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Abstract

We argue that the conventional predictive regression between implied volatility (regres-
sor) and realized volatility over the remaining life of the option (regressand) is likely to be
a fractional cointegrating relation. Since cointegration is associated with long-run comove-
ments, this Þnding modiÞes the usual interpretation of such regression as a study towards
assessing option market efficiency (given a certain option pricing model) and/or short-term
unbiasedness of implied volatility as a predictor for realized volatility, thereby rendering
the conventional tests invalid.
We use spectral methods and exploit the long memory in the data to design an econo-

metric methodology which is robust to the various issues that the literature on the relation
between implied and realized volatility has proposed as plausible explanations for an esti-
mated slope coefficient less than one, implying biasedness, in the standard predictive re-
gression (measurement errors and presence of an unobservable time-varying risk premium,
for instance).
Even though little can be said about market efficiency and/or short-term unbiasedness,

which were the objects of the previous studies, our evidence in favor of a long-run one-to-one
correspondence between implied and realized volatility series is rather strong. Simulation
results conÞrm our Þndings.
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1 Introduction

Implied volatility is widely regarded as the market�s best forecast of the future realized volatility

of the price of the asset an option is written on. As a consequence, in recent times there has

been a substantial interest in verifying whether implied volatility is truly an unbiased forecast

of future realized volatility: are the slope and the intercept of the regression of realized on

implied volatility equal to 1 and 0, respectively (i.e., unbiasedness hypothesis)? Furthermore,

is implied volatility an efficient estimate of the future realized volatility in the sense that

economic variables belonging to the same information set as the former do not contribute

predicting the latter (i.e., informational efficiency)?

The early studies on this topic generally maintained that the option implied volatility is

an informative and biased forecast of future volatility. The evidence about informational effi-

ciency is rather mixed (the reader is referred to Poteshman (2000) for a complete discussion of

the extant literature). Recent work has pointed out that the evidence in favor of unbiasedness

and efficiency is stronger once the three main issues that are believed to contaminate the rele-

vant predictive regressions are properly accounted for, namely errors-in-variables (Christensen

and Prabhala (1998), Poteshman (2000) and Chernov (2001), among others), overlapping data

(Christensen and Prabhala (1998)) and missing terms (Poteshman (2000) and Chernov (2001)).

A couple of examples are in order. Implied volatility is generally believed to be measured with

an error that induces correlation between the regression residuals and the regressor, i.e., the

implied volatility itself (Christensen and Prabhala (1998) and Poteshman (2000)). In addi-

tion, no-arbitrage pricing suggests the plausibility of a time-varying risk premium (Poteshman

(2000) and Chernov (2001)) which is likely to covary with implied volatility and bring about

non-orthogonality between residuals and regressors when omitted from the relevant predictive

regression. Hence, missing terms (such as a time-varying risk premium) and errors-in-variables

have the common feature of inducing correlation between regressor and residuals in the relevant

regression, thereby biasing the least squares parameter estimates.

This work recognizes a feature of volatility series that has been discussed by many in

the empirical literature but whose consequences have not been examined yet in predictive

regressions of the type described in the preceding paragraphs: volatility is highly persistent.
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The study of the implications of persistence for the conclusions drawn in the existing work on

the predictive power of implied volatility represents the substantive core of the present paper.

Several authors have argued that spot and realized volatility may be well described by a long

memory process (Ding et al. (1993), Baillie et al. (1996), Bollerslev andMikkelsen (1996, 1999),

and Andersen et al. (2001a, 2001b), among others). Other ways of modelling persistence in

volatility, such as the components model of Engle and Lee (1999), the multi-factor speciÞcation

of Chernov et al. (2001) and Alizadeh et al. (2002), or the jump models of Pan (2002), and

Eraker et al. (2001), could also be entertained. Due to the well-known lack of consensus about

the correct modelling approach and the necessity of taking a stance for the purpose of our

subsequent analysis, we choose to adopt the speciÞcation that has received the most attention

in applied work, that is we assume long memory.1 While alternative speciÞcations would

require tight parametric speciÞcations for the underlying spot volatility and, as a consequence,

complications that we wish to avoid for the sake of parsimony of the model, long memory is

now the standard way to interpret the persistence properties of nonparametric speciÞcations

for realized volatility series as in French et al. (1987) and Schwert (1989), as discussed in recent

work by Andersen et al. (2001a, 2001b).

In addition to the long-range dependence properties of realized volatility, our results in-

dicate existence of a fractional cointegrating relation between realized and implied volatility

series. In accordance with recent developments in the literature on the forward discount

anomaly (see Barnhart and Szakmary (1991), for example), cointegration necessarily points

us towards a fundamental reinterpretation of the economic signiÞcance of the conventional

predictive regression. In effect, such regression should be regarded as a characterization of the

long-run equilibrium relation between volatility series rather than as a formal test of option

market efficiency and/or short-term unbiasedness as in the extant literature on the subject.

Having made this point we proceed to the estimation of the model. The likely existence

of a cointegrating relation (which could be either in the stationary or in the nonstationary
1Taylor (1986), Ding et al. (1993) and Dacorogna et al. (1993) are important early references on the relevance

of long range dependence in volatility. Taylor (1986) Þnds persistence of the fractional type in absolute stock
returns. Ding et al. (1993) and Dacorogna et al. (1993) note the same fact for the powers of daily returns and
high frequency squared exchange returns, respectively. (The interested reader is referred to Baillie (1996) for
a survey of the early work.) Baillie at al. (1996), Bollerslev and Mikkelsen (1996,1999), Comte and Renault
(1998), Ebens (1999), Ray and Tsay (2000), Brunetti and Gilbert (2000), Li (2000) and Andersen et al. (2001a,
2001b), among others, provide more recent evidence.
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region) between implied and realized volatility measures has to be taken into consideration

when conducting inference since the standard framework for doing hypothesis testing does not

apply. Nonetheless, fractional cointegration provides us with a natural set-up to tackle some

of the problems that predictive regressions of this kind encounter. By virtue of the existence of

cointegration between realized and implied volatility, we argue that contaminations inducing

dependence between the regressor and the residuals (a time-varying risk premium, for instance)

are likely to be of lower order of (fractional) integration than the regressor. In consequence,

we use narrow band least squares spectral methods to estimate the model consistently even in

the likely presence of stationary residuals correlated with a stationary regressor. As said, this

is a unique feature of our methodology which crucially hinges on the statistical properties of

the relation between realized and implied volatility series.

Let us be more clear. When assuming fractional cointegration in the nonstationary region,

consistency of the least squares estimates in the presence of residuals correlated with the regres-

sors is a non-surprising result and reßects well-known facts about conventional cointegrating

relations of the I(1)/I(0) type, where the eventual correlation between errors and regressors

only determines second error adjustments in the asymptotic distribution of the least squares

parameter estimates (see Park and Phillips (1988), for example). In nonstationary fractionally

cointegrating models, the least squares estimates converge at atypical rates and have nonstan-

dard limiting distributions (see Kim and Phillips (1999b) and Robinson and Marinucci (2001),

RM henceforth, for instance), thus requiring adjustments to the conventional standard errors

for the purpose of reliable statistical testing. In the same models, narrow band least squares

generally determine faster rates than standard least squares (RM (2001)). This observation

provides a valid justiÞcation for using spectral methods based on a degenerating band of fre-

quencies at the origin even in situations where more conventional methods, such as ordinary

least squares, deliver consistent estimates. More importantly, in the stationary fractional coin-

tegrating case the least squares estimates are known to be inconsistent but, again, narrow band

spectral methods can be seen as a natural approach to guarantee consistency as Þrst suggested

by Robinson (1994a,b) and rigorously shown below in our framework. A simple discussion

about one potential source of correlation between residuals and regressor, i.e., existence of a

time-varying risk premium, will suffice here to clarify the intuition underlying this last impor-
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tant result. If the risk premium, which potentially enters the regression residuals, is of lower

order of integration than implied volatility (the regressor), then its spectrum is dominated by

that of implied volatility near zero frequency. Performing least squares over a set of frequen-

cies in the vicinity of zero allows us to exploit this property and obtain consistent parameter

estimates. In this work we are agnostic about the nature of the potential risk premium since

its functional form is unknown (asset pricing theory does not give us any reliable indication)

and its inclusion might determine likely mispeciÞcations. More generally, we avoid being spe-

ciÞc about the features of the non-orthogonality between residuals and regressor and Þnd that,

while option market efficiency and/or short-term unbiasedness cannot be tested conÞdently

due to the properties of the data, evidence in favor of a long-term notion of the conventional

unbiasedness hypothesis is rather strong.

Aside from the evident empirical appeal, modelling volatility series as long-memory processes

Þnds an interesting theoretical justiÞcation in the work of Comte and Renault (1996, 1998),

CR henceforth, which, in line with the prescriptions of the data, ties together the long memory

properties of realized, implied and spot volatility. CR (1996, 1998) study long range dependence

in continuous-time stochastic volatility models of option pricing. They show that if the under-

lying unobservable (spot) volatility series displays long-range dependence, then so do realized

and implied volatility. Furthermore, the CR (1998) model provides a natural justiÞcation for

testing the existence of a linear relationship between implied and realized volatility by virtue

of the fact that the implied Black and Scholes volatility should be a proxy for the expected

(under the equivalent martingale measure) realized volatility of at-the-money, short-term, op-

tions. CR (1998) show that, in addition to being an empirical fact, long range dependence

in stochastic volatility models provides a rationale for the so-called �smile� (the U-shaped

structure of implied volatilities across different strike prices). In particular, while standard

stochastic volatility models capture the fact that the smile decreases as the time to maturity

increases, such effect is more pronounced than in the data. Volatility persistence provides a

valid justiÞcation for this effect. Interestingly, long range dependence in stochastic volatility

is consistent with continuous-time no-arbitrage pricing. In particular, even though volatility

is not a semimartingale in itself (since fractional Brownian motion is not a martingale, see

Rogers (1997)), prices are (since volatility is not assumed to be a traded asset) and therefore
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admit an equivalent martingale measure (indeed, more than one since markets are typically

not complete).

One last observation is in order. This paper discusses an instance where the persistence of

volatility measures, which is a stylized fact based on our results and a good deal of previous

work, plays a role in modifying our interpretation and understanding of a well-established

economic relation while forcing us to employ appropriate econometric methodologies. More

generally, we believe that the persistence of most volatility measures should be given more

care any time a notion of volatility is employed as a dependent or independent variable in

forecasting, as sometimes the case in the empirical Þnance literature. Any approach used must

be able to capture persistence, and this is what our focus on a simple long-memory model

accomplishes.

The paper is organized as follows. Section 2 contains a description of the data and tests

for fractional cointegration of realized and implied volatility series. Section 3 brießy discusses

an option pricing model that implies long-memory in realized and implied volatility given long

memory in spot volatility. The same model provides us with economic restrictions to be tested.

In Section 4 we describe the econometric methodology and show consistency of the parameter

estimates. Section 5 contains simulations. The empirical results are laid out in Section 6.

Section 7 concludes. Proofs and technicalities are in Section 8.

2 The data

We consider daily data on the VIX (i.e., the CBOE Market Volatility index) and the S&P 100

(OEX) index from January 1988 to May 2000.

The VIX is the implied volatility of a nontraded (synthetic) at-the-money option contract

with one month to maturity. It is believed not to be affected by the problems that pollute

standard implied volatility measures extracted from OEX contracts as in Christensen and

Prabhala (1998), i.e., the potential nonsynchronous measurement of option and index levels,

early exercise and dividends, bid-ask spreads as well as the wild card option in the OEX

market. The VIX was Þrst used in predictive regressions of the type analyzed here by Chernov

(2001). We refer the reader to Chernov�s paper and to Whaley (2000) for additional details.
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It is noted that Chernov employs daily overlapping data. We use monthly2 non-overlapping

observations to control the correlation structure of the errors as suggested by Christensen and

Prabhala (1998) by taking the closing value of each month. We also multiply the VIX data by

a constant factor equal to
¡
252
365

¢1/2 as in Schwert (2002) to account for the difference between
trading and calendar days. As pioneered by French et al. (1987) and Schwert (1989), we

compute the realized volatility over the remaining 30 days (one month) of the option as

¡
σRt,30

¢2
=
1

30

30X
j=1

r2t+j, (1)

where rt = log (St/St−1) and St is the daily S&P 100 index at t.3 Finally, we take the square

root of both volatility measures.

To summarize, the data transformations result in two monthly time series, say σBSt and

σRt , where σ
BS
t is the annualized (assuming 252 days per year) Black and Scholes implied

standard deviation for a synthetic, at-the-money, option contract with one month to maturity,

as implied by the VIX, and σRt is the realized standard deviation of the S&P 100 index over

the remaining life of the synthetic option (one month), respectively. Both series contain 152

non-overlapping observations.

Table 1 provides descriptive statistics for the two volatility measures, as well as for the

least squares residuals from the regression

σRt = α+ βσ
BS
t + ut, (2)

and the residuals assuming α = 0 and β = 1. We notice that both implied and realized volatility

display heavy tails and positive skewness. As typically the case with volatility measures (see

Andersen et al. (2001b), for instance), a simple log transformations (not reported here) would

almost restore normality. The mean of the implied volatility is larger than the mean of the

realized volatility, suggesting a possible risk premium.

We now analyze the persistence properties of the data.
2>From a theoretical standpoint, the use of daily data as in Chernov (2001) does not affect the long memory

properties of the series (which we verify below) since the class of fractionally integrated processes is self-similar
implying that the degree of fractional integration is invariant to the sampling frequency (see Beran (1994), for
example).

3French et al. (1987), Schwert (1989), and Christensen and Prabhala (1998) remove the mean of returns
over the remaining life of the option before computing σRt,30. Below we show that the estimator we use is more
coherent with the interpretation of σRt,30 as an estimate of the square root of the quadratic variation of the
log-price process.
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2.1 Long memory and fractional cointegration

As discussed in the introduction, we model persistence in volatility through a long-memory

model. The long-memory parameter d is estimated in a semiparametric fashion. We consider

both the standard Geweke and Porter-Hudak (GPH, henceforth) estimator (see GPH (1983))

and the Andrews and Guggenberger (AG, henceforth) estimator (see AG (2000)). Both are

obtained as the least squares estimate of d in the frequency-domain regression

ln I (λi) = γ0 − d ln
µ
4

µ
sin2

µ
λi
2

¶¶¶
+

JX
j=1

γjλ
2j
i + ε (λi) , (3)

where I (.) is the periodogram of the data computed at the harmonic frequencies λi = 2πi
n with

i = 1, ...,m < n. The bandwidth parameter m is allowed to vary between [
√
n] and

£
n0.8

¤
+1,

where [x] is the integer part of x.

The GPH estimator is obtained with J = 0, while the AG estimator allows J > 0 (we set

J = 1 in what follows). The asymptotic standard errors are derived from the result

√
m
³bdn,m − d´⇒N

µ
0,
π2

24
cJ

¶
, (4)

where cJ is a constant that depends on the number of even powers of harmonic frequencies in

the log-periodogram regression. For J = 0 (the GPH case), cJ is equal to 1, while it is 2.25 for

J = 1 (see AG (2000) for other values of cJ and its formal deÞnition). It is noted that adding

the term λ2i more than doubles the variance of the d estimates. Nonetheless, we report the AG

estimator here since the bias improvement that this addition determines is sufficient to reduce

the asymptotic mean squared errors of the d estimates relative to the GPH estimator.

The limiting distribution in (4) was obtained by AG (2000) under the assumption of sta-

tionarity (d < 1
2). Nonetheless, it is known that when J = 0 (in the standard GPH case),

such result is true (with c0 = 1) both in the presence of stationary data (Robinson (1995))

and in the presence of nonstationary data with 1
2 ≤ d < 3

4 (Velasco (1999)). Additionally, for
1
2 < d < 1 the GPH estimator is known to be consistent (Velasco (1999)).

4

In Figure 1 we report the d estimates and the corresponding 95% conÞdence bands for the

original volatility series σBSt and σRt as well as for their difference (viz., the residuals obtained
4The literature cited previously assumes gaussianity. Nonetheless, milder conditions can be invoked for the

results to be valid as shown by Kim and Phillips (1999).
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by imposing a (1,-1) cointegrating vector) and the least squares residuals.5

In the presence of fractional cointegration, the long-memory parameters of the two volatility

series should be equal to each other, whereas the long-memory parameter of the residuals

should be less than that of the original volatility series. Qualitatively, we Þnd that this the

case. As typical in fractional models, the d parameter estimates are fairly imprecise with

large standard error bands (see Baillie (1996)); as expected, this is especially true for the AG

estimator. Nonetheless, the d estimates are rather stable over a wide range of bandwidths

and statistically indistinguishable across volatility measures. When combined with the lower

degree of integration of both sets of residuals, this Þnding, which is robust to alternative

bandwidth choices, suggests cointegration of the fractional type. Interestingly, cointegration

in the nonstationary region appears to be plausible.6

Given these results, a simple model for the data might be

σRt = α+ βσ
BS
t + ut, (5)

where σRt ∼I(d1), σBSt ∼I(d1) and ut ∼I(d2) with d2 < d1. Furthermore, we could assume that

either d1 > 0.5 with d1+d2 < 1, implying nonstationarity and mild cointegration, or d1 < 0.5,

implying cointegration in the stationary region. Abstracting from the long memory properties

of the data, regression (5), which derives (in an approximate form) from most option pricing

models, has been employed in much existing work to test for option market efficiency and/or

short-term unbiasedness of implied volatility as a predictor for realized volatility. Should we

believe that fractional cointegration is a robust feature of the relation between implied and

realized volatility series, then such tests appear hard to justify.

Naturally, we verify the robustness of our Þnding of fractional cointegration by applying the

previous methodology to two additional data sets that were used in previous studies. The Þrst

data set consists of monthly data on the S&P 100 index and OEX options between January

1988 and May 1995 for a total of 89 non-overlapping observations.7 The data is obtained
5Based on our previous discussion, ordinary least squares regressions are, in general, consistent only in the

nonstationary case (d ≥ 0.5). Since there is uncertainty as to whether the data is stationary or not (see below),
the least squares results should be seen as illustrative only.

6CR (1998) Þnd a fractional parameter equal to 0.67034 for the implied volatility (σBSt ) of options on the
CAC40 of the Paris Stock Exchange.

7The use of post-crash (from January 1988) data that we make here (and made earlier) is due to the
observation that markets were substantially less liquid in the pre-crash period (Poteshman (2001)). Jackwerth
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by examining at-the-money call options with a month to expiration sampled right after the

previous expiration date. This data is used in Christensen and Prabhala (1998). We refer

the interested reader to their work for a detailed description. The second data set consists of

monthly data on options on Deuschmark-Dollar futures from the Chicago Mercantile Exchange

(CME). The time frame is January 1990 to November 1998 for a total of 107 non-overlapping

observations. Similar data is used in Jorion (1995), but Jorion�s sample covers the January

1985 to February 1992 period. Jorion (1995) discusses the advantages of CME options on

foreign currency features over the OEX options. SpeciÞcally, empirical work based on the

former is expected to be less contaminated by measurement errors since option and underlying

trade side-by-side. It is noted that this market moved from quarterly option expiration dates

to monthly expiration dates in 1987. Here, we work with data from 1990 to avoid any potential

adjustment/learning effects that this change might have caused.

The results are presented in Figures 2 and 3. We conÞrm that fractional cointegration

appears to be a stylized fact, thereby triggering a fundamentally different interpretation of the

economic signiÞcance of regression (5).

As a Þnal robustness check (not reported here for brevity8), we consider two transformations

of the data that have been implemented in previous research, namely we square the volatility

series and take logarithms.9 The conclusions we draw are the same.

Having pointed out that fractional cointegration necessarily changes our understanding

and interpretation of a well-known economic relation, we now turn to a model that justiÞes

estimating a regression equation like (5) above.

A Þnal caveat is in order. In our preliminary investigation of the data we use graphical

methods to assess the presence of cointegration and evaluate its nature. There are two reasons

and Rubinstein (1996), for example, report structural changes in the S&P 500 (SPX) market following the
October 1987 crash. It is apparent that such changes are likely to have affected the OEX market as well. It
should be noted, though, that our main Þnding, i.e., the existence of a cointegrating relation between volatility
series, is robust to the inclusion of the pre-crash data. The full data simply displays fatter tails than reported
in Table 1 and less persistence, thus inducing cointegrating relations that are closer to, or deeper into, the
stationary region.

8Corresponding tables and Þgures can be provided by the authors upon request.
9Our original transformation, namely σR,BS, is used in Canina and Figlewski (1993), Fleming (1998), Jorion

(1995), Christensen and Prabhala (1998) and Poteshman (2000), among others. Day and Lewis (1992,1993),
Lamoureux and Lastrapes (1993) and Chernov (2001) use

¡
σR,BS

¢2
. The log transformation is in Christensen

and Prabhala (1998).
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for this. First, we show robustness of the results to the choice of the number of frequencies.

Second, by looking at the residuals obtained from imposing the cointegrating vector (1, −1) as
well as the least squares residuals, which are admittedly biased in the stationary case (see our

previous discussion), we provide rather sharp evidence (in favor of cointegration) that allows us

to by-pass the problems that would be posed by the implementation of the existing tests. For

instance, the choice of the bandwidth when estimating consistently the cointegrating vector by

narrow band spectral methods and the distribution of the residuals of the cointegrating vector

are quite problematic (see Brunetti and Gilbert (2000) for a recent discussion).

3 Long-memory in implied volatility: a theoretical justiÞcation

Most option pricing models we are aware of imply an approximate linear relation between

implied volatility and realized volatility over the life of the option. This observation provides

justiÞcation for regressing realized volatility onto implied volatility in a linear fashion since

the appeal of the maintained hypothesis of the existence of a linear relation between the two

volatility measures appears to be largely unaffected by the validity of a speciÞc option pricing

model.

Here we use the set-up in CR (1998) to introduce formally fractionally integrated volatility

in continuous-time option pricing and derive a meaningful testable framework. Coherently

with the short-range dependence case discussed by others (see Poteshman (2000) for a review),

this model implies an approximate linear relation between the two volatility measures that

are the object of the present study. As we discuss below, such relation is robust to various

speciÞcations of the underlying fundamentals.

Assume a stochastic volatility model with long range dependence of the type10

dSt
St

= µS(t, St)dt+ σtdW
1
t (6)

d(lnσt) = k(θ − lnσt)dt+ γdW 2
dt, (7)

where
10The interested reader is referred to CR (1996) for an introduction to long memory continuous-time models

and Comte (1996) for a discussion of simulation and estimation methods for the same class of models.
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W 2
dt =

1

Γ(1 + d)

Z t

0
(t− s)ddW 2

s 0 < d <
1

2
(8)

is a version11 of fractional Brownian motion and
©
W 1(t),W 2(t)

ª
is a standard Wiener process

on the plane. The log volatility process displays long range dependence since the spectrum

flnσt lnσt(λ) =
γ2

Γ2(1 + d)λ2d
1

λ2 + k2
(9)

is unbounded at the origin.

A European call option with strike price K and maturity T written on the Þnancial asset

with price St has a value at time t which is given by the expectation of the Black and Scholes

model, where the expectation is taken with respect to the equivalent martingale measure Q

and the implied Black and Scholes volatility is replaced by the continuous time average of σ2t

over the period of interest (CR (1998)). SpeciÞcally, the price Ct of the option can be written

as

Ct = =Qt
³
CBS

³
St,
p
Ut,T ,K, T − t

´´
, (10)

where

Ut,T =
1

T − t
Z T

t
σ2sds =

1

T − t [logS]t,T , (11)

11MR (1999) deÞne a rescaled version of it, namely

W
2
d(t) = (2d+ 1)Γ(1 + d)W

2
d (t) t ≥ 0

as �type II fractional Brownian motion�. The main difference between type II and what MR (1999) call type I
(see Taqqu (1979) and Samorodnitsky and Taqqu (1994)), i.e.

B
2
d(t) =

1

A(d)

Z 0

−∞

n
(t− s)d − (−s)d

o
dW (s) +

1

A(d)

Z t

0

(t− s)ddW (s)

for t ≥ 0 with

A(d) =

½
1

2d+ 1
+D(d)

¾1/2
, D(d) =

Z ∞

0

n
(1 + s)d − sd

o2
ds

lies in the nonstationarity of the increments in the case of type II. It readily appears that W
2
d(t) is simply a

truncated version of B
2
d(t). Just like B

2
d(t) can be obtained as the weak limit of a (rescaled) sum of stationary

linear processes displaying long-range dependence (see Davydov (1970), for example), W
2
d(t) can be the weak

limit of a (rescaled) sum of truncated (asymptotically stationary) linear processes with long-range dependence
(see Akonom and Gourieroux (1987), Silveira (1991) and MR (2000)).
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[logS]t,T is the quadratic variation of the log-price process between t and T and =Qt (.) =
EQ(.|=t). Hence, the following proposition readily follows.

Proposition 1. Given an underlying asset whose price dynamic is driven by (6), (7) and (8),

the value of an at-the-money, short-term, European option is such that the Black and Scholes

implied standard deviation is approximately equal to the expected (under the objective measure

P ) square root of the averaged quadratic variation of the log price process plus a time-varying

risk-premium, i.e.,

σBSt ≈ =Pt
³p

Ut,T

´
+RPt. (12)

Assuming that the time-varying risk premiumRPt can be quantiÞed, expression (12) implies

the testable restrictions α = 0, β = 1 and γ = −1 on the regression model

p
Ut,T = α+ βσ

BS
t + γRPt + εt,T , (13)

where εt,T is a forecast error satisfying =Pt (εt,T ) = 0. Unfortunately, simple no-arbitrage

principles do not provide us with an expression for RPt. If volatility is not a traded asset,

markets are incomplete and an inÞnite number of martingale measures are compatible with

the absence of arbitrage. Only a fully-speciÞed equilibrium model could shed some light on

the features of the volatility premium (see Pham and Touzi (1996) for a similar exercise in a

stochastic volatility model with short-range dependence). From an econometric standpoint,

any assumption about RPt is, therefore, arbitrary and potentially very misleading. In the

sequel we will treat this term as unobservable. In other words, we will account for its presence

but will not impose a tight structure on it to avoid likely mispeciÞcations. We will come back

to this issue.

Some additional observations are in order. First, it is noted that the pricing formula that

justiÞes an approximate linear relation between implied and realized volatility, viz., (12) above,

simply derives from the Q distribution of the price process being conditionally (on information

and the volatility path) lognormal. In fact, the model is generalizable to more involved volatility

structures provided the drift and the instantaneous volatility of the (positive-valued) volatility
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process only depend on the underlying volatility itself. Furthermore, the adapted drift process

µS(t, St) is completely unrestricted.

Second, as shown by CR (1998), the Black and Scholes implied volatility displays long

memory in this framework (see their Proposition 4.2). This observation implies that quadratic

variation should also display long memory (since its order of integration is equal to the maxi-

mum order of integration of the three terms on the right-hand side of (13)). Hence, consistently

with our Þndings in Section 2, the model presented in this section suggests a linear relation

between two variables displaying long-memory characteristics. Should γRPt+ εt,T be of lower

order of (fractional) integration than both volatility measures, as argued in Section 2 from an

empirical perspective, then (13) constitutes a (fractional) cointegrating relation.

While the CR (1998) model is a useful framework to derive testable restrictions, as in the

short-range dependence case covered elsewhere, it is apparent that the empirical appeal of a

linear relation between realized and implied volatility series goes beyond the strict validity of

the CR (1998) set-up.

We now turn to the estimation of model (13).

4 The econometric model

Four main econometric issues have been discussed in the literature on the predictive power of

implied volatility.

First, the quadratic variation of the log price process is measured with error (see Poteshman

(2000) and Chernov (2001), for example). What is generally called �realized volatility� is in fact

an estimate of the random quadratic variation process of the log-price process. Such estimate

is known to be consistent in probability provided the distance between observations goes to

zero (see Protter (1990), inter alia). As a consequence, observations that are sampled at high

frequencies provide a natural tool to estimate [logS]t,T . Andersen et al. (2001, 2001b) discuss

the general issue of quadratic variation estimation using high-frequency data. Poteshman

(2000) and Chernov (2001) apply this idea to predictive regressions of the kind analyzed in

this work.

Second, the implied volatility series is also subject to measurement error (Christensen and

Prabhala (1998), for example, mention the potential nonsynchronous measurement of options
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and index levels, early exercise and dividends, bid-ask spreads as well as the wild card option

in the S&P100 (OEX) market).

Third, as stressed earlier, the time-varying risk premium is unobservable. Unless we are

eager to be more speciÞc about the features of the model, neglecting it implies potentially

inconsistent least squares estimates of the parameter β since the residuals are likely to be

correlated with the regressor, viz., σBSt (Using the Heston (1993) model, for example, Chernov

(2001) writes RPt as a linear function of the unobserved stochastic volatility σ2t but σ
2
t is

trivially correlated with σBSt ).

Fourth, the use of overlapping data as in Canina and Figlewski (1993) and Chernov (2001)

induces a correlation structure in the errors which biases downward the least squares standard

errors (see Christensen and Prabhala (1998) and Jorion (1995), for example).

In general, the second and the third issue have the common feature of causing inconsistent

least squares parameter estimates when considering conventional stationary models.

Here, we accommodate both issues, as well as an imprecisely measured quadratic variation

process, by explicitly modeling an error structure that is coherent with measurement errors

and missing terms in the context of a cointegrating relation for implied and realized volatility

series. We neglect the last issue, viz., correlated errors induced by overlapping data, since we

employ non-overlapping observations in this study (see Section 2). Nonetheless, our framework

would be robust to the use of overlapping data. DeÞne

r
1

T − t [logS]t,T + u
R
t,T = yt,T , (14)

σBSt + uBSt = xt, (15)

− {RPt −E (RPt)} = δt, (16)

−E (RPt) = α, (17)

where yt,T and xt are the observable volatility series (i.e., realized and implied, respectively).

Then, (13) suggests the testable model

yt,T = α+ β
¡
xt − uBSt

¢
+ δt + u

R
t,T + εt,T , (18)

which implies
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yt,T = α+ βxt − βuBSt + δt + u
R
t,T + εt,T (19)

and

yt,T = α+ βxt + ε
∗
t,T (20)

with ε∗t,T = −βuBSt + δt + u
R
t,T + εt,T , where the measurement errors u

BS
t and uRt,T and the

forecast error εt,T are serially independent shocks with short-range dependence. Consistently

with Robinson (1994), we model xt and ε∗t,T as linear processes with spectra satisfying

f1(λ) ≈ L1

µ
1

λ

¶
λ−2d1 as λ→ 0+, (21)

f2(λ) ≈ L2

µ
1

λ

¶
λ−2d2 as λ→ 0+, (22)

respectively, where L(λ) is a slowly varying function at inÞnity, i.e., a positive, measurable

function so that

L (tλ)

L (λ)
→ 1 as λ→∞, ∀t > 0. (23)

We recognize the existing fractional cointegration between yt,T and xt by assuming that the

parameters d1 and d2 conform to the requirement d1 > d2 with 0 ≤ d2 <
1
2 . Based on our

discussion of the data in Section 2, the fractional parameter d1 can be either in the stationary

region (i.e., 0 < d1 < 1
2) or in the nonstationary region (i.e., d1 ≥ 1

2).

Clearly, d2 might be equal to zero, implying short-range dependence. The possible fractional

integration of the aggregate error term ε∗t,T is necessarily induced by the missing (de-meaned)

risk-premium δt since the shocks uBSt and uRt,T and the forecast error εt,T display short range

dependence. The potential long memory properties of the risk premium can be understood

easily. For instance, a large amount of literature writes the unobservable risk premium as

a function (which is often linear, see Chernov (2001), for example) of the underlying spot

volatility. But the underlying unobservable volatility is long-range dependent and, in general,

transformations of long-range dependent series are long-range dependent (see Dittman and

Granger (2000), for instance).
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Additionally, we necessarily allow for potential correlation between the risk premium δt

and the implied volatility proxy xt (and, as a consequence, between ε∗t,T and xt). Again, the

plausibility of this feature of the model can be gauged easily. Trivially, if the unobserved risk

premium depends on the underlying spot volatility series (as implied by many existing models),

then the correlation between the implied volatility proxy (the regressor) and the regression

residuals follows immediately. Chernov (2001) provides a discussion of the importance of this

feature of the model in determining inconsistent least squares estimates in the stationary,

short-range dependent, framework that he considers.

Coherently with our use of non-overlapping data, we write T = t+1. Thus, the regression

equation becomes

yt+1 = α+ βxt + ε
∗
t+1, (24)

with ε∗t+1 deÞned as above. It is apparent that the error term ε∗t+1 is measurable with respect

to =Pt+1. Its conditional Þrst moment cannot be zero since uBSt and δt are =Pt -measurable.
Hence, =Pt (ε∗t+1) = −βuBSt + δt. Nevertheless, E(ε∗t+1) = 0.

Model (12) suggests that β should be equal to one and α should be equal to the expected

risk premium (with a negative sign), i.e., −E (RPt). We wish to test whether α = 0 and

β = 1. It should be pointed out that, contrary to the existing literature, an estimated α which

is signiÞcantly different from zero cannot be invoked to rule out �unbiasedness.� In fact, as

shown earlier, in the presence of a non-vanishing expected risk premium the true α should be

different from zero. Of course, a zero α does not imply that volatility risk is not priced. In

fact, it might be priced and be time-varying but have a zero unconditional Þrst moment. As a

consequence, a rejection of the hypothesis α = 0 would be evidence in favor of the existence of

a priced premium. Should we fail to reject the hypothesis α = 0, then we could only conclude

that on average the volatility risk is not priced (see Pham and Touzi (1996)). Nonetheless,

this result would provide some empirical evidence against studies that have pointed out the

existence of a signiÞcantly negative premium (Benzoni (1998) and Pan (2000), inter alia).

Interestingly, our framework potentially allows us to test for the existence of a priced volatility

premium (on average) without making assumptions on the functional form of its relationship

with the underlying volatility series.
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We now turn to the details of the econometric procedure.

4.1 Predictive spectral regression

We notice that

yt+1 = α+ βxt + ε
∗
t+1 (25)

implies

yt+1 − y = β (xt − x) +
¡
ε∗t+1 − ε∗

¢
, (26)

where b =
³Pn−1

t=0 bt

´
/n. We deÞne the discrete Fourier transforms,

$y(λs) : =
1√
2πn

n−1X
t=0

yt+1e
itλs =

1√
2πn

n−1X
t=0

(yt+1 − y) eitλs (27)

$x(λs) : =
1√
2πn

n−1X
t=0

xte
itλs =

1√
2πn

n−1X
t=0

(xt − x) eitλs (28)

$ε∗(λs) : =
1√
2πn

n−1X
t=0

ε∗t+1e
itλs =

1√
2πn

n−1X
t=0

¡
ε∗t+1 − ε∗

¢
eitλs (29)

at the harmonic (Fourier) frequencies λs = 2πs
n , where s = 1, 2, ...., n − 1. The equality holds

for all integers s 6= 0, n. The (cross-)periodogram, say between y and x, is given by

Iyx(λs) = $y(λs)$x(λs). (30)

where $x(λs) is the complex conjugate of $x(λs). In consequence, the narrow band least

squares (NBLS) estimate of β is deÞned as

bβn,m = bFxy(1,m)bFxx(1,m) =
bFxy(0,m)− xybFxx(0,m)− x2 , (31)

where

bFxy(l,m) = 2π

n

mX
s=l

Iyx(λs) l = 1, 0 (32)

with m < n
2 . We estimate α using
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bαn,m =r2π
n
$y(0)− bβn,m

Ãr
2π

n
$x(0)

!
. (33)

Some remarks are in order. We start with the stationary case (i.e., 0 < d1 < 1
2). As discussed

by Robinson (1994) and mentioned in RM (2001), even though least squares estimation is

inconsistent in the presence of likely correlation between the regressors and the errors, the

NBLS estimate of the slope parameter in the same regression is generally consistent provided

the regressors are linked by a cointegrating relation. In our framework, correlation between the

regressors and the error term is induced by the likely correlation between xt (proxy for implied

volatility) and δt (the de-meaned unknown risk premium). Hence, fractional cointegration

in the stationary case allows us to get around the problems posed by the existence of a time-

varying risk premium possibly correlated with implied volatility. If the risk premium is of lower

order of integration than implied volatility (below we come back to this assumption), then its

spectrum is dominated by that of implied volatility near zero frequency. In consequence, we

perform least squares over a degenerating band of frequencies in the neighborhood of the

origin to exploit this property. The intercept estimator bαn,m is trivially consistent under the

assumptions made provided bβn,m is consistently estimated.
Theorem 1. Consider the predictive model for a realized volatility proxy yt,T given an implied

volatility proxy xt

yt,T = α+ βxt + ε
∗
t,T (34)

with ε∗t,T = −βuBSt + δt + u
R
t,T + εt,T , where u

BS
t and uRt,T are measurement errors, εt,T is a

forecast error and δt is a time-varying risk premium. Assume uBSt and δt are correlated with

xt. Also, assume the spectra of xt and δt satisfy

f1(λ) ≈ L1

µ
1

λ

¶
λ−2d1 as λ→ 0+, (35)

f2(λ) ≈ L2

µ
1

λ

¶
λ−2d2 as λ→ 0+, (36)
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respectively, where L1 and L2 are regularly varying functions at inÞnity and d1 > d2 with

0 ≤ d1, d2 < 1
2 . Then, the NBLS estimates deÞned in (31) and (33) are consistent in probability

as 1/m+m/n→ 0 with n→∞.

We now turn to the nonstationary case (i.e., d1 ≥ 1
2). Typically, in cointegrating relations

of the I(1)/I(0) type consistency is not an issue in the presence of residuals that are correlated

with the regressors since endogeneity only requires second order adjustments in the asymptotic

distribution of the least squares parameter estimates (Phillips and Park (1998)). The same

result trivially emerges from fractionally cointegrating regressions of the type analyzed here as

shown by Kim and Phillips (1999b) and RM (2001), inter alia. Nonetheless, NBLS methods

generally entail faster rates of convergence than ordinary least squares (see RM (2001)), thus

providing justiÞcation for their use even in situations where more conventional tools could

employed.

In order to assess the statistical signiÞcance of the regression estimates, we rely on subsam-

pling (see Politis, Romano, and Wolf (1999) for a complete discussion). We prefer subsampling

over the usual bootstrap because of its wider applicability. The only requirements for its valid-

ity are the existence of a limiting distribution and some (rather mild) conditions limiting the

dependence of either the data or the subsampled statistics. For example, subsampling is ap-

plicable to the case of an autoregression with a unit root, while the standard bootstrap is not.

Another advantage of subsampling over the bootstrap is that the rate of convergence to the

asymptotic distribution does not have to be known and can be estimated (see Bertail, Politis,

and Romano (1999)). This property is particularly attractive given that there is uncertainty as

to whether we are in the stationary range or not and the convergence rates depend on the long

memory parameters of both the regressors and the errors. Moreover, it is likely that the rates

of convergence of the constant and slope estimators are different. Our subsampling approach

can estimate these different rates consistently.

In our framework, the conditions of Theorems 8.2.1 and 8.3.1 of Politis, Romano, and

Wolf (1999) are satisÞed under some very standard asymptotic requirements: the size b of

the subsamples grows to inÞnity and the ratio b/n vanishes as the sample size diverges to

inÞnity in both the stationary and in the nonstationary case. This implies that we can obtain
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consistent estimates of the convergence rates of the slope and constant estimators as well as

valid conÞdence intervals without knowing whether the stationary or the nonstationary case

apply to our case. To preserve the correlation between the regressors and the errors, we do the

resampling on the couple (y, x) and choose subsamples of size b =
h
n
2
3

i
where [x] denotes, as

usual, the integer part of x (see Politis and Romano (1994) and Bertail, Politis, and Romano

(1999) for a similar choice). We compute statistics on all n−b+1 such subsamples of b successive
observations and choose mb, the number of Fourier frequencies to compute the narrow band

estimator for each subsample, to be the same fraction of the sample size as in the original data,

i.e., mb
b =

m
n .

In the next section we simulate an econometric model that is coherent with the assumptions

of Theorem 1 by using the set-up that was proposed by CR (1998). We also evaluate the

properties of the proposed estimators.

5 Simulations

We employ the CR (1998) long memory stochastic volatility model (c.f. (6) and (7) above) to

analyze the impact of long memory on the predictive regression between implied and realized

volatility as well as the behavior of the proposed narrow band least squares estimates. We use

the discretized version of the model provided by Comte and Renault (1998) and the algorithm

in Comte (1996) to generate sample paths. We compute option prices by numerical integration

assuming that volatility risk is not compensated.

The discretized model is:

lnSt+∆ = lnSt +

µ
r − σ

2
t

2

¶
∆+

√
∆σt+∆ε

1
t+∆ (37)

lnσt = θ +

[t/∆]X
j=1

(t− j∆)d
Γ (1 + d)

h
x
(d)
j∆ − x(d)(j−1)∆

i
(38)

x
(d)
t+∆ = e−k∆x(d)t + γ

µ
e−2k∆ − 1
−2k

¶ 1
2

ε2t+∆ (39)µ
ε1t+∆
ε2t+∆

¶
∼ iidN (0, I2) (40)

We set x(d)0 = 0 and normalize the log stock price to be 0 at time 0. This normalization is

innocuous since we only look at at-the-money options. We take ∆ to be half a day. This
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implies that each replication involves computing 152 option prices, each of which is inverted

to obtain the BS implied volatilities. Each option price is computed from 20,000 simulations.

Since we use antithetic variables, we have 10,000 different draws of the underlying random

errors.

In order to reduce the effect of initialization, for each replication we generate a single series

of 2×22×152 = 6, 688 realizations of the relevant continuous-time process plus 1,000 points to
be discarded. Realized volatility is computed by summing the squares of the daily returns over

the life of the option, i.e., 22 squared returns corresponding to every other simulated value of

the log price process. The path of the stock price used to compute realized volatility is chosen

at random among the 20,000 realizations. We replicate the procedure 1,000 times.

The parameter values are set at those estimated on our daily data on the S&P 100 index

between January 1988 and July 2000. We estimate the model using the efficient method of

moments (EMM) code provided by Gallant and Tauchen (see Gallant and Tauchen (1996,

2002) for details). The estimated parameter values are (in annual terms):

r = 0.00962 (41)

θ = −4.673 (42)

k = 1.561 (43)

γ = 0.388 (44)

d = 0.506. (45)

Finally, in order to introduce a likely source of correlation between implied volatility and

regression residuals, we add a measurement error to the implied volatility series.12 The error

term is independent and identically distributed through time. SpeciÞcally, we assume that it

is normally distributed with zero mean and a variance that is equal to the variance of implied

volatility over the corresponding replication.

For each replication we run a linear regression of realized volatility on a constant and

the implied volatility proxy. This regression is estimated by ordinary least squares and by
12We could have chosen a different source of correlation between regressor and regression residuals. For

instance, coherently with our previous discussion, we might have assumed that volatility risk is compensated
and set the risk premium as to induce correlation with implied volatility. While this alternative procedure would
not have been more informative, it would also have been substantially more arbitrary due to the fact that little
is known about credible functional forms for the unknown premium.
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narrow band least squares with 4 choices of bandwidth corresponding to different powers of

the sample size, namely n0.5, n0.6, n0.7, and n0.8. With the sample size that we are using (152

observations), these choices amount to including 12, 20, 33, and 55 Fourier frequencies in the

relevant regression.

In Table 2 we report the means of the various quantities over the replications as well as the

standard deviations (in parentheses, underneath). The Þrst column of the table refers to the

estimation of the constant, α, while the second column refers to the estimation of the slope,

β. The Þrst thing to notice is that ordinary least squares provides very biased results with a

mean estimated slope of about 0.35. Moreover, the R2 from this regression is barely above 5%.

Narrow band least squares remove almost all of this bias with a mean slope of about 0.9 when

using the smaller bandwidth. We also notice a downward trend to the estimates of β (and,

of course, an upward trend to the estimates of α) as the number of Fourier frequencies in the

spectral regression is increased since more and more short-run noise is added to the regression.

This result is coherent with theory and intuition. It is also consistent with the empirical results

that are reported in the subsequent section. As can be expected, the precision of the estimator

decreases as we reduce the number of Fourier frequencies.

In Table 3 we report the results relating to the estimation of the degree of long memory

using both the GPH and the AG estimator. Again, we consider 4 bandwidths corresponding to

n0.5, n0.6, n0.7, and n0.8 with n = 152. As in the case of the slope estimates, we see a downward

trend in the estimates of d as we increase the number of frequencies in the estimation of

this parameter. The only exception to this rule is the AG estimator for implied volatility.

Consistently with theory, the AG estimator is more variable with an increase in standard

deviation of roughly a third for implied volatility and almost a half for realized volatility.

While spectral methods are useful in removing the short-run noise that is associated with both

volatility measures, estimation by spectral methods is subject to a standard bias-variance

trade-off in the choice of bandwidth. Thus, care should be exercised when implementing and

interpreting this approach.
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6 Empirical results

Narrow band estimation of the predictive regression model (24) is presented in Figure 4 as a

function of the number of Fourier frequencies included in the spectral regression. The Þrst

row of the Þgure corresponds to the results for the S&P 100 and VIX data, the second row

to the results for the S&P 100 contracts, and the last row to the results for the DM options.

Note that the last point on each graph (the point that includes all the Fourier frequencies)

refers to the ordinary least squares estimate. The left panels contain results for the constant α,

while the right panels provide results for the slope coefficient β.We also report 95% conÞdence

bands for both sets of parameters based on the subsampling algorithm described in Section 4.

Finally, a horizontal line indicates the location of 0 for the constant and 1 for the slope for

ease of interpretation.

We Þrst discuss the S&P 100 - VIX case. Consistently with intuition and the results in

the previous section, there is a slight downward trend to the slope coefficients (such trend is

more evident when analyzing the other two data sets). As the number of frequencies in the

regression increases, a greater proportion of the correlation between the error term and the

observed implied volatility series is included in the regression, leading to an increased bias of

the slope estimates. Nonetheless, the conÞdence intervals for the slope coefficients include 1 for

all choices of frequencies suggesting long-run unbiasedness. As far the intercept estimates are

concerned, their values point to the existence of a slight (average) compensation for volatility

risk.

A caveat is in order. While the data supports long-term unbiasedness in the sense that we

cannot reject the null β = 1, there are at least two reasons why it is theoretically conceivable

to estimate a slope coefficient different from one. The Þrst one has a statistical ßavor, while

the second one has a superior economic appeal.

We start with the Þrst explanation. Even if model (12) were the correct model, should

realized volatility be cointegrated with implied volatility and the risk premium and the risk

premium be cointegrated with implied volatility, then the cointegrating vector between realized

and implied volatility would not necessarily be (1,−1). Based on models (12) and (24), consider

at+1 = yt+1 − xt − δt (46)
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and

bt = αxt + βδt (47)

with at+1 and bt integrated of lower order than xt (implied volatility proxy) and δt (risk

premium). Then, it would follow

yt+1 = xt +

µ
bt
β
− α
β
xt

¶
+ at+1, (48)

which would be equivalent to

yt+1 =

µ
1− α

β

¶
xt +

bt
β
+ at+1. (49)

In other words, bαn,m and bβn,m would be consistent estimates of the parameters of the true

cointegrating vector (i.e., the true long-run relation between implied and realized volatility),

but the slope would be
³
1− α

β

´
even if model (12) were correct. Clearly,

³
1− α

β

´
can be

smaller or larger than 1 depending on the features of the cointegrating vector between implied

volatility and the risk premium. Of course, even if such vector existed, it would be impossible

to estimate α and β separately since the underlying risk premium is unobservable.

We now turn to the second explanation for an estimated slope different from one, namely

the existence of a non-zero correlation between stock returns and the unobservable volatility

process (the so-called leverage effect).13 While the previous observation depends crucially

on the fractional (co-)integration of the volatility series that are the objects of this study,

the present explanation emerges readily even from more conventional settings where short-

range dependence is satisÞed. In order to stress that the result does not hinge on the long

memory properties of the data and for the sake of simplicity, we use a conventional short-range

dependence framework to illustrate this point. We largely follow Renault (2001). Consider the

following model for the risk-neutral (Q) dynamics of the stock return process

dSt
St

= rtdt+ ρσtdW
2∗
t +

p
1− ρ2σtdW 1∗

t (50)

d lnσt = g∗(σt)dt+ σtdW 2∗
t . (51)

13We thank Eric Renault for pointing this out to us.
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As usual, W 1∗
t and W 2∗

t are independent driftless Brownian motions under Q. Notice that

Corrt

³
dSt
St
, d lnσt

´
= ρdt. Then, the following proposition applies.

Proposition 2. Given an underlying asset whose risk neutral price dynamics is driven by

(50) and (51), the value of an at-the-money, short-term European option is such that the

implied Black and Scholes standard deviation is approximately equal to the square root of one

minus the squared correlation between return and volatility process, i.e.,
p
1− ρ2, times the

expected (under the objective measure P ) square root of the averaged quadratic variation of the

log-price process plus a time-varying risk-premium, i.e.,

σBSt ≈
³p

(1− ρ2)
´
=Pt

³p
Ut,T

´
+RPt. (52)

Hence, if ρ 6= 0 as suggested by a substantial amount of recent evidence,14 then the coef-
Þcient of the regression of realized on implied volatility should always be larger than one. In

other words, if the reliance on a speciÞc option pricing model is taken seriously, then the em-

pirically veriÞed correlation between stock returns and volatility should suggest more caution

in interpreting the results that standard unbiasedness tests have furnished. Recent studies

show an awareness of this problem (Chernov (2001)) but have a tendency to overlook its impli-

cations.15 This is understandable in that accounting for the correlation between returns and

volatility process might make the empirical investigation depend heavily on a tightly parame-

trized option pricing model, thus contradicting the largely model-free spirit of the exercise.

As in Section 2, we investigate the robustness of the long run one-to-one correspondence

between implied and realized volatility series by estimating model (24) in the presence of the

same two additional sets of data. The results (in the bottom two rows of Figure 4) reinforce

our previous Þndings and are fully coherent with the simulations in the previous section.

The conÞdence intervals for the slope coefficient include 1 for a fairly broad choice of small

number of frequencies. Coherently with a substantial amount of recent work, use of least
14Following the intuition of Black (1975), i.e., �...a stock that drops sharply in price is likely to show a higher

volatility in the future than a stock that rises sharply in price...�, it is now widely accepted that there exists
a negative correlation between stock returns and volatility, thus delivering stock return distributions that are
negatively skewed (see Bakshi et al. (1997)). A non-zero correlation between the stock return process and
volatility can explain the asymmetric smiles in the implied volatility curves (Renault (2001)).
15Chernov (2001) writes �the non-zero correlation will not affect the approximation in (2.3) ((56) in the

present paper) by much.�
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squares would lead to rejection of the unbiasedness hypothesis. Furthermore, the downward

trend in the point estimates is now much more evident and the conÞdence bands are substan-

tially wider that in the case of our original data. We can single out two potential explanation

for these effects. First, our original use of the VIX as the implied volatility measure (which, as

discussed earlier, attempts to remove the effects of the American nature of options, dividends,

nonsynchronous trading, and so on) leads to lower measurement error of implied volatility

and, consequently, to lower correlation between the regressor and the residuals (i.e., the term

uBSt is less important), thereby determining ßatter slope estimates across different frequencies.

Secondly, the VIX data set has a larger sample size leading to more precise estimation.

In general, our use of narrow band least squares to remove the effect of the correlation

between the residuals and implied volatility is robust to sensible choices of bandwidth. How-

ever, it would be desirable to investigate the possibility of a data-based method of bandwidth

selection. Robinson (1994b) discusses the choice of optimal bandwidth selection for spectral

estimation with long-memory, but his work would have to be extended to the case of frac-

tional cointegration. In effect, this choice appears to involve a typical bias/variance trade-off

as exempliÞed by the tendency for the conÞdence intervals to narrow down as more Fourier

frequencies are included in the estimation. This trade-off was also apparent when inspecting

our simulation experiments in the previous section.

One Þnal observation is in order. As earlier in Section 2, the results are robust to the choice

of the transformation used. Nonetheless, there is a general tendency for the slope estimates

based on the log transformation to be highest, followed by the standard deviation and, lastly,

by the variance.16

7 Conclusion

This paper has argued that the persistence of measures of Þnancial market volatility need

to be taken into account when assessing the relation between realized and implied volatility.

Coherently with recent work on the properties of realized volatility measures (see Andersen

et al. (2001a, 2001b), among others), we use a simple modelling approach based on long-

memory to capture persistence. In doing so, the features of the data suggest that the usual
16Corresponding Þgures can be provided by the authors upon request.

27



predictive regression between realized and implied volatility (regressand and regressor, respec-

tively) is, in fact, a (fractional) cointegrating relation. This Þnding modiÞes the interpretation

of such regression as a tool to test for option market efficiency, as typically the case in the

existing literature, since only long-run co-movements between the two volatility series can be

investigated.

While the Þnding of fractional cointegration renders the usual inference carried out in this

framework invalid, the potential long-memory property of the data allows us to suggest an

econometric methodology to estimate the standard regression between realized and implied

volatility that is robust to the various issues that were raised in the extant literature as ex-

planations for a slope coefficient less than one, i.e., measurement errors and presence of an

unobservable time-varying risk premium correlated with the regression residuals, for example.

In particular, our approach does not require to choose a particular parametrization for the risk

premium and is thus robust to the likely mispeciÞcation that this choice would entail given

that the existing asset pricing theory does not offer clear indications in this respect. More

generally, our procedure is robust to various forms of probable non-orthogonality between the

regressor (the implied volatility proxy) and the regression residuals.

Consistently with some recent studies (see Christensen and Prabhala (1998), Poteshman

(2000) and Chernov (2001)), we do Þnd evidence of near unbiasedness of implied volatility as

a predictor of realized volatility but interpret the result in terms of presence of a long run one-

to-one comovement between volatility series. In other words, we stress that little can be said

about short-term unbiasedness, option market efficiency and/or validity of a certain option

pricing model, which were the focus of much existing work on the subject.

This paper recognizes one possible instance where persistence of various volatility measures

affect both statistical inference and economic interpretation. More generally, we think that

care should be employed in empirical work any time a notion of volatility is believed to play a

role in forecasting.
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8 Proofs and Technical details

Proof of Proposition 1. Expanding the European option price Ct around
p
Ut,T , we can write

Ct = =Qt
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´
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and, in consequence,

σimp ≈ =Qt
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´
= =Qt
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Z T
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σ2sds
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where the approximation is more accurate for at-the-money, short-term, options. Now notice that
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where ξt is the Radon-Nikodym derivative
dQ
dP of the risk-neutral measureQ with respect to the objective

measure P. As usual, the positive-valued process ξt is deÞned as

ξt = exp

µ
−
Z t

0

λ
0
udWu − 1

2

Z t

0

λ0uλudu
¶
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W 1
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2
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¢0
and λt=
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λ1t ,λ

2
t

¢0
, where λt is a vector of risk premia. Furthermore, ξt is a

martingale under P provided the standard Novikov�s condition, viz.,

E

Ã
−1
2

Z T

0

λ0uλudu

!
<∞,

is satisÞed. The martingale property is used in deriving equalities (58) and (59), whereas equality (57)
follows from standard change of measure in the presence of conditional expectations. This proves the
stated result.
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Proof of Theorem 1. We employ the method of proof of Robinson (1994). Sufficiency can be
shown easily. Using the Cauchy inequality, write

¯̄̄bβn,m − β ¯̄̄
=

Pm
s=1$ε∗(λs)$x(λs)Pm

s=1 |$x(λs)|2
(62)

=

¯̄̄̄
¯
Pm
s=1$uR(λs)$x(λs)Pm

s=1 |$x(λs)|2
¯̄̄̄
¯+

¯̄̄̄
¯
Pm
s=1$ε(λs)$x(λs)Pm
s=1 |$x(λs)|2

¯̄̄̄
¯

+

¯̄̄̄
¯
Pm
s=1$δ(λs)$x(λs)Pm
s=1 |$x(λs)|2

¯̄̄̄
¯+

¯̄̄̄
¯β
Pm
s=1$uBS (λs)$x(λs)Pm

s=1 |$x(λs)|2
¯̄̄̄
¯ (63)

≤
(Pm

s=1 |$uR(λs)|2Pm
s=1 |$x(λs)|2

)1/2
+

(Pm
s=1 |$ε(λs)|2Pm
s=1 |$x(λs)|2

)1/2

+

(Pm
s=1 |$δ(λs)|2Pm
s=1 |$x(λs)|2

)1/2
+ |β|

(Pm
s=1 |$uBS (λs)|2Pm
s=1 |$x(λs)|2

)1/2
(64)

→ p

½
Fεε(1,m)

Fxx(1,m)

¾1/2
+

(
FuRuR(1,m)bFxx(1,m)

)1/2

+

½
Fδδ(1,m)

Fxx(1,m)

¾1/2
+ |β|

½
FuBSuBS (1,m)

Fxx(1,m)

¾1/2
(65)

if 1/m+m/n→ 0 as n→∞. But,
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since λm → 0 when n→∞, given d1 > d2. Then, the bound becomes

c1λ
d1−d2
m + c2λ

d1
m → 0 (67)

which, in turn, implies ¯̄̄bβn,m − β ¯̄̄ p→ 0. (68)

Now, write the estimation error decomposition for bαn,m as

bαn,m − α = −³bβn,m − β´r2πn $y(0) +
r
2π

n
$ε∗(0). (69)

Note that r
2π

n
$ε∗(0)→p 0 (70)

by the Ergodic Theorem. Combining (68) and (70), it follows that bαn,m p→ α. This proves the stated
result.
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Proof of Proposition 2. By Ito�s lemma, we can write the dynamic evolution of the log-price
process as
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µ
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This fact implies that the price Ct of a European call option with strike K and expiration T can be
written as

Ct = =Qt
Ã
exp

Ã
−
Z T

t

r(s)ds

!
(ST −K)+

!
(75)

= =Qt
Ã
=Qt

Ã
exp

Ã
−
Z T

t

rsds

!
(ST −K)+|W2∗, {σt}t∈[0,T ]

!!
(76)

= =Qt
³
CBS

³
StVt,T ,

p
Ut,T ,K, T − t

´´
, (77)

where

Vt,T = exp

Ã
−ρ2Ut,T

2
+ ρ

Z T

t

σtdW
2∗
t

!
(78)

implying

=Qt [Vt,T ] = 1 (79)

and

Ut,T = (1− ρ2) U t,T
T − t . (80)

Using a similar approximation as that in the proof of Proposition 2, but taking into account the fact
that such approximation can be substantially worse that earlier due to the fact that Vt,T equals one
only in expectation, we can now write

σimp ≈ =Qt
³p

Ut,T

´
= =Qt
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and, consequently,

=Qt
³p

Ut,T

´
≈ 1

(1− ρ2)σimp. (82)

This proves the stated result.
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Table 1.

Descriptive statistics for the realized and implied volatility series employed in this study. We

use monthly data on the S&P 100 index realized standard deviation - σR - and the squared root

of the VIX (the CBOE Market Volatility Index) - σBS - from January 1988 to May 2000 (152

non-overlapping observations). We compute the realized standard deviation over the remaining

30 days (one month) of the option as

σRt,30 =

vuut 1

30

30X
j=1

r2t+j ,

where rt = log (St/St−1) and St is the daily S&P 100 index at date t. We report mean,

standard deviation, skewness and kurtosis for both volatility measures as well as for two linear

combinations of the same measures, namely σR−σBS and σR− bα− bβσBS , where bα and bβ are
least squares parameter estimates.

The skewness and kurtosis coefficients are computed after studentizing the relevant quantity,

say θ, as tθ =
(θt−θ)
σ(θ) , where σ (θ) is the standard deviation of θ. Hence, they are equal to

1
n−1

P
t3θ and

1
n−1

P
t4θ, respectively.

Mean Std. dev. Skewness Kurtosis

Implied volatility (σBS) .1644 .0526 1.05 5.15
Realized volatility (σR) .1434 .0621 1.46 6.10
Difference (σR − σBS) -.0210 .0410 1.34 6.71

LS residuals (σR − bα− bβσBS) .0000 .0406 1.59 7.22
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Table 2.

Summary of the simulation results as described in section 5. The log price process is generated

according to the discretized Comte and Renault (1998) model, i.e.,

lnSt+∆ = lnSt +

µ
r − σ

2
t

2

¶
∆+

√
∆σt+∆ε

1
t+∆ (83)

lnσt = θ +

[t/∆]X
j=1

(t− j∆)d
Γ (1 + d)

h
x
(d)
j∆ − x(d)(j−1)∆

i
(84)

x
(d)
t+∆ = e−k∆x(d)t + γ

µ
e−2k∆ − 1
−2k

¶ 1
2

ε2t+∆ (85)µ
ε1t+∆
ε2t+∆

¶
∼ iidN (0, I2) (86)

with r = 0.00962, θ = −4.673, k = 1.561, γ = 0.388 and d = 0.506, where the parameters are
estimated by EMM (Gallant and Tauchen (1996)) using daily data on the S&P 100 index. We

set x(d)0 = 0 and normalize the log price process to be 0 at time 0. We take ∆ to be half a day.

Each replication involves computing 152 call option prices (numerically and on the basis of

20, 000 simulations) that we invert to obtain the BS implied volatilities. SpeciÞcally, for each

replication we generate a series of 2 × 22 × 152 = 6, 688 realizations of the log price process

plus 1, 000 points to be discarded. Realized volatility is computed by summing the squares of

the daily returns over the life of the option, i.e., 22 squared returns corresponding to every

other simulated value of the log price process. The path of the stock price used to compute

the realized volatility series is chosen at random among the 20, 000 simulations. Finally, we

contaminate the implied volatility series by adding an error term with mean zero and variance

equal to the sample variance of the implied volatility series over the corresponding replication.

We repeat the procedure 1, 000 times.

For each replication we run a linear regression between realized and implied volatility. We

estimate the model by ordinary least squares (second row) and narrow band least squares.

The number of Fourier frequencies used to compute the narrow band estimates is equal to the

integer part of n0.5, n0.6, n0.7 and n0.8. The means of the resulting estimates (with standard

errors underneath) are as follows:
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α β R2 (%)

OLS 0.062 0.354 5.34
(0.202) (2.138)

NBLS
¡
m = n0.5

¢
-0.027 0.903
(0.559) (5.723)

NBLS
¡
m = n0.6

¢
-0.010 0.797
(0.451) (4.604)

NBLS
¡
m = n0.7

¢
0.015 0.606
(0.350) (3.563)

NBLS
¡
m = n0.8

¢
0.034 0.464
(0.260) (2.643)
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Table 3.

Summary of the simulation results as described in section 5. The log price process is generated

according to the discretized Comte and Renault (1998) model, i.e.,

lnSt+∆ = lnSt +

µ
r − σ

2
t

2

¶
∆+

√
∆σt+∆ε

1
t+∆ (87)

lnσt = θ +

[t/∆]X
j=1

(t− j∆)d
Γ (1 + d)

h
x
(d)
j∆ − x(d)(j−1)∆

i
(88)

x
(d)
t+∆ = e−k∆x(d)t + γ

µ
e−2k∆ − 1
−2k

¶ 1
2

ε2t+∆ (89)µ
ε1t+∆
ε2t+∆

¶
∼ iidN (0, I2) (90)

with r = 0.00962, θ = −4.673, k = 1.561, γ = 0.388 and d = 0.506, where the parameters are
estimated by EMM (Gallant and Tauchen (1996)) using daily data on the S&P 100 index. We

set x(d)0 = 0 and normalize the log price process to be 0 at time 0. We take ∆ to be half a day.

Each replication involves computing 152 call option prices (numerically and on the basis of

20, 000 simulations) that we invert to obtain the BS implied volatilities. SpeciÞcally, for each

replication we generate a series of 2 × 22 × 152 = 6, 688 realizations of the log price process

plus 1, 000 points to be discarded. Realized volatility is computed by summing the squares of

the daily returns over the life of the option, i.e., 22 squared returns corresponding to every

other simulated value of the log price process. The path of the stock price used to compute

the realized volatility series is chosen at random among the 20, 000 simulations. Finally, we

contaminate the implied volatility series by adding an error term with mean zero and variance

equal to the sample variance of the implied volatility series over the corresponding replication.

We repeat the procedure 1, 000 times.

For each replication we estimate the long memory parameter d for both implied and realized

volatility using the Geweke-Porter-Hudak (GPH) and the Andrews-Guggenberger (AG) esti-

mator with a number of Fourier frequencies included in the appropriate regression equal to the

integer part of n0.5, n0.6, n0.7 and n0.8. The means of the resulting estimates (with standard

errors underneath) are as follows:
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�d (implied) �d (realized)
GPH AG GPH AG

m = n0.5 0.452 0.437 0.567 0.704
(0.308) (0.529) (0.256) (0.485)

m = n0.6 0.400 0.478 0.449 0.640
(0.230) (0.369) (0.184) (0.311)

m = n0.7 0.320 0.452 0.339 0.524
(0.173) (0.272) (0.140) (0.216)

m = n0.8 0.252 0.364 0.257 0.397
(0.130) (0.203) (0.104) (0.163)
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