number of Models Visited 8395 390 1696 356 424

Best-Model Probability 1.06% 25.41% 9.13% 13.04% 15.40%

BARS and Emp. Freq. Correlation Coeff. 0.9286 0.9968 0.9942 0.9978 0.9814

For the convergence of the Monte Carlo chain, we focus on the two alternative ways
of computing posterior model probabilities mentioned in Subsection 3.3. Using (3.12) we
can analytically compute posterior odds between any two models, but due to the large
number of possible models, an MC3 procedure was implemented to generate a Markov
chain over the model space, which converges to drawings from the correct posterior model
distribution. In order to assess whether this convergence has been achieved in a particular
run, we compare the posterior probabilities on the basis of model frequencies in the chain
with those computed from (3.16) for any model visited (i.e., BARS). Throughout, our
results are based on a chain of length 50,000 after discarding the first 25,000 draws (the
“burn-in”). Table 3 lists the total number of visited models, the highest posterior mass
assigned to any one model (the “best” model), and the correlation coefficient between the
posterior probabilities of all visited models computed on the basis of empirical frequencies
and BARS. The results clearly indicate that convergence is never a problem, and the chains
visit a relatively small number of models (a maximum of 0.1% of all possible models for
species 1). In addition, the best model often receives quite a large posterior probability,
but never so close to one that model averaging becomes unnecessary.
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Fig. 2. Q-Q Plots for predictions of individual ship-days.

The second diagnostic check consists in a predictive check of model fit. In particular,
we base the posterior analysis on 75% of the entire sample and retain the other 25% for
comparison with the corresponding predictive distributions. For all the retained positive
observations we record in which percentile of the continuous part of the predictive distribu-
tions (based on the inference sample and using the corresponding values of the regressors)
the actual observations fall. Contrasting predictive quantiles with empirical ones thus ob-
tained leads to a Q-Q plot that indicates how well the model (estimated on the basis of the
inference sample) fits the data in the prediction sample. As the assignment of observations
to either sample is random, we would expect such plots to be a good measure of model
accuracy. Figure 2 presents these Q-Q plots for all five species, indicating that model fit is
always quite adequate. In particular, Species 4 and 5 (grenadier and skate) are very well
modeled by this predictive criterion. In the sequel, we shall focus mainly on results for
these two species, as well as on Species 2 (halibut), which contributes most to the overall
catch, both in weight and in frequency (see Table 2).

5.2. Posterior Results

Here we shall present some results based on the 75% inference sample mentioned above.
For policy purposes, the most interesting parameters are the regression coefficients in β.
In view of space restrictions, we shall limit ourselves to some of the more salient findings.
Figures 3-5 present, for a number of selected βl’s, the posterior p.d.f. in (4.5). In addition,
the gauge on top (black shading) indicates the probability that βl 6= 0 [i.e., 1− pl with pl
defined just above (4.4)].

Figure 3 focuses on the effect of fishing techniques and net size. For grenadier the
variable ‘drift gillnet’ is often not included in the model (it is, e.g., not in the “best”
model), while ‘otter trawl’ is often excluded for skate. For catching grenadier anchored
gillnet seems to be the best technique, whereas skate is best caught with an otter trawl
or otter trawl by pair (the reference case, as indicated in Table 1). Median catch of skate
with an anchored gillnet is only about 1-15% of the median catch with a trawl. In view
of the shape of the fish involved, this large difference in the effect of different nets is not
too surprising. The influence of net size is also very different for these two species. For
grenadier, the elasticity is negative (increasing net size by 1% decreases median catch by
2-6%), whereas for skate there is a positive effect. The latter might indicate that fishing
for skate (a relatively broad fish) is typically done with large mesh nets, possibly to avoid
too much bycatch.
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Fig. 3. Fishing techniques and net size.
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Fig. 4. Ship characteristics.

Some ship characteristics are examined in Figure 4. Spanish vessels are catching more
halibut than Portuguese ones (the reference case), whereas the latter seem more successful
in the catch of skate. This might simply reflect different target species of these fleets. Vessel
length and gross registered tonnage (GRT) are obviously positively correlated measures
of the ship’s size. For grenadier we mainly include GRT whereas the important “size”
variable for skate is the length of the vessel. Another important characteristic of the ship
is the power of the engine. As Figure 4 indicates, there is a clear positive effect for the
quantity of halibut caught, whereas a negative influence on the catch of skate is inferred.
This indicates that more powerful ships will go for the large quantities of halibut, whereas
skate (which is usually caught in much smaller quantities per tow; the average positive
catch per day is 1,116 kg versus 4,291 kg for halibut) is targeted by the less powerful
vessels.

Figure 5 highlights some findings regarding zone and month. For halibut zone 3L seems
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Fig. 5. Zone and Month.

a much richer part of the fishing ground than the reference zone 3O. However, for skate
the best models do not distinguish zones 3L and 3O, and the models that do include 3L
indicate that it is even slightly worse than the reference zone. The months of March, May
and June are relatively good months for skate (with respect to December), whereas they
are much less beneficial to the catch of halibut. Note also that the posterior densities for
these months are all bimodal for skate, indicating that some models suggest the influence
of these months is much less positive.

5.3. Predictive Results

On the basis of the posterior results partially described above, we shall now predict ob-
servations in the 25% of the sample that was not used for posterior inference. Section 5.1
presented Q-Q plots, where predictive and empirical quantiles are contrasted. As exam-
ples, we now show some predictive distributions for particular observations in the retained
sample.
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Fig. 6. Halibut: Predictive densities and actual observed values.

For halibut we can easily compute that the catch sf is forecasted to be zero with
probability 0.185 (from (4.7)), whereas with probability 0.815 it will have a continuous
distribution with p.d.f. as in (4.9). Figure 6 shows two such p.d.f.’s for particular values of
zf , along with the actual observation. Observation number i = 1009 (of the 1400 retained
observations) corresponds to a fairly large ship in zone 3L, and we see that the actual catch
of 6160 kg is well inside the bulk of the predictive mass. Predictive uncertainty, however,
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is quite substantial. A smaller ship in the somewhat poorer zone 3M (observation 814)
will generate more predictive mass on smaller values of sf , and again the observed value
of 1944 kg is very compatible with this predictive distribution.
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Fig. 7. Grenadier: Predictive densities and actual observed values.

Some predictive densities for grenadier are presented in Figure 7. Here P (sf = 0|s) =
0.429 and i = 375 is a relatively large vessel, fishing in the rather good month of February
(actual catch was 380 kg), whereas observation 558 corresponds to a small ship fishing in
the worse month of September, catching a mere 75 kg of grenadier. Again, the quantities
caught are well matched by the corresponding predictive distributions.
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Fig. 8. Skate: Predictive densities and actual observed values.

For skate the predictive probability of zero catch is 0.551 and Figure 8 graphs the p.d.f.’s
of the nonzero catch for observations i = 538 and i = 106. Here the crucial importance
of the fishing technique is illustrated. Even though observation 106 corresponds to a ship
of comparable size to that for i = 538, it uses a drift gillnet and is thus not targeting
skate. The very small amount caught (15 kg) is just bycatch. Nevertheless, the predictive
distribution captures this feature perfectly. The other ship, using an otter trawl, has a
substantial catch (2350 kg) which is well inside the area of predictive mass in Figure 8.

These (arbitrarily chosen) examples illustrate that predictive behaviour is not merely
adequate at the aggregate level (as in Subsection 5.1), but leads to useful and reasonable
forecasts of the catch of a particular ship, in particular circumstances.

For policy purposes, it might be interesting to predict not the catch of one single ship,
but the aggregate catch of a number of ships, that are known to be in a certain area
of the Grand Bank at a certain time of the year. If we group the data into clusters of
10 observations, we can analyze how such predictions, based on 75% of the observations
compare with the actual retained clusters. Clusters of ships that are in the same zone at
the same day are likely to be of most interest for practically relevant predictions. In order
to mimic such clusters, we have sorted the prediction sample by year, day and zone (in
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Fig. 9. Q-Q plots for cluster predictions.

that order) and selected clusters of 10 consecutive observations from that ordering. The
procedure outlined in Subsection 4.2 now leads to the Q-Q plots shown in Figure 9 for
Species 2, 4 and 5. These plots indicate that quite adequate predictions can be made for
the catch of a certain species aggregated over clusters.
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Fig. 10. Predictive densities and actual observed values for clusters.

Figure 10 presents some individual group predictives for the catch of Species 2, 4 and
5. As is to be expected the predictives tend to be more alike across clusters than across
single observations, and thus we only present one cluster per species.

6. CONCLUDING REMARKS

In this paper we have outlined the modelling of daily live weight catch of different species
of fish in the Grand Banks fisheries. An important aspect of the data is the fact that
most days not all species are caught by a certain ship. Thus, modelling of these implicit
zero observations is crucial. For the positive observations, we have used a Lognormal
regression model, for which we have a collection of 23 different explanatory variables. In
order to deal with the 8.4 million possible models that are generated by this, we use
Bayesian model averaging. In particular, we apply the MC3 algorithm of Madigan and
York (1995), described for regression models in Raftery et al. (1997). We use a carefully
chosen prior distribution and examine posterior and predictive inference. The former can
be instrumental in policy decisions regarding the effect of certain ship characteristics or
regulations concerning, e.g., net size or fishing techniques. The latter is required if we
wish to predict catch per species from easily obtained information regarding the presence
of vessels with known characteristics in a certain area at a certain time, rather than having
to board these vessels and inspect the catch (which is much more costly and also interferes
with the operation of the fishing vessels). Bayesian model averaging naturally takes into
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account all uncertainty concerning parameter values as well as the model uncertainty
(within the class of models considered). Thus, realistic predictions can be made for one
or more ship-days, duly taking into account the ships’ characteristics, location, month as
well as parameter and model uncertainty. Since the programs used were coded efficiently,
new data can easily be processed and posterior and predictive inference can be conducted
without excessive computational requirements. We have built in two main diagnostic
checks that would indicate to the user less thrustworthy results (either because the Markov
chain has not yet converged or the particular data are simply not well modelled). Thus,
we hope this methodology could contribute to the toolbox of the applied modeller of fish
catches.

There are a number of ways in which the sampling model used here could be extended.
Firstly, the probability of zero catch, ω, could be made dependent on certain explanatory
variables, such as zone or season, or even perhaps on some characteristics of the fishing
vessel. This can easily be implemented without complicating the model substantially. We
have experimented with specific ω’s for each zone-month and found that no substantive
improvements in predictive model fit resulted. Therefore, we have opted for the simpler
specification used here. A second possible elaboration would be to include ship effects
in the continuous part of the model. That could pick up certain quality aspects of the
vessels, not captured in the data, but would make prediction for as yet unobserved ships
quite difficult. Thirdly, it might be a useful exercise to examine the effects of allowing
for heteroskedasticity in the error term of (3.2) by making σ depend on, e.g., the size of
the ship. Of course, both theory and practical implementation would become more cum-
bersome as a consequence (unless such dependence would be fixed, rather than estimated
from the data). Finally, at a considerable cost in terms of added complexity, one might
propose a multivariate model for all species with correlated error terms.
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