
      

Forthcoming in the Journal of Econometrics

Bayesian Analysis of Long Memory and Persistence

using ARFIMA Models

Gary Koop

Dept. of Economics, University of Toronto

Eduardo Ley

Resources for the Future, Washington DC

Jacek Osiewalski

Dept. of Econometrics, Academy of Economics, Kraków

Mark F.J. Steel

CentER and Dept. of Econometrics, Tilburg University

May 1993
Version: July 5, 1995

Abstract. This paper provides a Bayesian analysis of Autoregressive Frac-
tionally Integrated Moving Average (ARFIMA) models. We discuss in de-
tail inference on impulse responses, and show how Bayesian methods can
be used to (i) test ARFIMA models against ARIMA alternatives, and (ii)
take model uncertainty into account when making inferences on quanti-
ties of interest. Our methods are then used to investigate the persistence
properties of real U.S. GNP.

Keywords. Fractionally Integrated Models, Impulse Responses, Time Se-
ries, Trend Stationarity, Unit Root

JEL Classification System. C11, C22

Address. Eduardo Ley, Resources for the Future, 1616 P St NW,
Washington DC 20036-1400. Email: G. Koop: gkoop@epas.utoronto.ca;
E. Ley: ley@rff.org; J. Osiewalski: eeosiewa@cyf-kr.edu.pl; M.J.F. Steel:
steel@kub.nl.



   

1. Introduction

Over the last decade, there has been an increasing interest in investigating the
degree of integration of macroeconomic time series, as well as in measuring the
persistence of shocks. Much work has been done within the class of ARIMA
models (see, for example, almost all of the unit root literature). In recent years
several econometricians have argued that ARIMA models are too restrictive.
For example, Sowell (1992b) claims that ARIMA models tend to fit mainly the
short-run properties of the data and hence can provide misleading estimates
of long-run properties. Autoregressive Fractionally Integrated Moving Average
(ARFIMA) models provide an alternative to ARIMA models. They allow for
series to exhibit stationary ARMA behaviour after being fractionally differenced.
Granger and Joyeux (1980) and Hosking (1981) proposed the use of ARFIMA
processes to model long memory. Some theoretical properties of these stochastic
processes can also be found in Beran (1994), Brockwell and Davis (1991) and
Odaki (1993). In an applied econometrics context, Sowell (1992b) describes how
the ARMA component could pick up short-run, and the fractionally differenced
component long-run behaviour.

A (stationary and invertible) ARMA(p, q) process is formally a special case
of a (stationary and invertible) ARFIMA(p, δ, q) process, corresponding to the
value δ = 0 of the fractional differencing parameter δ ∈ (−1, 0.5). However,
the memory properties under δ = 0 and δ �= 0 are so very much different that
we consider these two cases to define separate (competing) model classes. The
autocorrelation function of an ARFIMA process can be shown to decay at a
hyperbolic rate for non-zero δ, which is much slower than the usual geometric
rate associated with stationary ARMA processes. Typically, processes with
δ > 0 are called long memory processes (autocorrelations are not summable),
whereas negative values of δ lead to so-called intermediate memory (summable
autocorrelations).

Long memory may be perceived as an intrinsic characteristic of some eco-
nomic phenomena, but even if it is not, it may still appear on a macro level due
to aggregation. Assuming a Beta distribution for the squares of AR coefficients,
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Granger (1980) showed that a sum of a large number of stationary AR(1) pro-
cesses with random parameters can possess long memory. Thus, when analyzing
aggregated data, we should keep the possibility of long memory open.

There has been a growing use of ARFIMA models by empirical researchers
(see, among many others, Baillie, Chung and Tieslau (1992), Diebold and Rude-
busch (1989, 1991), Cheung (1993), Cheung and Lai (1993)). Virtually all of
this work has been carried out using non-Bayesian statistical techniques. Excep-
tions are Koop (1991) and Carlin and Dempster (1989). However, the former of
these papers uses a very simple model while the second carries out a conditional
Bayesian analysis (i.e., the analysis proceeds conditionally on fitted parameter
values). The most commonly used techniques break down into three categories:

(i) Maximum likelihood (Sowell (1992a));

(ii) Approximate maximum likelihood (Baillie and Chung (1992), Li and McLeod
(1986) or Fox and Taqqu (1986)); and

(iii) Two-step procedures (Geweke and Porter-Hudak (1983) or Janacek (1982)).

For asymptotic sampling-theory properties of exact and approximate maxi-
mum likelihood estimators see Dahlhaus (1989) and Beran (1994).

Exact maximum likelihood techniques have been criticized as being too com-
putationally demanding, while the other methods have been criticized as being
inaccurate for finite samples (see Sowell (1992a,b)). Recent simulations in Bev-
eridge and Oickle (1993) indicate that the Li and McLeod (1986) approximation
is hazardous in the presence of short memory (ARMA) parameters. There has
been some work on method of moments estimators (see Tieslau, Schmidt and
Baillie (1992)), but these have not been widely used in practice yet. In addition,
detection of long-memory properties through the sample autocorrelations seems
almost impossible for positive values of the fractional differencing parameter in
view of the results in Newbold and Agiakloglou (1993). A recent Monte Carlo
study by Cheung and Diebold (1994) finds that the superiority of the exact
maximum likelihood approach over the Whittle approximation (advocated by
Fox and Taqqu (1986)) is less prominent when the mean is unknown than in
the case with known mean; however, they conclude that Sowell’s exact maxi-
mum likelihood technique still seems preferable, especially in small and medium
sample sizes.

In this paper, a Bayesian analysis of ARFIMA models is presented which
is roughly as computationally demanding as maximum likelihood. It is argued
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that the Bayesian approach has several advantages over classical techniques in
that:

(i) It provides exact finite sample distributions for any feature of interest (e.g.,
an impulse response or the fractional differencing parameter).

(ii) Instead of presenting just a point estimate and standard error associated
with, say, an impulse response, we can plot the whole density of that quan-
tity of interest. Our empirical results indicate that this is important since
impulse responses can be multimodal, highly skewed and fat-tailed. Fur-
thermore, moments may not exist (see Koop, Osiewalski and Steel (1994)).

(iii) By attaching prior mass to δ = 0, we put ARIMA and ARFIMA specifica-
tions on equal footing and we can perform small sample tests of memory
properties.

(iv) It allows us to average across models rather than choosing just one model
(e.g., for predictive purposes). In particular, we find that ARIMA models
may be favoured by the data. Since ARFIMA and ARIMA models have
very different consequences for inference on persistence, it is instrumental
to formally take into account this model uncertainty.

The paper is organized as follows: The second section describes ARFIMA
models and discusses their properties, with particular emphasis on impulse re-
sponse functions. The third section introduces a Bayesian approach. In particu-
lar, we derive the posterior density for the parameters and discuss computational
methods for calculating posterior properties about the functions of the param-
eters such as impulse responses. In addition, we briefly describe some results
on post-sample prediction. The fourth section applies the theory to an impor-
tant empirical problem, viz. the measurement of persistence in real U.S. GNP.
Section 5 concludes.

2. ARFIMA Models

Assume that y0, . . . , yT are observations on a time series {yt} and let

zt = (1 − L)(yt − µt− α) = ∆yt − µ.

The model considered1 is:

ϕ(L)(1 − L)δzt = ϑ(L)εt (1)

1 In this paper we consider only linear univariate models. In recent years there has been
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where ϑ(L) = (1 + θ1L + . . . + θqL
q) and ϕ(L) = 1 + φ1L + . . . + φpL

p are
polynomials in the lag operator whose roots are restricted to lie outside the unit
circle. The corresponding regions for the parameters of ϑ(L) and ϕ(L) will be
denoted by Cq and Cp, respectively; the εt’s are i.i.d. N(0, σ2); and δ ∈ (−1, 0.5).
The fractional differencing operator, (1 − L)δ, is defined as

(1 − L)δ =
∞∑
j=0

cj(δ)Lj , (2)

where c0(·) = 1, and for j > 0

cj(a) =
j∏

k=1

(
1 − 1 + a

k

)
.

In this formulation, which also appeared in, e.g., Brockwell and Davis (1991,
Ch.13) or Odaki (1993), it can be clearly seen that the infinite past of the zt’s
is taken into account. We will refer to this model for zt as the ARFIMA(p, δ, q).
Using Granger and Andersen’s (1978) general definition of invertibility, Odaki
(1993) proved that zt is invertible whenever δ > −1. The special case δ =
0 corresponds to the standard ARIMA(p, 1, q) model for yt used in Campbell
and Mankiw (1987). Note that the restriction δ < 0.5 implies that ∆yt is
stationary, which is reasonable for many economic time series, like real U.S.
GNP or disposable income. However, we could allow for trend-stationarity of yt
by defining

vt = yt − µt− α,

and then using an ARFIMA model for vt. Values of the fractional differencing
parameter d = 1+δ for vt in (−1, 0.5) correspond to values of δ in (−2,−0.5) for
zt. As long as we assume d > 0, i.e., δ > −1, we can work with the differenced
series, ∆yt, without violating invertibility of zt. Note that this enables us to leave
the possibility of trend-stationarity for yt open, without explicitly treating α,
albeit at the cost of imposing long memory on vt. This puts the trend-stationary
(d = 0) versus unit root (d = 1) debate in a new light, as it alleviates the need

some criticism of such models by researchers who advocate going to nonlinear or multivariate
frameworks. For example, there has been a growing interest in fractional cointegration (see
Cheung and Lai (1993)). We do not deny that there may be great value in embedding fractional
ideas in multivariate or nonlinear models, however we feel it is important to develop basic
Bayesian tools for univariate models before proceeding to more complicated models.
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to choose one of these very special cases, corresponding to integer degrees of
differencing in an ARIMA context. As long as d ∈ (0, 0.5), yt will be trend-
stationary (with long memory) and for d ∈ (0.5, 1.5) the differenced series, ∆yt,
will be stationary, with intermediate memory for d < 1 and long memory for
d > 1. In our framework, we shall test for trend-stationarity of yt through the
posterior probability that −1 < δ < −0.5. By assuming long memory for vt, we
avoid the issue of having to introduce α explicitly under one of the contending
hypotheses [see, e.g., Schotman and van Dijk (1991)]. Of course, our interest
is in properties of the level of the series, but for prediction of yT+n given the
sample, and posterior inference on impulse responses, α does not intervene, as
will be shown in the sequel.

An impulse response function, I(n), can be thought of as the effect of a
shock of size one at time t on yt+n. Impulse responses for a stationary process
are the coefficients of its (infinite) moving average representation. In our case,
zt is a stationary process with impulse responses given by the coefficients of
an infinite order lag polynomial A(L) = (1 − L)−δϕ−1(L)ϑ(L). The nth-order
partial sums of these coefficients, i.e., the cumulative impulse responses for zt,
are the impulse responses I(n) for the level processes vt and yt. Equivalently,
I(n) can be represented as the nth coefficient of A∗(L) = (1 − L)−1A(L) =
(1 − L)−dϕ−1(L)ϑ(L).

The coefficients of ϕ−1(L)ϑ(L), i.e., the standard ARMA(p, q) impulse re-
sponses, can be presented as

J(i) =
q∑

j=0

θjfi+1−j ,

with θ0 = 1, fh = 0 for h ≤ 0, f1 = 1 and

fh = −(φ1fh−1 + . . . + φpfh−p), for h ≥ 2.

Therefore, the coefficients of A∗(L) can easily be seen to take the form

I(n) =
n∑

i=0

ci(−d)J(n− i), (3)

which is particularly convenient for computations. When d = 1 (i.e., δ = 0),
then ci = 1 (i ≥ 0) and (3) reduces to the formula presented in Koop, Osiewalski
and Steel (1994) for the ARIMA(p, 1, q) case. Also note that for the limiting
case d = 0 (i.e., δ = −1, which we have excluded in this paper), ci = 0 (i ≥ 1)
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and equation (3) reduces to I(n) = J(n), where J(n) is the impulse response
for the case of ARMA(p, q) deviations from a linear trend for yt.

Note that the limit behaviour of I(n) as n tends to ∞ corresponds to the
properties of the infinite sum A(1), which is zero if δ < 0, is equal to ϑ(1)/ϕ(1)
for δ = 0, and is ∞ for δ > 0. Based on this behaviour of I(∞), Hauser,
Pötscher and Reschenhofer (1992) have criticized the use of ARFIMA models
for the measurement of persistence. They argue that “the estimated persistence
[I(∞)] obtained from an estimated ARFIMA model for ∆yt will necessarily be
0 or ∞ whenever the estimated differencing parameter is different from zero.
This will, however, almost exclusively be the case, since finding the estimator
[of δ] to be exactly equal to zero is extremely unlikely” (page 8). On this basis,
they conclude “fractionally integrated ARMA models are inappropriate for the
purpose of estimating persistence” (Abstract).

We offer two responses to this criticism, one general and one Bayesian. The
general response is that the behaviour of our model for impulse responses at
∞ is of little relevance. Most economic policy questions focus on the effect of
shocks at much shorter horizons. In this paper, although results for I(∞) are
discussed, more attention is given to I(4), I(12) and I(40). Since quarterly data
are used, we interpret I(4), I(12) and I(40) as “short-run”, “medium-run” and
“long-run” effects of a shock, respectively.

Secondly, although we agree with Hauser, Pötscher and Reschenhofer (1992)
that the ultimate impact of a shock being either 0 or ∞ is a theoretical weakness
of ARFIMA specifications for ∆yt, we see no reason to dismiss them altogether
on that basis before seeing the data. We cannot claim that ARMA models are
more appropriate for estimating persistence, unless they are favoured by the
data evidence. Unlike classical methods, our Bayesian method allows for non-
degenerate distributions for I(∞) even if we take ARFIMA models into account.
By putting some prior mass at δ = 0, we allow for finite positive values of I(∞).
We can easily consider two models, M1 and M2, for ∆yt which correspond to δ
in the interval (−1, 0.5) excluding 0 and δ = 0, respectively. By allocating prior
weight to each model we obtain a positive posterior probability for both M1 and
M2. The ARFIMA model M1 will lead to point masses for I(∞) at 0 and ∞,
given by the posterior probabilities that δ < 0 and δ > 0, respectively. The
ARMA model M2, however, results in a continuous distribution over (0,∞) for
I(∞). Posterior inferences about I(∞) are then based on weighted averages of
results from M1 and M2, where the weights are the posterior model probabilities.

Any Bayesian analysis which allocates non-zero prior probability to δ > 0
automatically implies that the impulse response at infinity is ∞ with the corre-
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sponding posterior probability, which can, however, be much smaller than 1. In
fact, it could be argued on the basis of economic plausibility that finite values
of I(∞) are a priori more reasonable than infinity. Of course, if our subjective
opinion excludes an infinite value for I(∞), we can express this by allocating
zero prior weight to δ > 0.2 If our prior allows for δ > 0 then the posterior mean
of I(∞) will be infinite.3

To summarize: in this section we have briefly described the ARFIMA model
and discussed some of its properties. In particular, we have discussed impulse
response functions and argued that:

(i) In an applied context it makes more sense to focus on I(n) for n finite (say,
n = 4, 12, 40 for quarterly data) than for n = ∞; and

(ii) If one wishes I(∞) to have a continuous posterior on (0,+∞), then a prior
structure which puts some prior mass at δ = 0 should be adopted.

Note that attaching a prior mass to δ = 0 is essential for any formal
comparison between ARFIMA and ARMA models done through posterior odds
testing.

3. A Bayesian Approach

The basic ARFIMA model is given in (1). In addition to the assumptions
presented there, we will also assume that the roots of ϕ(L) are simple.4 We begin

2 Previous writers have found that this area of the parameter space does not seem empirically
relevant for real U.S. GNP [see Diebold and Rudebusch (1989)]. However, the Bayesian meth-
ods used in this paper indicate that a non-negligible part of the posterior lies in this region.
For disposable income, moreover, the results of Diebold and Rudebusch (1991) suggest that
this area is important.

3 The fact that the posterior mean of I(∞) is infinite need not bother us. For example, a
uniform prior for δ over (−1, 0.5) would yield a posterior for I(∞) composed of two point

masses, one at 0 and one at ∞. If p(δ < 0|Data) > 1
2

then the posterior mode would be zero
and this could be used as a point estimate. The picture becomes much more interesting when
we put some prior mass at δ = 0. In this case, the posterior for I(∞) still contains two point
masses at 0 and ∞, but is continuous and nonzero between these two points. Even though no
moments exist for such a posterior, reasonable point estimates (if required) can be based on
posterior medians or other quantiles.

4 The reasons for making this assumption are computational and are given in detail in
Sowell (1992a). Section 5.4 of Sowell (1992a) presents convincing evidence that this assumption
is not restrictive in practice. From a Bayesian point of view, multiple roots have zero prior
probability under any continuous prior.
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by introducing some notation. Our parameter space is partitioned into µ, σ2,
and ω′ = (δ,Θ′,Φ′)′, where Θ = (θ1, . . . , θq)′ ∈ Cq and Φ = (φ1, . . . , φp)′ ∈ Cp. 5

T in-sample data points are observed for w′ = (∆y1, . . . ,∆yT )′, and predictions
are to be made for n out of sample points w∗′ = (∆yT+1, . . . ,∆yT+n)′. Our
model can be written as: (

w
w∗

)
= µ

(
ιT
ιn

)
+

(
ξ
ξ∗

)
, (4)

(
ξ
ξ∗

)
∼ N(0T+n, σ

2

(
V11 V12

V21 V22

)
) ∼ N(0, σ2V ), (5)

where the elements of V are given by vij = σ−2γ(i − j) for i, j = 1, . . . , T + n;
γ(s) is the autocovariance function given in Sowell (1992a) (Equation (8), page
173); and ιi is an i× 1 vector of ones. The sampling density of w is given by

p(w|ω, µ, σ2) = fT
N (w|µιT , σ2V11),

where fT
N is the T -variate Normal density function.

We will assume the following prior structure:

p(ω, µ, σ−2) = p(ω)p(µ)p(σ−2) ∝ σ2p(ω),

where ω ∈ Ω, µ ∈ R, σ−2 ∈ R+, and Ω = (−1, 0.5) × Cq × Cp.

As is shown in Osiewalski and Steel (1993), the improper prior on σ−2

adopted here leads to perfect robustness of posterior inference on (ω, µ) and
predictive inference with respect to any deviation from joint Normality of the
sampling distribution within the class of all (T + n)-variate elliptical densities
with the same location and scale. That is, we could replace the Normal error
vector in (5) by any other jointly elliptical error vector with zero mean and
the same scale matrix σ2V , and the marginal posterior density of (ω, µ) and
the predictive density would remain unchanged. The latter densities are also
unaffected by rescaling the V matrix, as a result of the scale invariance of the
assumed prior on σ−2.

5 For posterior inference, the conditions on Θ and Φ can be enforced using the procedure
in Monahan (1984).
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The posterior analysis can be simplified considerably by noting that, con-
ditional on ω, we face a standard Bayesian exercise which can be solved analyt-
ically. In other words, we can integrate out µ and σ−2, yielding6

p(ω|Data) = K−1|V11|−
1
2 (ι′TV

−1
11 ιT )−

1
2SSE−T−1

2 p(ω), (6)

where
K =

∫
Ω

|V11|−
1
2 (ι′TV

−1
11 ιT )−

1
2SSE−T−1

2 p(ω)dω. (7)

In (6) and (7) we use the notation:

SSE = (w − µ̂ιT )′V −1
11 (w − µ̂ιT ),

where
µ̂ = (ι′TV

−1
11 ιT )−1ι′TV

−1
11 w.

Equation (6) is the posterior density which forms the basis for our impulse
response analysis.

Predictive distributions are also of interest, and inferences about yT+n can
be made on the basis of p(w∗|Data). As yT+n = yT + ι′nw

∗ = yT + nµ + ι′nξ
∗,

we obtain [see, e.g., Osiewalski and Steel (1993)]:

p(yT+n|ω,Data) = f1
s (yT+n|T − 1, yT + nµ̂ + ι′nV21V

−1
11 (w − µ̂ιT ),

T − 1
SSE

[
ι′nV22·1ιn +

(n− ι′nV21V
−1
11 ιT )2

ι′TV
−1
11 ιT

]−1

),
(8)

where V22·1 = V22−V21V
−1
11 V12, and fk

s (·|r, b, A) is the k-variate Student t density
with r degrees of freedom, location vector b and precision matrix A. Inferences
about µ can be made on the basis of

p(µ|ω,Data) = f1
s (µ|T − 1, µ̂,

T − 1
SSE

ι′TV
−1
11 ιT ). (9)

Note that the densities in (8) and (9) are conditional on ω, but we can integrate
out ω using (6) through a numerical procedure.

6 In general, if we had other exogenous variables which entered linearly with uniform or
natural-conjugate priors on their coefficients, we could integrate the latter out in the same
fashion. However, for proper priors on σ−2 the robustness with respect to deviations from
Normality in (5) will be lost.
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In the empirical section, posterior properties of the parameters and im-
pulse responses are calculated using Monte Carlo integration with importance
sampling on ω (see Geweke (1989)). Both the prior p(ω) and the importance
function are taken to be proper uniform densities on Ω.

It should be noted that standard Gibbs sampling methods are not easy
to use with ARFIMA models. There have been two recent papers (Chib and
Greenberg (1994) and Marriott, Ravishanker, Gelfand and Pai (1995)) which
use Gibbs sampling methods with ARMA models. These papers use data aug-
mentation and treat the initial conditions as latent variables. Recently, Pai and
Ravishanker (1994) proposed a similar approach for ARFIMA models. Note,
however, that their full conditional densities have nonstandard forms and they
employ a Metropolis-within-Gibbs algorithm. It is an open question which nu-
merical method is better, but given that our simple Monte Carlo approach works
well, we see little need to use such complicated Markov chain algorithms with
their inherent difficulties in assessing convergence.

In our application we discuss the shape of impulse responses at different
horizons for real U.S. GNP. There are a few general theoretical results that can
be obtained. As noted previously, the posterior for I(∞) is a point mass at
0 or ∞ for δ < 0 or δ > 0, respectively. If δ = 0 then the model collapses
to a standard ARIMA(p, 1, q) model, which Koop, Osiewalski and Steel (1994)
discusses in detail. In the latter paper we found that the posterior for I(∞)
usually has no moments, but that, if Φ ∈ Cp, all posterior moments exist for
I(n) when n is finite. The empirical illustration in Koop, Osiewalski and Steel
(1994) indicated that, in practice, impulse responses can have very non-Normal
posterior densities and, hence, that point estimates accompanied by standard
deviations could be misleading.

As yet, we have presented Bayesian inference for the general ARFIMA(p, δ, q)
model in (1), assuming the orders p and q fixed. However, in the next Section
we will consider several (say, m) specifications which will differ in the values
for p and q and in the assumptions about δ. In view of the discussion in the
previous Sections, the cases with δ = 0 and with non-zero δ will be treated as
different models. All our models are derived by putting simplifying parameter
constraints (zero restrictions) on the unrestricted ARFIMA(3, δ, 3) specification.
Thus, functions of the parameters, like impulse responses, are not model-specific
quantities and it is formally possible to average them over models.7 For the pur-

7 Min and Zellner (1993) use a decision-theory context to show that mixing over models is
optimal for forecasting with squared error loss, provided the set of models under consideration
is exhaustive. However, they also stress that if the latter condition does not hold, mixing need
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pose of model comparison, we require proper, normalized prior densities for free
parameters other than location µ and scale σ (which appear in all the specifi-
cations and retain the same improper prior). This is fulfilled by proper uniform
priors on Cp × Cq for the free ARFIMA coefficients, provided that their inte-
grating constants are taken into account when the marginal data density values
Ki(i = 1, . . . ,m) are calculated using the generic formula (7). Moreover, the
uniform joint prior density of the coefficients in the nesting model leads to uni-
form conditional densities given the zero restrictions. Thus, uniform priors form
an overall coherent prior structure, as advocated by, e.g., Poirier (1985), and a
marginal posterior density in a restricted model can be treated as the appropri-
ate conditional posterior density in the unrestricted specification. Finally, the
posterior probability of Mi, model i, is given by

p(Mi|Data) =
p(Mi)Ki∑m

j=1 p(Mj)Kj
,

where p(Mj) is the prior model probability of Mj .

4. The Persistence of Real GNP

In this section, we investigate the persistence properties of post-war quarterly
real U.S. GNP from 1947:1 to 1989:4 (CITIBASE series GNP82).8 This se-
ries has been examined by many authors (e.g., Campbell and Mankiw (1987),
Diebold and Rudebusch (1989), Hauser, Pötscher and Reschenhofer (1992), Sow-
ell (1992b)). There has been great debate over the persistence of this series. In
general, though, most researchers agree that I(n) can be rather different from
zero for most values of n of practical relevance. However, the fractional meth-
ods of Diebold and Rudebusch provide more evidence that I(n) < 1 for n > 16,
than do the non-fractional methods of Campbell and Mankiw (1987) or Hauser,
Pötscher and Reschenhofer (1992).

Before going to our small-sample, parametric Bayesian approach, let us
present the results of the asymptotic, nonparametric sampling-theory test of
short-range dependence developed in Lo (1991). The latter modifies the well-
known rescaled range (R/S) statistic such that its asymptotic behaviour is in-
variant over a general class of short memory processes, but deviates for long

not be the optimal strategy. Consequences of having other vaguely specified models in the
background are discussed by Poirier (1995) for model comparison and model selection.

8 The series {yt} here is the natural logarithm of U.S. GNP.
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or intermediate memory. For ∆yt, our differenced series of length T = 171,
the value of the normalized modified R/S statistic, QT (k)/

√
T , decreases from

1.262 for k = 0 to 0.928 for k = 4 and increases very slowly for higher k. Here
k is the order of sample autocovariances taken into account. For the OLS de-
trended level series, the values of Lo’s statistic are much higher, starting from
4.373 for k = 0 and for k = 6 we obtain 1.780. Since, under the null hypothesis
of short memory9 QT (k)/

√
T is distributed, for T going to ∞ and k of the order

T
1
4 , as the range of a Brownian bridge on the unit interval, with mean 1.25,

standard deviation 0.27 and tail probabilities of 0.025 below 0.809 and above
1.862, Lo’s test would suggest lack of long memory for the differenced yt, but
its possible presence for the detrended level series. However, Lo (1991, p. 1308)
concludes “Direct estimation of particular parametric models may provide more
positive evidence of long-term memory” and adds (p. 1296) “Of course, if one
is interested exclusively in fractionally-differenced alternatives, a more efficient
means of detecting long-range dependence might be to estimate the fractional
differencing parameter directly.”

We consider 32 different models for zt = ∆yt − µ corresponding to all
possible ARMA(p, q) and ARFIMA(p, δ, q) for p, q ≤ 3. We consider two sets
of prior probabilities p(Mi) attached to each model. First of all, we use a flat
model prior with equal p(Mi) for all i = 1, . . . ,m as an “agnostic” or refer-
ence case. Secondly, we will present results with prior model weights based on
both economic and statistical reasoning: in particular, one could argue that
m-dependence is very unlikely for this economic time series, so that we should
downweigh the pure MA(q) models; in addition, ARFIMA models will require
AR parameters to adequately model short run behaviour, and to avoid the in-
ference on δ to be largely driven by the short run properties of the data. The
latter fact would lead to lower prior probabilities for ARFIMA(0, δ, q) models.
Thus, the second “informative” prior downweighs the MA(q) models by a factor
10 with respect to the other ARMA models, and assigns five times less prior
mass to the ARFIMA(0, δ, q) models than to the ARFIMA models with AR
terms, while retaining a total prior mass of 1

2 for both ARFIMA and ARMA
alternatives. We shall discuss posterior model probabilities under both priors,
but for the rest of the discussion we will focus on the informative prior, which
is more in accordance with our prior beliefs.

The flat prior for the parameters is described in Section 3. Note that the
prior for the parameters is proper, so that meaningful posterior odds can be

9 The null hypothesis restricts the degree of dependence and heterogeneity and essentially
imposes strong mixing.
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Table 1. Posterior Model Probabilities for ARFIMA(p, δ, q) and ARMA(p, q)

ARFIMA(p, δ, q) ARMA(p, q)

p, q flat prior informative prior flat prior informative prior

0,0 0.045 0.011 0.000 0.000

0,1 0.005 0.001 0.004 0.001

0,2 0.020 0.005 0.167 0.022

0,3 0.005 0.001 0.018 0.002

1,0 0.166 0.212 0.249 0.327

1,1 0.018 0.023 0.043 0.057

1,2 0.018 0.022 0.046 0.060

1,3 0.002 0.003 0.005 0.006

2,0 0.019 0.024 0.056 0.073

2,1 0.010 0.012 0.021 0.028

2,2 0.006 0.007 0.019 0.025

2,3 0.001 0.001 0.001 0.002

3,0 0.010 0.012 0.027 0.036

3,1 0.005 0.007 0.009 0.011

3,2 0.002 0.003 0.003 0.004

3,3 0.000 0.000 0.001 0.001

Total 0.331 0.345 0.669 0.655

defined.10 Table 1 presents posterior model probabilities for these 32 models. A
few points are worth emphasizing:

(i) ARFIMA models receive one third of the posterior model probability as
opposed to two thirds for the ARMA models. In other words, there is some
(but not overwhelming) evidence for the simple unit root. This holds for
both sets of prior model probabilities.

(ii) The posterior model probability is scattered widely across models, indi-
cating the hazard of choosing just one. The informative prior leads to
a somewhat higher concentration of posterior model probability, but still
leads to attaching high posterior credibility to models with very different
long-run properties.

10 In practice, the uniform prior typically puts a lot of prior weight in regions with negligible
likelihood. This will tend to increase posterior odds in favour of more parsimonious models.
If this is found bothersome, more informative priors could easily be accommodated in the
present framework.
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(iii) The top two models are the ARMA(1,0) and ARFIMA(1, δ, 0). The ARMA(0, 2)
also receives a lot of posterior probability under the flat model prior, but
gets downweighted by the informative prior. The overall ranking roughly
corresponds to that found in Sowell (1992b) on the basis of the Schwarz
criterion. Notable exceptions are the ARMA(0, 2), which ranks first in Sow-
ell’s paper, but is only the 12th best model under our informative prior, and
the ARMA(0, 3) which is 5th for Sowell and 24th for us. Sowell also reports
values for the AIC criterion, which favours the ARFIMA(3, δ, 2) specifica-
tion, a model that always receives less than 0.003 posterior probability in
our framework.

(iv) The posterior odds of trend-stationarity with long memory (i.e., −1 < δ <
−.5) versus difference-stationarity with intermediate memory (−.5 ≤ δ <
0) are 0.252 to one. Posterior odds in favour of −1 < δ < −.5 (trend-
stationarity) decrease to 0.065 and 0.061 to one if we consider the more
general alternatives −.5 ≤ δ ≤ 0 and δ ∈ [−.5, .5), respectively. The two
latter alternatives take into account the point mass at δ = 0, which imposes
the simple unit root.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
0

0.25

0.5

0.75

1

1.25

1.5

1.75

Fig. 1. Posterior of δ.
(The dashed lines delimit the regions where δ < −0.5, −0.5 < δ < 0 and δ > 0.)

For the sake of brevity, we do not report information on all parameters.
However, Table 2 provides posterior means and standard deviations for δ for
the 16 ARFIMA models. Figure 1 plots the posterior density of δ mixed over
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Table 2. Posterior Properties of δ for ARFIMA(p, δ, q)

p, q Mean Standard Deviation

0,0 0.326 0.074

0,1 0.235 0.112

0,2 0.038 0.118

0,3 −0.108 0.140

1,0 −0.290 0.217

1,1 −0.162 0.273

1,2 −0.272 0.262

1,3 −0.250 0.300

2,0 −0.208 0.254

2,1 −0.214 0.228

2,2 −0.181 0.274

2,3 −0.162 0.277

3,0 −0.246 0.252

3,1 −0.377 0.300

3,2 −0.376 0.302

3,3 0.059 0.295

the ARFIMA models. This plot indicates that the posterior for δ is highly non-
Normal, so that posterior means and standard deviations will not be adequate
summary measures. The strongest impression given by an examination of Table
2 is that δ is not estimated very precisely. Previous work (e.g., Diebold and
Rudebusch (1989)) using classical econometric techniques has tended to find
estimates of δ less than zero. Here, too, we find that posterior means of δ are
less than zero for most models. As expected, the models without autoregressive
terms will tend to use δ to aid in capturing the short-run behaviour of the series
(which displays positive first-order autocorrelation), thus leading to posterior
mass on the positive real line for δ. However, such models were downweighted
by the informative prior and if we average across all ARFIMA models, p(δ <
0|Data) = 0.831 and p(δ > 0|Data) = 0.169. That is, there is a small but non-
negligible posterior probability that δ lies in a region which implies I(∞) = ∞.
Note, however, that the prior probability of δ > 0 ( 1

3 in the set of ARFIMA
models) is halved by the data.

Table 3 and Figures 2 through 4 provide information on the impulse re-
sponses for n = 4, 12 and 40. For the sake of brevity, three models are discussed:
the ARMA(1, 0), ARFIMA(1, δ, 0) and what we call the “overall” model which
averages over all 32 individual ARMA and ARFIMA models. Table 3 presents
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Table 3. Posterior Means of Impulse Responses for n = 4, 12 and 40
ARFIMA(1, δ, 0) ARMA(1, 0) Overall Model

n = 4 1.548 1.604 1.637

(0.211) (0.176) (0.204)

n = 12 1.323 1.623 1.600

(0.406) (0.196) (0.310)

n = 40 0.996 1.623 1.523

(0.674) (0.196) (0.416)

(Posterior Standard Deviations in Parentheses)

posterior means and standard deviations of these impulse responses. The former
are roughly the same for all three models, but the ARFIMA and overall models
have larger standard deviations attached, especially at long horizons. This latter
finding is consistent with the high posterior standard deviation of δ discussed
above. The figures, however, give a warning against trusting too much in means
and standard deviations. Especially at long horizons, the impulse responses are
highly skewed and, for the fractional models, have very fat tails. The overall
model, which is a mixture of models, yields multimodal impulse responses.

Impulse response I(∞), averaged over all models, has a point mass at
zero equal to 0.287 and a point mass of 0.058 at infinity. Figure 5 presents
the continuous part of the posterior distribution for I(∞), corresponding to the
ARMA models. It can be seen that the ARMA models are more or less in
agreement about I(∞) in that the bulk of the posterior probability lies between
1 and 2. However, the fractional models put point masses at zero and infinity as
described above. Even if we ignore these point masses, no moments exist for the
continuous part of the distribution (see Koop, Osiewalski and Steel (1994)). In
order to evaluate the prior to posterior mapping in terms of I(∞), we also plot
in Figure 5 prior and posterior densities of I(∞) corresponding to the dominant
ARMA model, the ARMA(1, 0). In this simple case, we can easily see that
the prior on I(∞) induced by a flat prior on (−1, 1) for φ1 will be p(I(∞)) =
1
2I(∞)−2 on the interval (1

2 ,∞). Clearly, the data information changes the prior
substantially in this case.

A direct comparison of the ARMA(1, 0) and ARFIMA(1, δ, 0) models shows
how, at short horizons, they yield similar impulse responses. However, at
medium- and long-run horizons the two models yield rather different inferences.
This is not surprising, since the fractional differencing parameter, which drives
the long-run dynamics, is not concentrated in a small neighborhood of zero.
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(ARFIMA: ARMA: Overall: )
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Fig. 2. Posterior of I(4).
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1

1.5
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Fig. 3. Posterior of I(12).

Our Bayesian paradigm leads us to advocate the use of the overall model
for making inferences. The figures make clear that this model indicates a large
amount of uncertainty about the degree of persistence in real U.S. GNP. For
instance, in Figure 4 there is substantial probability that I(40) is less than 1.
This stands in contrast to the model with highest posterior probability (i.e., the
ARMA(1, 0)) which implies I(40) > 1 with virtual certainty. If we selected only
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(ARFIMA: ARMA: Overall: )
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Fig. 4. Posterior of I(40).

(Prior ARMA: ARMA: Overall: )
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Fig. 5. Prior and Posterior of I(∞).

(Note: The overall posterior of I(∞) has point masses at 0 and ∞ of 0.287 and
0.058, respectively, which are not shown on this graph.)

one model we would make very different inferences than using the overall model.

Predictive distributions can be calculated using (8). Figure 6 plots the pre-
dictive distribution of exp(yT+40), i.e., real U.S. GNP in the fourth quarter of
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(ARFIMA: ARMA: Overall: )
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Fig. 6. Predictive Distribution of exp(yT+40).
(The dashed line shows the location of exp(yT ) = 4172.4.)

1999, for the three models discussed previously: the ARMA(1, 0), ARFIMA(1, δ, 0)
and the overall model. It can be observed that the three predictives are quite
similar.

If out-of-sample prediction in a changing economic environment, rather
than persistence issues, were the focus of this paper, we might consider mod-
els with some additional structural aspects, such as the leading indicator ARLI
models used in e.g. Zellner and Min (1993).11 Indeed, our pure time series
models are not very successful in predicting the slowdown of 1990 and 1991:
predictive means overestimate the actual yT+n by about one predictive stan-
dard deviation for 4 ≤ n < 12. As regards the within-sample fit of the classes
of models we consider here, we can report that posterior means of σ2 are about
85% of the sample variance (of ∆yt) for most models, ranging from 83% for the
ARFIMA(1, δ, 3) model to 100% (with certainty) for the ARMA(0, 0) specifica-
tion. The importance of σ2 in explaining the sample variance sheds some light
on the very different robustness properties of the models under consideration
as regards forecasting on the one hand and measuring persistence on the other
hand. While the predictive uncertainty, driven mainly by the sampling vari-

11 As mentioned in footnote 5, the introduction of additional explanatory variables into
model (1) can trivially be handled in our theoretical framework
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ance, is more or less the same across models, inference on long-run persistence
is based solely on the parameters in ω, which leads to very different conclusions
depending on the model.

The computations were conducted in FORTRAN 77. All results are based
on 25,000 antithetic drawings. On RISC-based workstations, 100 antithetic
Monte Carlo replications took between 1 and 5 minutes of CPU time for a full
analysis of an ARFIMA model (depending on the values of p and q).12

5. Conclusion

In this paper we have developed Bayesian techniques for the analysis of ARFIMA
models and have shown how they can be implemented using Monte Carlo inte-
gration. With regards to the measurement of persistence, ARFIMA models have
been criticized since they imply that impulse responses at infinity are either zero
or infinity. We discuss how a Bayesian approach can surmount this problem by
allocating prior weight to the standard ARMA model in first differences. This
also enables us to test between ARFIMA and ARMA specifications through
their posterior probabilities.

A post-war quarterly real U.S. GNP series is used to illustrate the Bayesian
approach. Although some of our results for particular models are similar to those
found in previous non-Bayesian studies, important differences remain. Since we
do not choose one model, but rather average over 32 different specifications, our
results formally reflect model uncertainty. Hence, posterior densities for impulse
responses tend to be quite spread out. For instance, regions of the parameter
space which imply I(∞) = ∞ receive non-trivial posterior probability. It is
worth stressing that we obtain finite sample results. Furthermore, the non-
Normal shape of these finite sample distributions we find for impulse responses
leads us to question the usefulness of standard asymptotic methods.

12 We used DECstations 5000/200’s, HP-Apollo 9000/710’s and 9000/720’s. The FOR-
TRAN code is available via anonymous ftp (or WWW browser) from econwpa.wustl.edu as
prog/9507001.
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