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Abstract 

This paper examines and estimate the three GARCH(1,1) models 

(GARCH, EGARCH and GJR-GARCH) using the daily price data. Two 

Asian stock indices KLCI and STI are studied using daily data over a 14-

years period. The competing Models include GARCH, EGARCH and 

GJR-GARCH used with three different distributions, Gaussian normal, 

Student-t, Generalized Error Distribution. The estimation results show 

that the forecasting performance of asymmetric GARCH Models (GJR-

GARCH and EGARCH), especially when fat-tailed asymmetric densities 

are taken into account in the conditional volatility, is better than 

symmetric GARCH. Moreover, its found that the AR(1)-GJR model 

provide the best out-of-sample forecast for the Malaysian stock market, 

while AR(1)-EGARCH provide a better estimation for the Singaporean 

stock market.  
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1. Introduction 
 

Traditional regression tools have shown their limitation in the modeling of high-frequency 

(weekly, daily or intra-daily) data, Assuming that only the mean response could be changing with 

covariates while the variance remains constant over time often revealed to be an unrealistic 

assumption in practice. This fact is particularly obvious in series of financial data where clusters 

of volatility can be detected visually. Indeed, it is now widely accepted that high frequency 

financial returns are heteroskedastic. 

Modeling financial time series is not an easy task because they possess some special 

characteristics (see Ruey S. Tasy (2002)). They often exhibit volatility clustering (i.e. large 

changes tend to be followed by large changes and small changes by small changes), often exhibit 

leptokurtosis (i.e., the distribution of their returns is fat tailed) and often show leverage effect (i.e. 

changes in stock prices tend to be negatively correlated with changes in volatility which implies 

volatility is higher after negative shocks than after positive shocks of the same magnitude). In 

order to capture the first two characteristics of financial time series, Engle (1982) propose to 

model time-varying conditional variance with the Auto-Regressive Conditional 

Heteroskedasticity (ARCH) processes that use past disturbances to model the variance of the 

series. Early empirical evidence shows that high ARCH order has to be selected in order to catch 

the dynamic of the conditional variance. The Generalized ARCH (GARCH) model of Bollerslev 

(1986) is an answer to this issue. It is based on an infinite ARCH specification and it allows 

reducing the number of estimated parameters from ∞ to only 2. Both models allow taking the first 

two characteristics into account, but their distributions are symmetric and therefore fail to model 

the third stylized fact, namely the “leverage effect”. To solve this problem, many nonlinear 

extensions of the GARCH model have been proposed. Among the most widely spread are the 

Exponential GARCH (EGARCH) of Nelson (1991), the so-called GJR of Glosten, Jagannathan, 

and Runkle (1993).  

Unfortunately, GARCH models often do not fully capture the thick tails property of high 

frequency financial time series. This has naturally led to the use of non-normal distributions to 

better model this excess kurtosis, such as Student-t distribution, generalized error distribution, 

Normal-Poisson, Normal-Lognormal and Bernoulli-Normal distributions. Liu and Brorsen (1995) 

introduced the use of an asymmetric stable density to capture the skewness property well. 

However, since the variance of such a distribution rarely exists, it is not popular in practice. 
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Fernandez and Steel (1998) introduced the skewed Student-t distribution, which captures both the 

skewness and kurtosis. Lambert and Laurent (2000, 2001) extended this to the GARCH model.  

In this paper, we compare the performance of the GARCH, EGARCH and GJR-GARCH 

models and we also introduce different densities (Normal, Student-t and GED). 

 

2- Empirical Methodology 

2.1 ARCH-Models 

Over the past two decades, enormous effort has been devoted to modeling and forecasting 

the movement of stock returns and other financial time series. Seminal work in this area of 

research can be attributed to Engle (1982), who introduced the standard Autoregressive 

Conditional Heteroskedasticity (ARCH) model. Engle’s process proposed to model time-varying 

conditional volatility using past innovations to estimate the variance of the series as follows: 
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where εt  denotes a discrete-time stochastic  taking the form of εt =  zσt  where zt ~ iid (0,1), 

and σt is the conditional standard deviation of return at time t, assuming that market returns 

follow AR(p) process as follows: 
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2.1.1 GARCH 

Further extension introduced by Bollerslev (1986) known as the Generalized ARCH 

(GARCH) model which suggests that the time-varying volatility process is a function of both past 

disturbances and past volatility. The GARCH model is an infinite order ARCH model generated 

by: 
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where α0, α and β  are non-negative constants. For the GARCH process to be defined, it is 

required that α > 0. 
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2.1.2 EGARCH 

The first asymmetric GARCH model that is looked at is the EGARCH model of Nelson 

(1991), which looks at the conditional variance and tries to accommodate for the asymmetric 

relation between stock returns and volatility changes. Nelson implements that by including an 

adjusting function g(z) in the conditional variance equation, it in turn becomes expressed by: 
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 where tttz σε=  is the normalized residual series. 

The value of g(zt) is a function of both the magnitude and sign of zt and is expressed as: 
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Notice moreover that E|zt| depends on the assumption made on the unconditional density. 

This point will be clarified in Section 3. The EGARCH model differs from the standard GARCH 

model in two main respects. First, it allows positive and negative shocks to have a different 

impact on volatility. Second, the EGARCH model allows big shocks to have a greater impact on 

volatility than the standard GARCH model. 

2.1.3 GJR-GARCH 

This model is proposed by Glosten, Jagannathan, and Runkle (1993). Its generalized form is 
given by: 
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where  is a dummy variable. 
−
tS

In this model, it is assumed that the impact of  on the conditional variance  is different 

when  is positive or negative. That is why the dummy variable  takes the value ‘0’ 
(respectively ‘1’) when ε is positive (negative). Note that the TGARCH model of Zakoian (1994) 
is very similar to GJR but models the conditional standard deviation instead of the conditional 
variance. 
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3. Densities Assumptions 
The GARCH models are estimated using a maximum likelihood (ML) methodology3. The 

logic of ML is to interpret the density as a function of the parameters set, conditional on a set of 

sample outcomes. This function is called the likelihood function. 

Failure to capture fat-tails property of high-frequency financial time series has led to the use 

of non-normal distributions to better model excessive third and fourth moments. The most 

commonly used are the normal distribution ,Student t- distribution4, Skewed student-t 

distribution5 and the Generalized Error Distribution (GED)6. 

Since it may be expected that excess kurtosis and skewness displayed by the residuals of 

conditional heteroscedasticity models will be reduced when a more appropriate distribution is 

used, we consider three distributions in this study: the Normal, the Student-t (including a “tail” 

parameter) and the Skewed Student-t (including a “tail” parameter and an asymmetric parameter). 

3.1. Gaussian 

The normal distribution is the most widely used when estimating GARCH models. The 

log-likelihood function for the standard normal distribution for the stochastic process of 

innovations given by (1) is given by: 
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where T is the number of observations. 

3.2. Student-t 

For a Student-t distribution, the log-likelihood is: 
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3 GARCH models can also be estimated by Quasi Maximum Likelihood (QML) method introduced by 
Bollerslev and Wooldridge (1992) and by Generalized Method of Moments (GMM) suggested and implemented by 
GJR (1991). 
4 Suggested by Bollerslev (1987); Baillie and Bollerslev (1989); Kaiser (1996); and Beine, Laurent, and 
Lecourt (2000). 
5 Suggested by Fernandez and Steel (1998) and Lambert and Laurent (2000, 2001) for better capture of 
skewness. 
6 Suggested by Nelson (1991) and Kaiser (1996). 
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where ν is the degrees of freedom, 2 < ν ≤ ∞ and Γ(·) is the gamma function. When ν→ ∞, 

we have the Normal distribution, so that the lower ν the fatter the tails. 

3.3. Generalized Error Distribution (GED) 

Skewness and kurtosis are important in financial applications in many respects (in asset 

pricing models, portfolio selection, option pricing theory or Value-at-Risk among others). 

Therefore, a distribution that can model these two moments is appropriate, the GED log-

likelihood function of a normalized random error is: 
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and ν is a positive parameter governing the thickness of the tails of the distribution. Note that for 
ν=2, constant λ=1, and the GED is the standard normal distribution. For more details about the 
generalized error distribution, see Hamilton (1994).  

 

4. Data and Methodology 

4.1 Data 

All data are the daily data obtained from DataStream. In the database, the daily return Rt 

consisted of daily stock closing price Pt, which is measured in local currency7. Our measurements 

include Strait Times Index in Singapore (STI) and Kuala Luampur Composite Index in Malaysia 

(KLCI).  

The sample consists of 3652 daily observations on stock returns of the KLCI and the STI 

indices. It covers a fourteen-year  period, beginning on January 2, 1991 and ending on December 

31, 20048. For illustrative purposes, Figure (1) compares the two used indices’ daily closing 

values taken across the sample period. Furthermore, Figure (2) looks at the behavior of the KLCI 

                                                 
7 I measure the stock returns in local currency just as Base and Karolyi (1994) and Karolyi (1995) do in their studies. 
On the other hand, the stock returns in Karolyi (1995) and Ng (2000) is denominated in US dollars. Note that when 
market returns are denominated in US dollars, international investors are assumed to be unhedged against foreign 
exchange risk. However, Dumas and Solnik (1995) and De Santis and Ge´rard (1998) insist the importance of currency 
risk on stock markets. Thus, we assume that the investors are hedged against it. 
 
8 All the data were supplied by Datastream. 
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and STI returns, respectively, over the sample period. The data of stock price exhibit large 

fluctuations during the whole period. The indices prices are transformed into their returns so that 

we obtain stationary series. The transformation is; 

Rt = 100 * [ln(Rt) / ln(Rt-1)] 

Table 1 

Summary Statistics for daily returns 1 January 1991-31 December 2004 

 Sample Mean St.Dev. Skewness Ex-Kurtosis Q(20) Q2(20) J.Bera ARCH(2) 

KLCI 3652 0.0163 1.5731 0.5156 40.7437 105.69 1826.321 25255 580.8460 

STI 3652 0.0216 1.2908 0.2884 11.2086 101.39 952.0316 19150 101.1180 

The descriptive statistics of both indices in Table (1) over the sample period highlights the 

following: 

• Mean returns for the STI Index is slightly larger than the KLCI, whereas, the 

non-conditional variance for the KLCI Index is larger than the STI.  Furthermore, 

there is evidence of volatility clustering (See figure (2)) and that large or small 

asset price changes tend to be followed by other large or small price changes of 

either sign (positive or negative). This implies that stock return volatility changes 

over time. Furthermore, the figures indicate a sharp increase in volatility starting 

from the year 1997. 

• The returns for both indices are positively skewed. The null hypothesis for 

skewness coefficients that conform with a normal distribution’s value of zero has 

been rejected at the 5 percent significance level. 

• The returns for both indices also display excess kurtosis. The null hypothesis for 

kurtosis coefficients that conform to the normal value of three is rejected for both 

indices. 

• The high values of Jarque-Bera test for normality decisively rejects the hypothesis 

of a normal distribution; 
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• Moreover, Engle (1982) LM test indicates the presence of ARCH processes in the 

conditional variance. Both indices show signs of heteroskedasticity in sample, 

indicating the legitimacy of using ARCH/GARCH type models. 

The statistical results for both indices appear to have very similar characteristics. They both 

display positive skewness, were found to be deviating from normality, and display a degree of 

serial correlation. These stylized results are consistent with previous empirical work on the Asian-

Pacific markets 9  and similar to a number of previous empirical works on matured markets10. 

Finally, if we look at the sample, given the fact that the return series exhibited some excess 

kurtosis, it can also be predicted that a fatter-tailed distribution such as the student-t, or maybe a 

GED, should generate better results than just simply a normal distribution or a more complex 

asymmetric student-t.  

To estimate and forecast these indices, we use SAS 9.1 software; SAS/ETS a package dedicated 

to the estimation and the forecasting for time series data. It is written in the SAS programming 

language, it offers a lot of features that are not available in traditional econometric software. 

To assess the performance of the GARCH models candidate in forecasting the conditional 

variance, we compute 9 measures of statistic fit: 

1. Mean Squared Errors (MSE) 

2. Mean Absolute Error (MAE) 

3. Mean Absolute Percentage Error (MAPE) 

4. Theil Inequality Coefficient (TIC) 

5. Akaike Information Criterion (AIC) 

6. Schwarz Bayesian Criterion (BIC) 

7. Amemiya Prediction Criterion (APC) 

8. Adjusted R2 (AJDR2) 

9. Amemiya Adjusted R2 (AR2) 

The measures above may require some brief additional explanations. The MSE is: 

                                                 
9 See, S.-J. Kim (2003), K. Nam et al.(2003) , Ng. A. (2000) and T. Miyakoshi (2003).  
10 Fama (1976) showed that the distribution of both daily and monthly returns for the Dow Jones departs from 
normality, and are skewed, leptokurtic, and volatility clustered. Furthermore, Kim and Kon (1994) found the same for 
the S&P 500. Finally, Peters (2001) showed similar results for two major European stock indices (FTSE 100 and DAX 
30). 
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one, where zero indicates a perfect fit. 
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4.2 Empirical Results 

 approach is used to estimate the three models (3), (4) and (6), with 

the 

ity, post estimation tests, of the 

estim

eral conclusions can be drawn when analyzing these results: 

 

• The use of asymmetric GARCH models seems to be justified. All asymmetric 

                                                

er the R2, the better the forecasts). 

 

A maximum likelihood

three underlying error distributions. Low-order lag lengths were found to be sufficient to 

model the variance dynamics over very long sample periods11. 

This section presents the estimation results and the valid

ated model. Table 2, 3 and 4 presents the estimation results for the parameters for the 

GARCH, EGARCH and GJR-GARCH models while Tables 5-10 reports some useful in-sample 

statistics. Forecasting ability is reported by the different models. Table11 compares the models 

based on the GARCH specifications for both series. Some comments can be made on these 

results: 

Sev

coefficients are significant at standard levels. Moreover, the Akaike information criteria 

(henceforward AIC) and the log-likelihood values highlight the fact that EGARCH or 

GJR models better estimate the series than the traditional GARCH. 

 
11 French, Schwert, and Stambaugh (1987) analyze daily S&P stock index data for 1928-1984 for a total of 15,369 
observations and require only four parameters in the conditional variance equation (including the constant). 
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• As, is typical of GARCH model estimates for financial asset returns data, the sum of the 

coefficients on the lagged squared error and the lagged conditional variance is close to 

unity 0.99 and .98 for KLCI and STI respectively, this implies that shocks to the 

conditional variance well be highly persistent indicating that large changes and small 

changes tend to be followed by small changes, this mean volatility clustering is observed 

in both KLCI and STI financial returns series. 

• Regarding the densities (tables 5-7), the Student-t distributions clearly outperform the 

Gaussian and (GED). Indeed, the log-likelihood function strongly increases when using 

the Student-t, leading to BIC criteria of 3.09 and 3.04 with the Gaussian versus 2.98 and 

2.97 with the non-normal densities, for the KLCI and the STI respectively using AR(1)-

GARCH, similar result for both AR(1)-EGARCH and AR(1)-GJR .  

• All the models seem to do a good job in describing the dynamic of the first two moments 

of the series as shown by the Box-Pierce statistics for the squared residuals which are all 

non-significant at 5% level. 

• LM test for presence of ARCH effects at lag 2, indicate that the conditional 

hetroskedasity that existed when the test was performed on the pure return series (see 

table 1) are removed for GARCH but remains for EGARCH and GJR using the Gaussian 

distribution. EGARCH and GJR models with student-t and GED distributions shows that 

the conditional hetroskedasity are successfully removed which are all non-significant at 

5% level. From the previous, GARCH model perform better with Gaussian distribution 

however, EGARCH and GJR models give better results with student-t distribution. 

• Similar to the results found in various markets, the leverage effect term w1 (g1) in the GJR 

(EGARCH) is statistically significant at levels ( p-value equal 0.01 and 0.05 respectively) 

with negative sign, as expected that negative shocks imply a higher next period 

conditional variance than positive shocks of the same sign, indicating that the existence 

of leverage effect is observed in returns of the KLCI and STI stock market index.  

• However, the comparison between models with each density (normal versus non-normal) 

shows that, according to the different measures used for modeling the volatility, the GJR-

GARCH model provides the best in-sample estimation for KLCI having slight difference 

with EGARH and clearly outperforms the symmetric models. The opposite is true for STI 

where EGARCH provides the best in-sample estimation. Moreover, it is found that the 

student-t density is more appropriate for modeling KLCI and STI stock market index 
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volatility in particular; Skewness and excess kurtosis are clearly observed in the return 

time series.  

• Testing the validation of GARCH models different tests are performed to see if the 

autocorrelation in the squared return has successfully been removed Ljung-Box-Pierce Q-

test in the validation part is to test autocorrelations and partial autocorrelations of the 

squared standardized residuals. The test is made on the squared standardized residuals 

with lag 20 to test for remaining ARCH in the variance equation and to check the 

specification of the variance equation. If the variance equation is correctly specified, all 

Q-statistics should not be significant. The results indicate that no significance correlation 

exists.  

• Moreover, Engle's ARCH-test carries out Lagrange multiplier tests to test whether the 

standardized residuals exhibit additional ARCH effects. If the variance equation is 

correctly specified, there should be no ARCH effects left in the standardized residuals. 

The result from Engle's ARCH-test is presented in table (5) to (10). This indicates that we 

have successfully removed the conditional heteroskedasticity that existed when the test 

was performed on the pure return series in section 4.1 (data description)  

• For out-sample, the comparison between models strongly supports the use of asymmetric 

GARCH models. Among these three models, GJR outperforms EGARCH for the KLCI 

while the opposite is true for the STI index. GJR provides less satisfactory results while 

symmetric GARCH clearly gives the poorest forecasts. 

• In particular, the R2 is higher when using asymmetric GARCH. For instance, when using 

a Student-t distribution, it ranges from 0.927 to 0.946 with the asymmetric GARCH 

versus 0.925 with the symmetric GARCH for the KLCI and it goes from 0.920 to 0.923 

versus 0.893 with the symmetric GARCH for the STI.  

 

5. Conclusion 

Stock prices volatility has received a great attention from both academies and practitioners 

over the last two decades because it can be used as a measure of Risk in financial Markets. 

Recent portfolio selection, asset pricing, value at risk, option pricing and hedging strategies 

highlight the importance of modeling and forecasting the conditional volatility of returns.  
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This paper contributes to the Literature of volatility modeling in two aspects. First, we use a 

data set from an emerging market. Secondly we estimate the alternative ARCH-type models 

(symmetric and asymmetric GARCH Models). The comparison was focused on two different 

aspects: the difference between symmetric and asymmetric GARCH (i.e., GARCH versus 

EGARCH and GJR-GARCH) and the difference between normal tailed symmetric, fat-tailed 

symmetric and fat-tailed asymmetric distributions (i.e. Normal versus Student-t and Generalized 

Error Distribution) for estimating the KLCI and STI stock market index returns volatility.  

The results indicate, according to the in-sample statistics that the estimated parameters of the 

AR(1)-GJR Model, the coefficients of ARCH(α1) and GARCH(β1) in the conditional variance 

equation of the AR(1)-GJR in the both markets are highly significant with p-value equal 0.016 

and 0.019 for KLCI , 0.017 and 0.020 for STI. 

As expected with the results found in various markets, the leverage effect term (w1) in both 

markets KLCI and STI the AR(1)-GJR Model is statistically significant at levels (p-value equal 

0.014 and 0.015 respectively) with a negative sign, which indicate that negative shocks imply a 

higher next period conditional variance than positive shocks of the same sign, indicating that the 

existence of leverage effect is observed in returns of the KLCI and STI stock market index.  

However, the comparison between models with each density (normal versus non-normal) 

shows that, according to the different measures used for the performance of volatility forecast, the 

GJR-GARCH model provides the best out-sample estimation for KLCI and EGARCH model 

provides the best out-sample estimation for STI and clearly those asymmetric models outperforms 

symmetric models. Our results show that noticeable improvements can be made when using an 

GARCH models in the conditional variance (and, among the tested models, EGARCH and GJR 

seem to outperform GARCH). Moreover, non-normal distributions provide better in-sample 

results than the Gaussian distribution. Out-of-sample results show however less evidence of 

superior forecasting ability.  

Briefly, looking at the overall results, we can argue that the asymmetric models (GJR and 

EGARCH model) coupled with a Student-t distribution for the innovations performs very well 

with the dataset we have investigated. The models seems to capture the dynamics of the first and 

second moments of the KLCI and STI stock market index returns series  

Finally, several directions for future researches could be investigated to forecast the 

volatility of the KLCI and STI financial time series. First, “true volatility” could be better 

estimated by selecting shorter time intervals (for instance, intra-day trading). Second, introducing 
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long run persistence of shocks in the volatility with fractionally integrated models (FIGARCH, 

FIEGARCH, FIAPARCH) would certainly allow better catch the dynamic of the series.  
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Table 2: 

 

Estimation Statistics-Distributions Comparison AR(1)-GARCH Model 

t

q

i
itit RR εφϕ ++= ∑

=
−

1
0

 

∑ ∑
= =

−− ++=
q

i

p

j
jtjitit

1 1

22
0

2 σβεαασ  

Malaysia Singapore 
 Normal Student-t GED Normal Student-t GED 

ϕ0
0.04563      
(0.0156) 

0.018806      
(0.013) 

0.005157      
(0.0152) 

0.03876      
(0.0159) 

0.019358      
(0.0147) 

0.015127     
(0.0140) 

ϕ1
0.176251      
(0.0179) 

0.150871      
(0.0170) 

0.112706      
(0.0237) 

0.135218      
(0.0181) 

0.127392      
(0.0173) 

0.090214      
(0.0195) 

α0
0.021963     
(0.00407)      

0.02101     
(0.0049) 

0.036622     
(0.00767) 

0.037439     
(0.00657) 

0.030273     
(0.00713) 

0.051645      
(0.0104) 

α 1
0.10164     

(0.00972) 
0.078454      
(0.0107) 

0.132121      
(0.0169) 

0.127884      
(0.0125) 

0.084825      
(0.0121) 

0.137722      
(0.0175) 

β1
0.88967     

(0.00967)      
0.842576      
(0.0194) 

0.85267      
(0.0165) 

0.854878      
(0.0128) 

0.842505      
(0.0209) 

0.833316      
(0.0191) 

ν  4.241789      
(0.3307) 

1.096725      
(0.0361)   1.24425      

(0.0396) 
Asymptotic heteroskedasticity-consistent standard errors are given in parentheses. 

 
 
Table 3: 

 

Estimation Statistics-Distributions Comparison AR(1)-EGARCH Model 

t

q

i
itit RR εφϕ ++= ∑

=
−

1
0

 

∑ ∑
= =

−− ++=
q

i

p

j
jtjitit zg

1 1

2
0

2 )ln()(ln σβαασ  

Malaysia Singapore 
 Normal Student-t GED Normal Student-t GED 

ϕ0
0.039446      
(0.0155) 

0.007716      
(0.0137) 

0.001398      
(0.0124) 

0.009178      
(0.0160) 

-0.00026      
(0.0429) 

0.000639      
(0.0139) 

ϕ1
0.167528      
(0.0171) 

0.148854      
(0.0165) 

0.110731      
(0.0233) 

0.136472      
(0.0174) 

0.128629      
(0.0176) 

0.092575      
(0.0148) 

α0
0.011857     
(0.00220) 

-0.04131     
(0.00707) 

0.01857     
(0.00425) 

0.014674     
(0.00285) 

-0.03072      
(0.0113) 

0.016111     
(0.00403) 

α 1
0.160061      
(0.0126) 

0.176339      
(0.0197) 

0.198965      
(0.0232) 

0.198497      
(0.0163) 

0.188372      
(0.0245) 

0.211591      
(0.0233) 

β1
0.990215     
(0.00188) 

0.974307     
(0.00574) 

0.982273     
(0.00421) 

0.978938     
(0.00367) 

0.966408     
(0.00751) 

0.973411     
(0.00597) 

g -0.28794      
0.0453 

-0.28878      
(0.0523) 

-0.27707      
(0.0544) 

-0.31462      
(0.0448) 

-0.28956      
(0.0570) 

-0.28998      
(0.0543) 

ν  4.181703      
(0.3161) 

1.107278      
(0.0365)  5.798267      

(1.6173) 
1.261971      
(0.0396) 

Asymptotic heteroskedasticity-consistent standard errors are given in parentheses. 
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Table 4: 

 

Estimation Statistics-Distributions Comparison AR(1)-GJR Model 

t

q

i
itit RR εφϕ ++= ∑

=
−

1
0

 

∑ ∑
= =

−−
−
−− +++=

q

i

p

j
jtjtititit Sw

1 1

22
1

2
10

2 )( σβεεαασ  

Malaysia Singapore 
 Normal Student-t GED Normal Student-t GED 

ϕ0
0.019303      
(0.0160) 

0.003455      
(0.0142) 

5.653E-6     
(0.00165) 

0.013754      
(0.0163) 

0.004819      
(0.0151) 

0.00199      
(0.0140) 

ϕ1
0.18286      
(0.0178) 

0.1566      
(0.0167) 

0.116387      
(0.0234) 

0.141688      
(0.0178) 

0.12999      
(0.0171) 

0.095103      
(0.0181) 

α0
0.021062     
(0.00374) 

0.022501     
(0.00507) 

0.036813     
(0.00751) 

0.036575     
(0.00628) 

0.03107     
(0.00703) 

0.050256     
(0.00982) 

α 1
0.13262      
(0.0134) 

0.116718      
(0.0161) 

0.185545      
(0.0255) 

0.166968      
(0.0169) 

0.120471      
(0.0177) 

0.186991      
(0.0242) 

β1
0.899607     
(0.00922) 

0.843183      
(0.0199) 

0.858273      
(0.0163) 

0.866336      
(0.0121) 

0.845867      
(0.0202) 

0.841952      
(0.0179) 

ω1
-0.08089      
(0.0125) 

-0.07259      
(0.0142) 

  -0.11386     
(0.0232) 

-0.10247      
(0.0157) 

-0.07149      
(0.0156) 

-0.11188      
(0.0223) 

ν  4.329078      
(0.3285) 

1.111723      
(0.0366)  5.829943      

(0.5414) 
1.265056      
(0.0404) 

Asymptotic heteroskedasticity-consistent standard errors are given in parentheses. 
 
 
 
 
Table 5: 

 Diagnostics statistics -Distributions Comparison AR(1)-GARCH Model 
Malaysia Singapore 

 Normal Student-t GED Normal Student-t GED 

Q2(20) 17.380 
(0.628) 

14.343 
(0.813) 

11.673 
(0.927) 

13.250 
(0.866) 

13.044 
(0.875) 

12.801 
(0.886) 

ARCH(2) 2.924836 
(0.053799) 

0.549214 
(0.577451) 

0.032969 
(0.967569) 

0.815931 
(0.442308) 

1.128814 
(0.323530) 

1.046473 
(0.351280) 

AIC 3.088865 2.976918 2.969216 3.044102 2.968075 2.966946 

BIC 3.095661 2.985413 2.977711 3.050898 2.976570 2.975440 

Log-Like -5585 -5389 -5393 -5523 -5385 -5400 

Q2(20) are the Box-Pierce statistic at lag 20 of the squared standardized residuals. P-values of are given in parentheses. 
AIC,BIC and Log-Like are the Akaike Information criterion, Swartz information criterion  and Log-Likelihood value 
respectively. 
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Table 6: 
 Diagnostics statistics -Distributions Comparison AR(1)-EGARCH Model 

Malaysia Singapore 
 Normal Student-t GED Normal Student-t GED 

Q2(20) 30.803 
(0.058) 

11.960 
(0.917) 

12.845 
(0.884) 

12.311 
(0.905) 

12.666 
(0.891) 

12.443 
(0.900) 

ARCH(2) 10.01139 
(0.000046) 

1.960507 
(0.140935) 

2.301999 
(0.100204) 

2.480221 
(0.083866) 

1.647911 
(0.192595) 

2.046106 
(0.129386) 

AIC 3.082735 2.969516 2.961012 3.035179 2.960535 2.960053 

BIC 3.091229 2.979709 2.971205 3.043674 2.970728 2.970246 

Log-Like -5575 -5375 -5378 -5503 -5369 -5382 

Q2(20) are the Box-Pierce statistic at lag 20 of the squared standardized residuals. P-values of are given in parentheses. 
AIC,BIC and Log-Like are the Akaike Information criterion, Swartz information criterion  and Log-Likelihood value 
respectively. 

 
 
 
 
 
 
 
 
 
Table 7: 

 Diagnostics statistics -Distributions Comparison AR(1)-GJR Model 
Malaysia Singapore 

 Normal Student-t GED Normal Student-t GED 

Q2(20) 20.424 
(0.432) 

13.503 
(0.855) 

11.944 
(0.918) 

12.496 
(0.898) 

18.124 
(0.579) 

12.550 
(0.896) 

ARCH(2) 4.5840 
(0.0103) 

1.1092 
(0.3299) 

0.1454 
(0.8647) 

0.814720 
(0.442844) 

0.706989 
(0.493194) 

1.460312 
(0.232300) 

AIC 3.076357 2.967911 2.962434 3.030473 2.967269 2.958600 

BIC 3.086506 2.979803 2.970422 3.040646 2.971731 2.970493 

Log-Like -5561 -5370 -5375 -5497 -5369 -5384 

Q2(20) are the Box-Pierce statistic at lag 20 of the squared standardized residuals. P-values of are given in parentheses. 
AIC,BIC and Log-Like are the Akaike Information criterion, Swartz information criterion  and Log-Likelihood value 
respectively. 
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Table 8: 

 Diagnostics statistics – Gaussian Distribution 

Malaysia Singapore 
 GARCH EGARCH GJR GARCH EGARCH GJR 

Q2(20) 17.380 
(0.628) 

30.803 
(0.058) 

20.424 
(0.432) 

13.250 
(0.866) 

12.311 
(0.905) 

12.496 
(0.898) 

ARCH(2) 2.924836 
(0.053799) 

10.01139 
(0.000046) 

4.5840 
(0.0103) 

0.815931 
(0.442308) 

2.480221 
(0.083866) 

0.814720 
(0.442844) 

AIC 3.088865 3.082735 3.076357 3.044102 3.035179 3.030473 

BIC 3.095661 3.091229 3.086506 3.050898 3.043674 3.040646 

Log-Like -5585 -5575 -5561 -5523 -5503 -5497 

Q2(20) are the Box-Pierce statistic at lag 20 of the squared standardized residuals. P-values of are given in parentheses. 
AIC,BIC and Log-Like are the Akaike Information criterion, Swartz information criterion  and Log-Likelihood value 
respectively. 

 
 
 
 
 
 
 
 
Table 9: 

 Diagnostics statistics – Student-t Distribution 

Malaysia Singapore 
 GARCH EGARCH GJR GARCH EGARCH GJR 

Q2(20) 14.343 
(0.813) 

11.960 
(0.917) 

13.503 
(0.855) 

13.044 
(0.875) 

12.666 
(0.891) 

18.124 
(0.579) 

ARCH(2) 0.549214 
(0.577451) 

1.960507 
(0.140935) 

1.1092 
(0.3299) 

1.128814 
(0.323530) 

1.647911 
(0.192595) 

0.706989 
(0.493194) 

AIC 2.976918 2.969516 2.967911 2.968075 2.960535 2.967269 

BIC 2.985413 2.979709 2.979803 2.976570 2.970728 2.971731 

Log-Like -5389 -5375 -5370 -5385 -5369 -5369 

Q2(20) are the Box-Pierce statistic at lag 20 of the squared standardized residuals. P-values of are given in parentheses. 
AIC,BIC and Log-Like are the Akaike Information criterion, Swartz information criterion  and Log-Likelihood value 
respectively. 
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Table 10: 

 Diagnostics statistics – GED Distribution 

Malaysia Singapore 
 GARCH EGARCH GJR GARCH EGARCH GJR 

Q2(20) 11.673 
(0.927) 

12.845 
(0.884) 

11.944 
(0.918) 

12.801 
(0.886) 

12.443 
(0.900) 

12.550 
(0.896) 

ARCH(2) 0.032969 
(0.967569) 

2.301999 
(0.100204) 

0.1454 
(0.8647) 

1.046473 
(0.351280) 

2.046106 
(0.129386) 

1.460312 
(0.232300) 

AIC 2.969216 2.961012 2.962434 2.966946 2.960053 2.958600 

BIC 2.977711 2.971205 2.970422 2.975440 2.970246 2.970493 

Log-Like -5393 -5378 -5375 -5400 -5382 -5384 

Q2(20) are the Box-Pierce statistic at lag 20 of the squared standardized residuals. P-values of are given in parentheses. 
AIC,BIC and Log-Like are the Akaike Information criterion, Swartz information criterion  and Log-Likelihood value 
respectively. 
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Table 11:  

Forecast Performance –In Sample 
 

KLCI STI 
 Normal 
 GARCH EGARCH GJR GARCH EGARCH GJR 
MSE 2.0211 0.5938 0.5625 0.5910583 0.1779 0.2945 
MAE 0.2933 0.2113 0.2180 0.2445678 0.1906 0.2116 
MAPE 12.50454 9.8018 9.9522 13.413375 11.3728 12.0916 
TIC 0.1952 0.1581 0.1485 0.2647 0.1811 0.2088 
AIC 3174.90 -1499.3631 -1632.4601 -1930.7351 -6284.3188 -4445.0386 
BIC 3181.11 -1493.1603 -1626.2574 -1905.9241 -6259.5078 -4420.2276 
APC 2.38595 0.6632 0.6394 0.5892 0.1788 0.2959 
AJDR2 0.94896 0.9646 0.96871 0.89163 0.93590 0.92585 
AR2 0.94893 0.9646 0.96869 0.89148 0.93582 0.92575 
       
 Student-t 
 GARCH EGARCH GJR GARCH EGARCH GJR 
MSE 3.9085 1.4998 1.3143 0.5305 0.2066152 0.2821 
MAE 0.4081 0.3110 0.3118 0.2317 0.203192 0.2167 
MAPE 16.4260 13.9788 13.5583 12.7713 12.177492 12.4356 
TIC 0.2391 0.2345 0.2011 0.2608 0.2002378 0.2108 
AIC 5528.0063 1748.5998 1389.2326 -2360.1765 -5746.0613 -4604.5757 
BIC 5534.2091 1754.8025 1395.4354 -2335.3655 -5721.2502 -4579.7646 
APC 4.5453 1.6143 1.4630 0.5239 0.2072 0.2833 
AJDR2 0.92591 0.92669 0.94555 0.89319 0.92053 0.92261 
AR2 0.92587 0.92665 0.94552 0.89304 0.92042 0.92251 
       
 GED 
 GARCH EGARCH GJR GARCH EGARCH GJR 
MSE 6.0594 1.3041 1.2848 0.5305 0.1877 0.2805 
MAE 0.5086 0.2894 0.3041 0.2317 0.1944 0.2123 
MAPE 21.2935 13.6436 13.8632 12.7713 11.7055 12.2234 
TIC 0.2931 0.2307 0.2067 0.2608 0.1911 0.2097 
AIC 7072.1195 1236.2414 1281.9070 -2326.3503 -6093.1885 -4623.4905 
BIC 7078.3223 1242.4442 1288.1098 -2301.5393 -6068.3775 -4598.6794 
APC 6.9381 1.4029 1.42064 0.5287 0.1884 0.2818 
AJDR2 0.89192 0.92897 0.94301 0.89277 0.92753 0.92397 
AR2 0.89186 0.92893 0.94298 0.89262 0.92743 0.92387 
MSE is Mean Squared Error, MAE is the Mean Absolute Error, MAPE is the Mean Absolute Percentage Error, TIC is 
the Theil Inequality Coefficient, AIC is Akaike Information Criterion, BIC is Schwarz Bayesian Criterion, APC is 
Amemiya Prediction Criterion, AJDR2 is the Adjusted R2 , AR2 is the Amemiya Adjusted R2. 
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Fig.(3):The STI Returns, Residuals and 
Conditional Variance AR(1)-GJR Model 
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Fig (6): GJR, the fitted and forecasted variance, estimated through 2005 for KLCI 
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Fig (5): EGARCH, the fitted and forecasted variance, estimated through 2005 for STI 
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