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Abstract. Wemodel daily catches of Þshing boats in the Grand Bank Þshing grounds. We use data on catches per species
for a number of vessels collected by the European Union in the context of the Northwest Atlantic Fisheries Organization.
Many variables can be thought to inßuence the amount caught: a number of ship characteristics (such as the size of the
ship, theÞshing techniqueused, themesh size of thenets, etc.), are obvious candidates, but one canalso consider the season
or the actual location of the catch. Our database leads to 28 possible regressors (arising from six continuous variables and
four categorical variables, whose 22 levels are treated separately), resulting in a set of 177million possible linear regression
models for the log of catch. Zero observations are modelled separately through a probit model. Inference is based on
Bayesian model averaging, using a Markov chain Monte Carlo approach. Particular attention is paid to prediction of
catch for single and aggregated ships.
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1. Introduction

The mismanagement of the world Þsheries is one of the most important global environmental
problems that we face today. Nine of the worldÕs 17 major Þsheries are in serious decline, and
four others are classiÞed as Ôcommercially depletedÕ by the Food and Agricultural Organization
of the United Nations (Tibbets, 1994).
The Northwest Atlantic Fisheries Organization (NAFO) is one of several international organi-

zations that tries to alleviate overexploitation through voluntary cooperation. It was established
in 1978 to contribute to the optimal exploitation and rational use of Þsheries resources in the
Grand Bank outside CanadaÕs exclusive economic zone (see http://www.nafo.ca for a map of
the area covered by the treaty). Countries which are members of the NAFO assign quotas among
themselves and grant inspection rights to each other. Three inspection ships Ñtwo Canadian
and one belonging to the European Union Ñ board vessels of member states and register the
information in their logbooks. In addition, ships from signatory countries report (through the
so-called ÒhailsÓ) their entry and exit of the different zones of the Þshing grounds. Finally, there
are two daily ßights over the Grand Bank and the Flemish Capmade by inspection airplaneswith
the purpose of locating and identifying all ships Þshing in the area. Boarding ships on high seas
to verify catch is expensive and disrupts their operations. Furthermore, ships from non-signatory
countries can not be inspected. It then becomes important to constructmodels that allow for catch
prediction and monitoring conditional on the information from aerial sightings and hails, ship
characteristics and other variables (such as month of the year). Thus, our aim is to model how all
these variables inßuence catch. This could provide useful information for regulatory measures
and guidelines related to issues like mesh size, optimal size of the ßeet, etc. More importantly,
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it allows to estimate the total amount caught by a group of ships operating in a certain area at a
certain time of the year.
The data that we have consist of daily catch (per ship) per species of Þsh. Since there are

many days with zero catch for a given species of Þsh, our statistical model incorporates a positive
probability of zero catch through a probit model. When catch occurs, the log of the quantity
caught is modelled through a linear regression structure, where we formally treat the uncertainty
concerning the choice of regressors throughmodel averaging in a Bayesian setting using posterior
model probabilities as weights. In view of the large number of potential models, we explore the
posterior distribution using aMonte CarloMarkov chain over the model space in the spirit of the
MC3 methodology of Madigan and York (1995). The Bayesian framework leads to exact small
sample results, fully taking both parameter and model uncertainty into account. In the present
applicationwehavenot used any strongprior informationor a formal decision theory framework.
Both of these can, however, easily be incorporated into a Bayesian analysis.
The aims of this paper are quite different from those of the large literature in stock assessment,

where statistical methods are used in order to assess the size of Þsh stocks, see, e.g., Hilborn and
Walters (1992) for a general introduction and McAllister and Kirkwood (1998) for an overview
of Bayesian stock assessment methods. A variety of statistical methods, such as Bayesian state-
space models (Millar and Meyer, 2000) and spatial methods (Newman, 1998) has recently been
introduced into this literature. There exists, in addition, substantial work on estimation of year-
effects and abundance trends based onmodelling catch per hour Þshed; Quinn and Deriso (1999)
provide many examples. In contrast to the above, and like Ferreira and Tusell (1996), our aim
is to shed light on how catch can be explained by certain observable characteristics Ñsuch as
mesh size (Robichaud et al. 1999)Ñ, and provide operational forecasts of commercial landings of
various species (Stergiou et al. 1997). It is important to stress that the main aim of our analysis is
not necessarily to develop a model that describes the dynamics of Þsheries as closely as possible,
but rather to provide a framework that can successfully be used for short-term predictions of
quantities caught (of a certain species by a certain ship or group of ships) given an easily available
information set. This will guide the modelling strategy and the choice of covariates that we will
consider.
Section 2 describes the data, while Section 3 introduces the statistical model. The zero ob-

servations are treated in Section 4, and the analysis of positive catch is discussed in Section 5.
Section 6 focuses on prediction. The empirical results are presented in Section 7 and a Þnal section
concludes. Details of the computational implementation are presented in an Appendix.

2. The Data

The original data were gathered by the inspection vessel of the European Union operating on
the Grand Bank Þshery. Inspectors board the Þshing boats and record basic characteristics of
the ship and the Þshing equipment, as well as the quantities caught of different species and
where and when this catch was effectuated. They use the shipÕs logs to collect all the information
accumulated since the last time the ship was boarded. All data correspond to 1993 and the Þrst
half of 1994, leading to 6,806 observations each corresponding to a particular ship at a given day.
In all, there are 59 different ships.

The dependent variable is the live weight of Þsh caught. Table 1 summarizes the regressors
that we consider using. These include four categorical variables: the year when the catch is made
(2 levels), Þshing technique (4 levels), zone or division within the Þshing grounds (4 levels) and
month of the year (12 levels). In addition, we have four continuous variables, namely mesh size
measured inmilimeters, length of vessel measured inmeters, gross registered tonnage (GRT) and
engine kW. See e.g. King (1995, Ch. 2) for a description of Þshing gear and methods.
Our dataset also provides the nationality of the ship but we have decided not to consider this

variable since one of the purposes of the analysis is to predict catch of ships from non-signatory
countries (for which we have no observations). However, we do have a year effect. This is
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Table 1. Data Statistics
Regressor % Observations

1 Year 1993 75.36

2 Year 1994 24.64

3 Drift gillnet 3.60

4 Anchored gillnet 1.44

5 Otter trawl 79.64

6 Otter trawl pair 15.32

7 Zone 3L 34.64

8 Zone 3M 25.69

9 Zone 3N 35.05

10 Zone 3O 4.62

11 January 4.89

12 February 10.74

13 March 15.05

14 April 12.06

15 May 13.99

16 June 9.48

17 July 7.02

18 August 7.71

19 September 7.98

20 October 7.04

21 November 3.48

22 December 0.56

23 Gillnet× log[0.5 + Mesh size−min(Mesh size)]
24 Gillnet× {log[0.5 + Mesh size−min(Mesh size)]}2
25 Trawl× log[0.5 + Mesh size−min(Mesh size)]
26 Trawl× log[0.5 + Engine kW−min(Engine kW)]
27 log(Length vessel)

28 log(GRT)

Min 1st quartile Median 3rd quartile Max

Mesh size (mm.) gillnetters 110 130 140 140 150

Mesh size (mm.) trawlers 120 120 120 130 150

Engine kW trawlers 588 845 1164 1470 2648

Length vessel (m.) 29.0 42.0 47.0 61.2 84.9

GRT 252.3 376.9 664.9 970.2 2382.0

because year class effects are important in Þsheries and, from a biological point of view, it would
not be sensible to assume equality of catches in, e.g., May 1993 and May 1994. Inevitably, this
complicates prediction for years for which no data are available.
The way that mesh size and engine power inßuence catch is potentially very different for

gillnets andotter trawls. Thus,we include thesevariables in termsof interactionswithan indicator
variable for the net type used: gillnets (adding drift and anchored) and trawls (both single and
paired). In addition, there is prior reason to assume that the effect ofmesh sizemight be nonlinear
for gillnets (e.g., catch would decrease if mesh size would either be too large or too small), so we
include a quadratic interaction term for this Þshing technique. An effect of engine kWon quantity
caught is quite plausible for otter trawls (which are towed), but is very unlikely for gillnets (which
are passive), so we do not include an interaction term for engine power and gillnets. In order to
reduce the collinearity between these interaction terms and Þshing techniques, the continuous
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variables kW and mesh size are transformed as indicated in Table 1. This substantially increases
the spread of the interaction variables and reduces the collinearity in the design matrix. The
other continuous variables (length of the vessel and tonnage) are transformed to logarithms in
the usual way.
Table 1 indicates the empirical distribution of each of the categorical variables, and quantiles

of the continuous variables (before transformation). The data can be obtained from this jour-
nalÕs website. Of course, Table 1 provides only marginal information. Some complementary
information is given in Figure 1, where we present bivariate histograms (with lighter shades
corresponding to higher relative frequencies) of some combinations of regressors for each of the
years in the sample. Levels for the categorical variables are ordered as in Table 1 and continuous
variables are categorized into Þve bins of equal width. From this we note a shift in 1993 from
zone L in the period January-May to zone N for the remaining months of the year. The available
months of 1994 show a somewhat more even spread over zones L, M and N. The month versus
mesh size plots are presented for gillnets and trawls separately, which shows that trawlers tend
to use smaller mesh than gillnetters. We also see a tendency towards the greater use of small
mesh trawl nets (often 120 mm) in the months April-June 1993. Finally, the length and GRT of
the ships are obviously positively correlated as can be seen from the last row of plots.
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Fig. 1. Bivariate Greyscale Plots for Regressors
(Lighter shades correspond to higher relative frequencies)

Table 2 lists the Þvemost important species caught in the Grand Bank and has one category for
all the other species (ÒrestÓ). Every time we observe a ship, we observe its daily catches for all six
species. A look at the data tells us that a shipÕs catch on any given day often does not include all
species. In particular, we are going to model the Þrst Þve species listed in Table 2, for which the
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percentage of zeroes in the data (6806 ship-days) ranges from 18.50% (halibut) to 88.33% (cod).
Thus, this is an important aspect, which, if overlooked, would lead to substantial overestimation
of catch. Hence, we shall model zero catches explicitly, by means of a probit model. This feature
of the data was not accounted for by Ferreira and Tusell (1996), who analyze the same data set
but only take the positive observations into account. Table 2 also lists the fraction of the total live
weight that each species constitutes. We will consider separate models for each of the species, to
allow for the explanatory variables to affect catch for each species differently.

Table 2. Catch for Different Fish Species

Sp. Description Mean (kg) Std (kg) % zeroes % of catch

1 Atlantic cod (Gadus morhua) 550.20 2517.48 88.33 9.80

2 Greenland halibut (Reinhardtius hippoglossoides) 3503.48 3610.55 18.50 62.40

3 RedÞsh (Sebastes sp.) 658.51 2794.49 85.73 11.73

4 Roundnose grenadier (Coryphaenoides rupestris) 213.46 502.18 43.20 3.80

5 Skate (Raja sp.) 503.39 1661.50 55.44 8.97

6 Rest 185.23 625.76 72.27 3.30

3. The statistical model

In this section we outline our statistical model for daily catch of a given species of Þsh per ship.
The observations will be denoted by si, i = 1, . . . , n (n = 6806), and we deÞne s = (s1, . . . , sn)′.
Clearly, each of the n observations is non-negative, and a certain number of them, say Q, are
strictly positive (those that correspond to positive catch). For notational convenience, we shall
order the observations so that the ÞrstQ observations are positive, whereas the remaining n−Q
observations are equal to zero.
As explained in the previous section, it is crucial to take account of the fact that there is a

positive probability of zero catch. A natural approach is to use the probit model:{
si = 0 with probability (x′iγ),
si > 0 with probability 1− (x′iγ),

(3.1)

where (·) denotes the c.d.f. of the standard Normal distribution, the vector xi ∈ <1+k contains
the element 1 as well as the explanatory variables presented in Table 1, and γ ∈ <1+k groups the
parameters. Each categorical variable is handled through dummies taking the values zero or one,
with one level excluded (thus, k = 24 instead of 28). Throughout the paper, the design matrix
X ≡ (x1, . . . , xn)′ will be of full column-rank.
If si > 0, we further assume a linear regression structure for yi ≡ log(si). This is easier to

handle than the probit model, so a more ambitious strategy is feasible. In particular, we will
allow for model uncertainty, where each of the potential models considered will assume that

yi = log(si) is distributed as Normal(α + z′iβ, σ2), i = 1, . . . , Q, (3.2)

and the vector zi corresponds to a subset of the regressors in Table 1. For computational conve-
nience, all the variables are now demeaned, so that each column of the resulting design matrix
Z ≡ (z1, . . . , zQ)′ sums to zero. The matrix Z is also of full column-rank. In (3.2), α ∈ < is the
intercept, σ2 > 0 denotes the sampling variance, whereas the vector β groups the regression
coefÞcients.
Note that (3.1) and (3.2)havebeenmodelledentirely separately, usingdifferentparameters, and

we will also assume prior independence between the parameters in (3.1) and (3.2). This is done
partly for pragmatic reasons (as in this case we can conduct posterior inference independently,
greatly simplifying the computations), but also because it is not obvious to us that the effects of
a given variable on the probability of zero catch and on the actual amount caught (when catch
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is positive) should be linked. One might possibly consider sign restrictions for the elements of
γ in (3.1) and β in (3.2). For example, for otter trawls, increasing mesh size could be expected
to decrease the amount caught and to increase the probability of zero catch: this would imply a
negative component in β and a positive component in γ, but it would not mean that their actual
magnitudes are necessarily linked. Thus, such restrictions would not imply that both models
should be analysed jointly. Here we have chosen not to impose prior constraints like these, and
will instead let the data Þnd themost appropriate parameter ranges. As we do not possess strong
prior information, our prior distribution (presented in the following two sections) will generally
try to incorporate as little subjective input as possible.
We will use the entire sample to make inference on γ and to predict the probability of zero

versus positive catch; this analysis only uses the fact whether si is zero or strictly positive. The
actual value of the Q positive observations will be used to conduct inference on α, β and σ, and
to predict the amount of catch given that it is positive. The probit model will be examined in
Section 4, whereas Section 5 will be devoted to the model for positive catch. Lo et al. (1992) also
model zero observations separately from positive ones in the context of analyzing relative Þsh
abundance, using classical statistical procedures and a simple linear probability model for zero
observations.

4. Analysis of zero observations

In this section, we focus on posterior inference on γ, the parameter in the probit model in (3.1).
We shall complement the latter sampling distribution with the prior

p(γ) = f1+k
N (γ | 0, (h0X

′X)−1), (4.1)

i.e., a (1+k)-variateNormal distributionwith zeromean and covariancematrix (h0X
′X)−1, where

h0 > 0. This corresponds to the g-prior introduced in Zellner (1986), and essentially says that
the prior precision is a fraction h0 of that of the sample. This prior is often used for relatively
high-dimensional parameters in the context of a lack of strong prior information, as it typically
does not distort the information in the sample. We took zero as the prior mean for γ, since, from
(3.1), P (si = 0 | γ = 0) = 1/2. For h0 we adopt the value h0 = 1/n, which roughly corresponds
to the information in one observation and will easily be dominated in posterior and predictive
inference. With the prior in (4.1) the predictive distribution is invariant with respect to the choice
of the reference levels for the categorical variables, as is desirable.
Although the posterior distribution corresponding to a sample of n observations from (3.1)

and the prior in (4.1) can not be computed analytically, we can use Gibbs sampling (with data
augmentation) to approximate p(γ|s) to any required precision (see Appendix A.1 for details, and
Albert and Chib (1993) for a similar probit analysis).

5. Analysis for positive observations

5.1. Model specification

We will incorporate model uncertainty in the sense that we allow for any subset of the variables
in Table 1 to appear as regressors in (3.2). This means that instead of a single model, we have a
setM = {Mj : j = 1, . . . , J},where each model corresponds to a particular choice of regressors.
In order to fully understand our model spaceM, we need to explain carefully how we deal

with categorical variables in this situation. We will treat different levels of a categorical variable
separately, so that a model inM can include or exclude any level with the only restriction that
not all levels of a categorical variable can be included in the same model. This gives us extra
ßexibility with respect to the simpler approach that treats categorical variables as single entities
which can only be fully excluded (which means that all levels have exactly the same effect)
or included (which implies that all levels have different effects). With our treatment, we also
allow for intermediate situations where several levels of a variable have the same effect (and are,
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therefore, excluded from the model) whereas other levels (the ones included in the model) have
different effects. This is an issue of empirical relevance as the results in Section 7 will illustrate.
Our approach implies that we can not Þx a reference level, as we want to treat all levels in a
symmetric fashion. As an example, consider the categorical variable month of the year, which
has twelve levels. If we were to designate, say, December as a reference level we would be able
to capture a situation where, e.g., January has the same effect as December (by also excluding
January), but not a situation where January has the same effect as, say, February, yet not the same
as December. By allowing a free reference level, we can accommodate any combination of levels
having the same effect.
With K continuous variables and R categorical variables with L1, L2, . . . , LR levels, respec-

tively, this strategy implies a model spaceMwith J = 2K
∏R
r=1(2

Lr − 1) elements, which for our
application leaves us with 176,904,000 possible models. We stress that whereas all of the ÷k = 28
variables in Table 1 will appear in some of the models, the maximum number of regressors that
any single model can contain is k = 28−4 = 24 (since there are 4 categorical variables). Whenever
a model contains all but one levels of a categorical variable, we say that the model is ÒfullÓ in that
categorical variable. Note that models that are full in one or several categorical variables appear
with different representations inM, each corresponding to a particular choice of reference level.
This feature will be taken into account when setting a prior distribution for the models.

5.2. Priors under different models

Wenow turn to the issue of eliciting priors for the parameters in (3.2) given a particularmodelMj .
For these parameters we specify a prior distribution that incorporates minimal prior information
while leading to analytical tractability. On the intercept α and the scale parameter σ, which
are present in all the models, we assume the usual non-informative distributions, respectively
deÞned through

p(α) ∝ 1 and p(σ) ∝ σ−1. (5.1)

For the vector β(j), which groups the relevant regression coefÞcients undermodelMj , we assume
the g-type prior

p(β(j) |σ, Mj) = f
kj
N

(
β(j) | 0, σ2(g0Z

′
jZj)

−1
)
, (5.2)

where kj is the number of explanatory variables included inMj andZj denotes the corresponding
design matrix. This prior speciÞcation requires minimal judgmental user input, since only the
scalar g0 is left to be chosen. We shall take g0 = 1/max{Q, ÷k2}, whereQ is the number of positive
observations and ÷k is the number of available regressors in Table 1. This choice is inspired by
Fern«andez et al. (2001a), who Þnd that the use of such a strategy for g0 leads to very satisfactory
identiÞcation of the correct model in simulation exercises, whereas out-of-sample predictive
behaviour is also quite good. Besides their empirical simulation justiÞcation, they also derive
a number of theoretical properties of this prior. Finally, model Mj assumes that its excluded
explanatory variables do not matter, i.e., that their associated regression coefÞcients are equal to
zero. Now that we have speciÞed the prior distribution, we can immediately conduct Bayesian
inference under model Mj , by combining this distribution with the corresponding sampling
model from (3.2). Since this prior distribution resembles a natural-conjugate, computing the
posterior and predictive distributions is quite simple, as shall be explained later in the paper.

5.3. Model averaging

So far we have considered a single model Mj from the space of all possible modelsM. From a
Bayesian perspective,model uncertainty can be treated in a coherent fashion by further specifying
a prior distribution P (Mj) on the models. Here we will consider a Uniform distribution on the
space of genuinely different models. By this we mean that we take into account thatM contains
multiple copies of models which are full in some categorical variable, down-weighting their
prior probabilities accordingly. If desired, other prior distributions could be considered with
only minor modiÞcations to our framework.
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The posterior distribution of a quantity is now given by amixture of the posterior distributions
under each of the models, with mixing probabilities corresponding to the posterior model proba-
bilities. Thus, Bayesian inference provides a coherent framework for treating model uncertainty,
leading to an inferential procedure which averages over the inferences resulting from each of the
individual models. Madigan and Raftery (1994), Raftery et al. (1997) and Fern«andez et al. (2001b)
Þnd in a series of empirical applications that, in the presence of model uncertainty, Bayesian
model averaging leads to the best predictive performance, as measured by a logarithmic scoring
rule. In a decision-theory context, mixing over models can be shown to be optimal under pre-
dictive squared error loss, provided the set of models considered is exhaustive (Min and Zellner
(1993)). We follow this approach and consider model averaging rather than selecting one single
model.
Applying BayesÕ theorem, the posterior probability of modelMj is given by

P (Mj | y) ∝ ly(Mj)P (Mj), (5.3)

where P (Mj) is the prior probability and ly(Mj) the marginal likelihood of modelMj . The latter
is obtained from (3.2), integrating out the parameters with their prior distribution described in
Section 5.2. It is easy to show that ly(Mj) is Þnite if and only if the sample y = (y1, . . . , yQ)′

contains at least two different observations. This condition will be both necessary and sufÞcient
for posterior and predictive inference throughout the paper.
Although we can derive an explicit expression for ly(Mj) (see (A.1) in Appendix A.2), direct

computation of the posterior probability in (5.3) is very difÞcult due to the large number of
models inM (approximately 177million in our application). Therefore, we shall approximate the
posterior distribution of the models via simulation, using a Markov chain Monte Carlo (MCMC)
sampler on themodel spaceM. AppendixA.2 providesmoredetails on the particular samplerwe
have adopted, which is of theMetropolis-Hastings type. In casewe have no categorical variables,
the sampler essentially simpliÞes to the MC3 method of Madigan and York (1995) also used in
Raftery et al. (1997).

5.4. Inference on regression coefficients

We now consider inference on a linear combination b′β ≡
∑k̃
l=1 blβl of the elements of the ÷k-

dimensional regression vector β, where ÷k = 28, corresponding to all variables in Table 1. To do
this, we need to apply the model averaging ideas explained in the previous subsection. Under
modelMj , b′β takes the value zero if none of the regressors corresponding to a non-zero element
of b is included inMj , and has a Student-t distribution otherwise. The exact form of the posterior
distribution of b′β is:
1. With probability p ≡

∑
j:Bjb=0 P (Mj | y),

b′β = 0. (5.4)

2. With probability 1− p, b′β has density

1
1− p

∑
j:Bjb 6=0

fS

(
b′β |Q− 1,

b′B′j(Z
′
jZj)

−1Z ′jy

g0 + 1
,
Q− 1
Gj

g0 + 1
b′B′j(Z

′
jZj)−1Bjb

)
P (Mj | y), (5.5)

where Bj is the relevant selection matrix under model Mj in the sense that β(j) = Bjβ, with
β(j) corresponding to the regressors included in Mj , 0 is a vector of zeroes of the appropriate
dimension, and fS(x | ν, m, a) denotes the p.d.f. of a Student-t distribution with ν degrees of
freedom, location m (the mean if ν > 1) and precision a (with variance ν/{(ν − 2)a} provided
ν > 2). Finally, Gj is deÞned in (A.2) in Appendix A.2. From (5.4) − (5.5) it is clear that, once
we have run the Markov chain onM to compute P (Mj |y), we can obtain the distribution of b′β
analytically.
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6. Prediction

We now focus on forecasting the value of a new observable, say sf , given a vector of explanatory
variables and the observed sample s. Our forecast for sf will be based on the out-of-sample
predictive distribution, which is obtained from (3.1)−(3.2) after integrating out all the parameters
and all possible models using their respective posterior distributions. From (3.1) − (3.2) it is
immediate that the predictive distribution for sf will be a mixture of a point mass at zero and a
continuous distribution. In particular, we have:
1.

sf = 0 (6.1)

with probability

ωf ≡
∫
(x′fγ)p(γ | s)dγ, (6.2)

where xf ∈ <1+k contains the element one and the explanatory variables for sf . The integral
in (6.2) can be calculated by averaging (x′fγ) over the draws of γ generated through the Gibbs
sampler in Appendix A.1.
2. With probability

1− ωf , (6.3)

sf > 0 and it has p.d.f.

p(sf | y) =
1
sf

J∑
j=1

fS

(
log(sf ) |Q− 1, y + z′f(j)

(Z ′jZj)
−1

g0 + 1
Z ′jy,

Q− 1
Gj

{Q + 1
Q

+ z′f(j)

(Z ′jZj)
−1

g0 + 1
zf(j)

}−1)
P (Mj | y),

(6.4)

where zf(j) is the kj-dimensional vector that contains the explanatory variables (demeaned as
indicated after (3.2)) relevant under modelMj .
In a practical context, we may be interested in predicting the aggregate catch of a group of

ships during a certain spell of time. This means that we focus on the predictive distribution
of ssum ≡

∑I
i=1 sfi rather than considering one single observable sf as was the case above.

The predictive distribution of ssum is computed by averaging its sampling distribution over
parameters and models using the relevant posterior distributions. It is clear from (3.1) that in the
sampling ssum is zero with probability ω(γ) ≡

∏I
i=1 (x

′
fi

γ) (where xfi ∈ <1+k corresponds to the
explanatory variables for sfi), and has some p.d.f. with probability 1− ω(γ). This means that we
forecast:
1. ssum = 0, with probability ωsum ≡

∫
ω(γ)p(γ | s)dγ,which, as before, we compute by averaging

ω(γ) over the Gibbs draws of γ.
2. With probability 1 − ωsum, ssum > 0 and has a predictive distribution given through some
p.d.f. on (0,∞). Although an explicit expression for the latter p.d.f. is complicated to derive, we
can approximate this distribution via simulation drawing a set of values from (3.1)Ð(3.2) where
the parameters are, in turn, drawn from the posterior distribution (taking model averaging into
account).

7. Discussion of results

7.1. Computational issues and model probabilities

Most of the discussion in this subsection will focus on the Markov chain on model space, since
it is the most computationally demanding aspect of our model. In the interest of the practical
importance of this methodology, and to enhance its appeal to applied researchers, we have made
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particular efforts to create an efÞcient set of programs that can deal with problems of empirical
relevance. Theprograms are coded in Fortran-77 andmake efÞcient use ofCPU-time, e.g., through
storing results for alreadyvisitedmodels in stacks (saving recalculationswhenamodel is revisited
by the chain). As a consequence, e.g., the entire single-ship analysis presented in the sequel
takes between 1 and 3 hours (depending on the species) on a 200MHz PowerPC-based desktop
computer. The source code is available from this journalÕs website.
Throughout, we shall split the available observations into a subsample used for posterior

inference (the Òestimation subsampleÓ) and the remaining observations, which will be used for
comparison with the predictive distribution (the Òprediction subsampleÓ). Observations are
randomly assigned to the estimation subsample with probability 0.75 and the resulting number
of observations in this subsample is n = 5087 withQ in Table 3 indicating the number of positive
observations in this subsample. The total number of regressors is ÷k = 28 (all those in Table 1)
for halibut, redÞsh and grenadier. For cod, ÷k = 26 because there are no catches in November or
December. For skate, ÷k = 27 as we leave out the quadratic interaction term between mesh size
and gillnets to avoid collinearity problems. Thus, we obtain Q > ÷k2 for halibut, grenadier and
skate, which leads to choosing g0 = 1/Q in the prior in (5.2), whereas for cod and redÞsh we
choose g0 = 1/ ÷k2.

Table 3. Monte Carlo Performance and Posterior Probabilities
Species

cod halibut redÞsh grenadier skate

Number of ObservationsQ 583 4161 727 2891 2256

Number of Retained Drawings 1,000,000 500,000 1,000,000 500,000 2,000,000

Number of Discarded Drawings 500,000 100,000 500,000 100,000 1,000,000

Number of Models Visited 32,739 1906 18,264 2840 5202

Number of Non-equivalent Models Visited 24,229 485 15,940 1766 3266

Wind. Est. and Emp. Freq. Correlation Coeff. 0.9890 0.9782 0.9919 0.9909 0.9659

Weighted Average q 0.1602 0.0554 0.2834 0.0776 0.0392

Post. Prob. Covered by Chain 0.8811 0.9438 0.9530 0.9695 0.9988

Post. Prob. of Best Model 0.0335 0.0510 0.0791 0.1019 0.0883

Number of Models Required for 90% Post. Prob. 4022 144 1494 156 235

Post. Prob. of Stepwise Model 7.4E-13 7.3E-5 4.2E-5 0.0640 0.0010

TheMarkov chain used for computing posterior model probabilities is described in Appendix
A.2. Table 3 lists the number of retained drawings and the initial number of discarded draws
(the Òburn-inÓ), as well as the total number of visited models. We consider several strategies for
assessing the convergence of this chain. Since the marginal likelihood for modelMj , ly(Mj), can
be calculated explicitly, we will apply the formula in (5.3) to compute posterior probabilities on
the basis of the models visited by theMarkov chain (instead of using the empirical frequencies of
visiting each model). This idea, called Òwindow estimationÓ by Clyde et al. (1996), implies that
the computed posterior odds (ratios of posterior probabilities) between any two models visited
are the actual posterior odds. From Table 3 we see that the correlation coefÞcient between the
posterior probabilities of all visited models computed on the basis of empirical frequencies and
window estimation is always above 0.96. This provides an indication of convergence of the chain.
A second diagnostic of convergence is based on the fact that models that are full in one ormore

categorical variables have exactly equivalent counterparts in the model space (that only differ
in the chosen levels of the categorical variables for which they are full). Asymptotically, such
equivalent models are visited equally often, which suggests looking at

q ≡ maxi{freqi} −mini{freqi}∑
i freqi

,
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where freqi is the number of times the chain visits representation i of the same model. Clearly,
q ∈ [0, 1] with q = 0 the best result and q = 1 the worst, indicating that only one of the equivalent
representations was visited. Table 3 reports a weighted average of the q values, with weights
proportional to the posterior probabilities of each model representation. The reported q values
are all reasonably small. Table 3 also lists the number of truly different models that were visited.
A third measure of convergence is provided by an estimate of the total posterior model prob-

ability covered by the chain following George and McCulloch (1997). This estimate is based on
comparing visit frequencies and the aggregate marginal likelihood for a predetermined subset
of models. Table 3 presents this estimate for the various species, which is never below 88% (and
typically well above 90%).
All diagnostics indicate that convergence is never a problem, which was corroborated by the

fact that other independent runs started from randomly chosen models led to virtually identical
results.
The chains visit a relatively small number of models: except for cod always less (and usually

much less) than one model in every 9600. Throughout, the acceptance probability of proposals
in the MCMC algorithm is in between 6% and 18%. The best model (the model with the highest
posterior mass) contains in between 7 (cod) and 18 (halibut) regressors, and often receives quite a
substantial posterior probability, but never so large that model averaging becomes unnecessary.
The number of highest probabilitymodels that is needed to cover 90%of the total visited posterior
mass (also presented in Table 3) gives a further indication of the substantial spread of the posterior
mass in model space.
Marginal posterior inclusion probabilities of the different regressors (1 − p with p obtained

from (5.4)), are given in Table 4. Clearly, the visited models for halibut are always full in the
variables year and zone (whichmeans that each of the two years has probability 1− (1/2) = 0.5 of
inclusion and each of the four zones has probability 1− (1/4) = 0.75 of inclusion). Note the large
differences in the posterior probabilities of inclusion across the various species, which supports
our decision to model each species separately.

Convergence of the Gibbs sampler for the probit model was assessed by monitoring the pos-
terior moments of γ in different runs of various lengths. Retaining 20,000 draws after a burn-in
of 5,000 was found to be more than sufÞcient.

7.2. Posterior results

Herewepresent someposterior results for the regression coefÞcients inβ and γ, limiting ourselves
to some illustrative Þndings.
We recall that all available regressors in Table 1 are used for the probitmodel, wherewe exclude

a reference level (arbitrarily chosen as year 1994, otter trawl by pair, zone 3O and December)
for each categorical variable. Since the elements in γ are not directly interpretable, we present
posterior results for transformations with a clear interpretation. For the categorical regressors,
we compute the difference in the probability of zero catch between a category and its reference
case Ñe.g., year 1993 versus year 1994Ñ, when all other explanatory variables are evaluated
at typical values. Thus, for categorical variables we compute ( øx′cγ) − ( øx′rγ), where øxc and øxr
are vectors of ÒtypicalÓ values, identical except for the relevant categorical variable. For these
typical values we take themodal level for categorical variables andmedian values for continuous
variables. We shall consider two sets of values throughout: one corresponding to a typical
gillnetter (taking modes and medians over the gillnet observations, and taking anchored gillnet
as the reference level for Þshing technique) and one corresponding to a typical trawler. For the
continuous variables, we consider the derivative of the probability of zero catch with respect to
the logarithm of the continuous variable. This gives us the (local) effect on the probability of zero
catch of a proportionate change in the underlying continuous variable. As with the categorical
variables, this effect will be evaluated at typical values for all regressors.
Since all these measures (called ÒeffectÓ in the sequel) are functions of γ, we can compute their
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Table 4. Marginal Posterior Inclusion Probabilities of Regressors

Species

cod halibut redÞsh grenadier skate

Year 1993 0.49 0.50 0.03 0.49 0.41

Year 1994 0.49 0.50 0.03 0.49 0.41

Drift gillnet 0.12 0.01 0.15 0.96 0.06

Anchored gillnet 0.14 0.04 0.16 0.05 0.06

Otter trawl 0.93 0.22 0.23 0.54 0.03

Otter trawl pair 0.21 1.00 0.56 0.47 0.03

Zone 3L 0.12 0.75 0.02 0.12 0.99

Zone 3M 0.85 0.75 0.99 0.82 0.16

Zone 3N 0.20 0.75 0.02 0.97 0.85

Zone 3O 0.12 0.75 0.99 0.04 0.02

January 0.03 0.99 0.05 0.05 0.89

February 0.04 1.00 0.87 1.00 0.23

March 0.05 0.88 0.90 1.00 0.23

April 0.16 0.89 0.99 1.00 0.23

May 0.75 0.88 1.00 1.00 0.49

June 0.10 0.37 0.10 1.00 0.23

July 0.04 0.15 0.36 0.02 0.79

August 0.03 0.16 0.30 0.02 0.80

September 0.08 0.97 0.91 0.02 0.80

October 0.10 0.99 0.15 0.05 0.81

November Ð 0.99 0.10 0.02 0.88

December Ð 0.04 0.17 0.02 0.02

Gillnet× f(mesh size) 0.19 1.00 0.08 0.06 0.98

Gillnet× [f(mesh size)]2 0.13 0.94 0.10 0.09 Ð

Trawl× f(mesh size) 0.58 0.03 0.97 1.00 1.00

Trawl× f(engine kW) 0.13 1.00 0.92 0.23 1.00

log(Length vessel) 1.00 1.00 0.11 0.02 1.00

log(GRT) 1.00 1.00 0.15 1.00 0.60

(f(·) denotes the transformation indicated in Table 1)
full posterior distributions. Table 5 presents the posterior mean and standard deviation of the
effects of all relevant variables for both typical ships considered. We only present results for
halibut and redÞsh, which are the most important species in terms of live weight caught. In
addition, halibut is the species with the lowest proportion of zero catch (18.5%), while redÞsh has
one of the highest proportions of zeroes (85.7%).

From Table 5 we see that the regressors can have a large effect on the probability of zero catch,
and that the effect is rather speciÞc to the species considered. In view of the decline of the Grand
Bank Þsheries at the time the data were collected, we could have expected the year to have a
large effect. However, only for grenadier (not presented in Table 5) havewe found a substantially
lower probability of positive catch in 1994. For the other species the difference is small. We now
brießy discuss some results for halibut, and merely note that the Þndings for redÞsh are often
very different, as can be seen directly from Table 5. The probability of catching halibut with a
gillnet is higher with a drift gillnet than an anchored one (which serves as the reference case for
computing the effects for gillnetters), and a single otter trawl does better than a trawl by pair. As
far as location of catch is concerned, the probability of catching halibut is lowest in the reference
zone 3O, and highest in zone 3L. The time of the year also has a substantial effect: December is
the worst month of the year, whereas March and April seem best. Increasing the mesh size of a
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Table 5. Posterior Moments of Some Effects in Probit
Species

halibut redÞsh

typical gillnet typical trawl typical gillnet typical trawl

Year 1993 -0.00 (0.04) -0.00 (0.00) 0.02 (0.01) 0.01 (0.01)

Drift gillnet -0.16 (0.09) Ð -0.58 (0.08) Ð

Otter trawl Ð -0.39 (0.03) Ð -0.01 (0.01)

zone 3L -0.61 (0.05) -0.49 (0.06) 0.47 (0.06) 0.28 (0.05)

zone 3M -0.22 (0.04) -0.21 (0.05) 0.03 (0.02) 0.07 (0.04)

zone 3N -0.48 (0.04) -0.41 (0.05) 0.52 (0.06) 0.29 (0.05)

January -0.31 (0.13) -0.08 (0.05) 0.25 (0.10) 0.10 (0.05)

February -0.40 (0.12) -0.09 (0.05) 0.04 (0.02) 0.08 (0.05)

March -0.52 (0.12) -0.10 (0.05) 0.03 (0.02) 0.08 (0.05)

April -0.55 (0.12) -0.10 (0.05) 0.03 (0.01) 0.08 (0.05)

May -0.33 (0.12) -0.08 (0.05) 0.03 (0.02) 0.08 (0.05)

June -0.21 (0.12) -0.07 (0.05) 0.09 (0.03) 0.09 (0.05)

July -0.25 (0.12) -0.08 (0.05) 0.01 (0.01) 0.05 (0.06)

August -0.31 (0.12) -0.08 (0.05) 0.00 (0.01) 0.02 (0.06)

September -0.35 (0.12) -0.09 (0.05) 0.00 (0.01) 0.03 (0.06)

October -0.34 (0.12) -0.09 (0.05) 0.00 (0.01) 0.04 (0.05)

November -0.38 (0.12) -0.09 (0.05) 0.01 (0.01) 0.06 (0.06)

mesh size -1.49 (0.67) -0.05 (0.04) -0.88 (0.28) -0.08 (0.04)

engine kW Ð -0.03 (0.01) Ð 0.01 (0.00)

length vessel -1.19 (0.15) -0.10 (0.03) 0.15 (0.08) 0.04 (0.02)

GRT 0.81 (0.08) 0.07 (0.02) -0.19 (0.06) -0.05 (0.01)

(Entries are posterior means with standard deviations in parentheses.)

gillnet in a neighbourhood of the median value (140 mm) has a positive effect on the probability
of catch: locally increasingmesh size by 1% increases the probability of catching halibut by 0.002-
0.028. The local effect of changes to mesh size for a typical trawler, however, is much smaller.
This illustrates the importance of treating gillnets and otter trawls separately. The engine power
of ships with trawl gear does not seem to play a substantial role either, although more power is
consistently associated with higher probability of catch. Finally, longer vessels tend to have a
lower probability of zero catch, but the latter is partly offset by the opposite effect of GRT.
Let us now focus on results for the continuous part, modelled as in Section 5. The coefÞcient

βl corresponding to a categorical variable has the following interpretation: exp(βl) is the ratio
between the median catch with the corresponding dummy equal to one and the median catch
in case this dummy is zero. If a continuous regressor is the logarithm of a variable (length and
GRT), then the corresponding regression coefÞcient βl is unequivocally interpreted as an elasticity
(i.e., it approximately reßects the relative percentage change in median catch as a consequence of
a 1% relative change in the original untransformed continuous regressor). For the interactions
with trawls, to which the more complicated transformation indicated in Table 1 was applied, the
elasticity ofmedian catchwith respect to that regressor is given byβl times a positive factor (which
depends on where we evaluate the elasticity). For the gillnet mesh interaction, the elasticity is a
linear combination of both the intervening components of β.
The ÷k-dimensional ( ÷k = 28 for most species) regression vector β has a rather complicated

posterior distribution, which is a mixture of point masses at zero and continuous parts. It is
therefore quite challenging to present this distribution in an easily interpretable format. In the
sequel, we shall illustrate some aspects of this posterior distribution for halibut. Again, results
vary considerably across species.
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Figures 2Ð4 present, for a number of selected linear combinations of the components of β, b′β,
the posterior p.d.f. in (5.5) for halibut. In addition, the gauge on top (black shading) indicates the
posterior probability that b′β 6= 0. The vertical lines presented in some of these graphs relate to
the classical estimate and 90% conÞdence interval obtained from a stepwise regression technique,
as explained and discussed later in Subsection 7.4.
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Fig. 2. Halibut: Year and zone.

Figure 2 focuses on the elements of β corresponding to year and zone. From Table 4 we
note that all visited models are ÒfullÓ in these two categorical variables (i.e. Lr − 1 out of the Lr
possible levels are always included in the model). This induces Lr − 1 modes in the marginal
posterior p.d.f. for the regression coefÞcients, where every mode corresponds to a different level
being excluded (and, thus, treated as the reference level). For year we have Lr = 2 possible
levels, leading to unimodal distributions which indicate that 1993 is clearly a better year than
1994. For zone we have Lr = 4 levels and we observe the expected Lr − 1 = 3 modes. From the
relative locations of the modes, it is easy to derive that, for example, the three modes for zone 3L
correspond to taking zone 3N, 3M and 3O (from left to right) as reference levels. There is a clear
ranking in that zone 3O is the worst, followed by 3M, 3L and 3N, in that order. The difference
between zones 3L and 3N is not very large (about 0.15 between the modes, or a factor of 1.16
between median catch), which accounts for the apparent bimodality of the p.d.f. corresponding
to zone 3O. The latter zone is the zone with by far the least observations, leading to Student-t
distributions with large spread in (5.5), which means the modes corresponding to reference cases
3N and 3L can no longer be separately identiÞed in the Þgure. In a case such as this, wheremodels
are full in a categorical variable, it does not matter which level is taken as a reference level (since
all levels are always identiÞed as being different), and we could equivalently Þx the reference
level and present conditional results instead of the marginal ones given here. For example, if we
give results for zone conditioned on the reference level zone 3O, only the extreme right modes
appear for the other zones. However, whenmore than one level at a time is excluded from visited
models (as is usually the case), we need the extra ßexibility provided by our framework where
reference levels are not Þxed in advance.
In general, one should aim to present results for quantities that have the same meaning re-

gardless of the choice of reference levels. An interesting way to present regression coefÞcients
of categorical variables is in the form of centred coefÞcients, that is, δl ≡ βl − (

∑Lr
i=1 βi)/Lr

(l = 1, . . . , Lr), for a categorical variable with Lr levels and original coefÞcients (β1, . . . , βLr ).
Clearly,

∑Lr
l=1 δl = 0 and δl indicates the difference between level l and the average, so its meaning
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is not dependent on any particular choice of reference level. Figure 3 presents the marginal pos-
terior distributions of the centred coefÞcients associated with each zone. The ranking of zones
mentioned above is now immediately obvious from Figure 3.
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Fig. 3. Halibut: Zone with centering.

The effects of the Þshing techniques and their interactions with mesh size and engine kW are
examined in Figure 4. From Table 4, we see that the categorical variable corresponding to Þshing
technique (with Lr = 4 levels) is not fully represented in every model. Some levels (the gillnet
techniques) are almost never included and otter trawl by pair is always included. Thus, otter
trawl by pair is never treated as a reference level (indicating it is quite different from the other
levels) whereas often more than one of the other levels are excluded (and thus treated as equal).
The fact that models now exclude either one, two or three of these levels at the same time creates
more possibilities formodes in themarginal distributions of the associated regression coefÞcients,
and interpretation becomes much harder. Note, however, that now we would lose ßexibility if
we Þxed a reference level (e.g., if we had chosen otter trawl by pair as the reference level, we could
not have accommodated the situation described above, where trawl by pair is different from all
the others and some of the other levels are equal).
Evaluating the relative merits of the Þshing techniques is complicated by the presence of

interactions with mesh size and kW. Therefore, Figure 4 presents the posterior distribution of the
differences between the regression coefÞcients associated with drift and anchored gillnet (which
are equally affected by the interactions) and also between those for otter trawl and otter trawl by
pair. These are interpretable quantities (logs of median catch ratios), and reveal little difference
between both gillnets, whereas single trawls tend to do better than trawls by pair. To get a rough
idea of the overall effects of the different Þshing methods, we can consider the conÞguration of
the best model (themodel with highest posterior probability), which includes trawl by pair as the
only technique and all interactions except for trawl with mesh size. On the basis of the posterior
mode of the included regression coefÞcients for this model, and evaluating the effect at median
values for the continuous regressors, we obtain the following ranking from better to worse: otter
trawls, trawls by pair (median catch about 58% of otter trawls) and both gillnets (median catch
about 10%of otter trawls). These numbers are roughly consistentwith the observedvalues (which
are, of course, affected by other factors as well). Figure 4 also graphs the difference in log median
catch for two gillnet mesh sizes, suggesting higher median catch for 140 mm mesh (median and
3rd quartile from Table 1) than for 130 mm (1st quartile). Finally, for trawls, mesh size is almost
never included in the model, whereas engine kW has a positive effect on median positive catch
of halibut.

To economize on space, we have not shown the posterior density functions of the regression
coefÞcients of the months or the size variables. The main messages here are that the months
January until May have a positive effect, whereas July until November lead to lower median
catch of halibut. Finally, length has a positive effect and GRT a negative effect. From Figure 1,
we know that both variables are strongly positively correlated and, on balance, the effect of size
on the median catch of halibut will be quite small.
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Fig. 4. Halibut: Fishing techniques and their interactions.

7.3. Predictive results

On the basis of the posterior results partially described above, we shall now predict observations
in the subsample that was not used for posterior inference.
First of all, let us examine how well we predict the probability of zero catch. For every

observation in the prediction subsample, we compute ωf = P (sf = 0 | s) as in (6.2). An interesting
check on the adequacy of our probit model is then to compare these predictive probabilities
with the actual occurrences of zero or positive catch. Table 6 presents the means and standard
deviations of ωf computed over the zero and the positive observations in the prediction sample.
Clearly, ωf tends to take much higher values for those observations that turn out to be zero,
indicating that the probit model does far better than simply assuming that the probability of zero
catch is constant across observations.

Table 6. Predictive Zero Catch Probability
Species

cod halibut redÞsh grenadier skate

Zero observations 0.94 (0.14) 0.59 (0.30) 0.92 (0.13) 0.63 (0.30) 0.66 (0.20)

Positive observations 0.45 (0.21) 0.09 (0.14) 0.45 (0.28) 0.29 (0.16) 0.45 (0.19)

( Entries are means with standard deviations in parentheses.)

Let us now use the predictive results for the continuous part in (6.4) to assess the predic-
tive adequacy of the modelling of positive observations. For all the positive observations in
the prediction subsample we record in which percentile of the continuous part of the predic-
tive distributions (using the corresponding values of the regressors) the actual observations fall.
Contrasting predictive quantiles with empirical ones leads to a Q-Q plot that indicates how well
the model (estimated on the basis of the estimation subsample) Þts the data in the prediction
subsample. As the assignment of observations to either subsample is random, we would expect
such plots to be a good measure of model accuracy. Figure 5 presents these Q-Q plots for all Þve
species, indicating that model Þt is always quite good.

For illustration, we now show some predictive distributions for particular observations in the
prediction subsample. Figure 6 graphs the predictive p.d.f.Õs of the nonzero catch of halibut for
observations i = 196 (270 kg) and i = 1189 (3600 kg) Ñas in (6.4). From the probit analysis, the
probability of zero catch for observation 196 is 0.43, while observation 1189 has only a 0.03 proba-
bility of being equal to zero. The rather different predictive distributions illustrate the importance
of the Þshing gear. Themain difference between the observations is that 196 corresponds to a ves-
sel usingdrift gillnetswhereas 1189 iswith an otter trawl. In both cases, the actual catch (indicated
by a dashed vertical line in Figure 6) is quite compatible with the predictive distributions.

For policy purposes, it might be interesting to predict not the catch of one single ship, but the
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Fig. 5. Q-Q Plots for Predictions of Individual Observations.
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Fig. 6. Halibut: Predictive Densities and Actual Observed Values.

aggregate catch of a number of ships, that are known to be in a certain area of the Grand Bank at
a certain time of the year. If we group the data into clusters of 5 ship-days, we can analyze how
such predictions, based on the estimation subsample, compare with the actual retained clusters.
Clusters of ships that are in the same zone on the same day are likely to be of most interest for
practically relevant predictions. In order to mimic such clusters, we have sorted the prediction
subsample byyear, day andzone (in that order) and selected clusters of 5 consecutive observations
from that ordering. The predictive distribution, computed as described at the end of Section 6,
leads to Q-Q plots (not shown) that indicate adequate predictions for clusters. Figure 7 presents
some individual cluster predictives for the nonzero catch of halibut, redÞsh and grenadier. The
probability of zero aggregate catch varies dramatically across these clusters: from less than 10−6%
for halibut to 0.91% for grenadier and 58.8% for redÞsh. Again, the quantities caught are well
matched by the corresponding predictive distributions. These predictive densities immediately
lead to probability statements, e.g., about a ßeet of certain characteristics exceeding a certain catch,
which could straightforwardly be used in a decision theory context.
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Fig. 7. Predictive Densities and Actual Observed Values for Clusters.

7.4. Classical methods

In a classical statistical framework, posterior model probabilities are not readily available and,
usually, a particular model is selected instead of averaging over models. Given the substantial
spread of the posterior mass over the models inM (see Table 3), that does not seem an adequate
strategy for the analysis of these data.
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Nevertheless, if we wish to use classical methods for variable selection, a popular technique
is stepwise regression. Table 3 records the posterior probabilities of the models selected using
forward selection and backward elimination as in Lo et al. (1992). Here we base the choice of
reference levels for the categorical variables on the best model: we can choose any reference
level for those categorical variables in which the best model is full and for the other categorical
variables we choose from the levels that are excluded in the best model the one with lowest
posterior inclusion probability (see Table 4).
The models chosen by this stepwise regression technique have in between 6 (cod) and 21

(halibut) variables. For grenadier and skate, this method identiÞes the important variables rea-
sonably well: no variables with posterior probabilities over 0.8 are left out and only one regressor
with posterior inclusion probability under 0.2 is selected (for skate). Accordingly, the posterior
probability of the stepwise model is relatively high for these species (see Table 3). For halibut
and redÞsh the performance of stepwise regression is much less in line with the posterior inclu-
sion probabilities. For cod there is an even larger conßict between the stepwise model and the
posterior inclusion probabilities, and, as a consequence, the stepwise model picks up virtually
no posterior mass.
The classical 90% conÞdence intervals corresponding to the models selected by stepwise re-

gression are indicated in Figure 2 and the last two plots of Figure 4 by dotted vertical lines. The
estimated value is indicated by a dashed line and a single dash-dot line at zero represents ex-
clusion of the corresponding regressor. Even though some conÞdence intervals roughly contain
90% of the posterior mass, they can be quite different from the corresponding Bayesian credible
intervals.

8. Concluding remarks

In this paper we have outlined the modelling of daily live weight catch of different species of
Þsh in the Grand Bank Þshery. An important feature of the data is the fact that on most days
not all species are caught by a certain ship. Thus, modelling of these implicit zero observations
is crucial. The latter was done through a probit model. For the positive observations, we have
used a Lognormal regression model, where we allow for any combination of regressors from a
set of different explanatory variables. We deal with model uncertainty through Bayesian model
averaging. Many of the regressors are categorical variables, and we pay particular attention to
the treatment of categorical variables in a model uncertainty context. In particular, we allow for
any combination of levels to be included in the models, as long as no categorical variable appears
with all possible levels (thus, no reference level is Þxed in advance). In order to deal with the
resulting 177 million possible models, we apply an MCMC algorithm, based on the Metropolis-
Hastings sampler to generate aMarkov chain of drawings in this largemodel space. Throughout,
we use a carefully chosen prior distribution which also takes into account that models that are
full in categorical variables have equivalent counterparts (corresponding to different choices
for the excluded level of these categorical variables), and we examine posterior and predictive
inference. The former can be instrumental in policy decisions regarding the effect of certain
ship characteristics or regulations concerning, e.g., mesh size or Þshing techniques. The latter
is required if we wish to predict catch per species from easily obtained information regarding
the presence of vessels with known characteristics in a certain area at a certain time, rather than
having to board these vessels (which ismuchmore costly and altogether impossible for ships from
countries outside NAFO). The methods would also be useful for estimating total catch by area
when misreporting and black landings are common. Bayesian model averaging naturally takes
into account all uncertainty concerning parameter values as well as model uncertainty. Thus,
realistic predictions can be made for one or more ship-days, duly taking into account the shipsÕ
characteristics, location, month as well as parameter and model uncertainty. Using the efÞcient
code, new data can easily be processed and posterior and predictive inference can be conducted
without excessive computational requirements. We Þnd that the proposed model Þts our data
relatively well, and that results differ crucially between species.
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There are a number of ways in which the model used here could be extended. A possible
elaboration would be to include random ship effects Ñi.e., ship-speciÞc interceptsÑ in either the
discrete or the continuous part of the model. That could pick up certain quality aspects of the
vessels, not captured in the regressors. A potential interpretation of such individual effectswould
be as skill of the captain of the vessel, which was equated with technical efÞciency in a stochastic
frontier model by Kirkley et al. (1998). Barring rather restrictive forms for the distribution of the
random effects, this would result in substantial complications: for example, our computations for
the continuous part rely on the fact that the marginal likelihood for each model can be computed
analytically. We have also avoided including dynamic effects into the model; such effects might
provide a Òcloser ÞtÓ, but are not in line with the aim of providing easily computed operational
predictions on the basis of available information (which typically does not include a recent history
of quantities caught by a cluster of ships considered). In addition, their inclusion would be at
the cost of adding to the theoretical and computational complexity of the model. Also, it might
be a useful exercise to examine the effects of allowing for heteroskedasticity in the error term
of (3.2) by making σ depend on, e.g., the size of the ship. Of course, both theory and practical
implementation would become more cumbersome as a consequence (unless such dependence
would be Þxed, rather than estimated from the data). Finally, again at a considerable cost in terms
of added complexity, onemight propose amultivariate model for all species with correlated error
terms.
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Appendix A: Samplers

A.1. Gibbs sampler for probit model
Weintroduce independent latent variablesmi (i = 1, . . . , n), withmi distributedasNormal(x′iγ, 1).
From (3.1), it is immediate that si = 0 is equivalent to mi > 0, whereas si > 0 is equivalent to
mi < 0. The posterior distribution is, therefore,

p(γ | s) = p
(
γ |mi < 0 for i = 1, . . . , Q;mi > 0 for i = Q + 1, . . . , n

)
.

A Gibbs sampler, augmenting withm ≡ (m1, . . . , mn)′, consists of drawing from:

p(γ |m, s) = p(γ |m) = f1+k
N

(
γ | {(1 + h0)X ′X}−1X ′m, {(1 + h0)X ′X}−1

)
, and

p(m | γ, s) ∝
{ Q∏
i=1

f1
N (mi |x′iγ, 1)I(mi<0)

}{ n∏
i=Q+1

f1
N (mi |x′iγ, 1)I(mi>0)

}
.

A.2. MCMC sampler on model space
Suppose the chain is currently atMs, which has ks continuous regressors and nr levels for cate-
gorical variable r (where 0 ≤ ks ≤ K, r = 1, . . . , R and nr ∈ {0, 1, . . . , Lr−1}). Suppose that there
are fs full categorical variables, c1, . . . , cfs , Ñi.e., nc1 = Lc1 − 1, . . . , ncfs = Lcfs − 1. The number
of regressors inMs is then Ns = ks + n1 + . . . + nR, whereas the maximum amount of regressors
in any model isNtot = K +L1 + . . .+LR−R. The Metropolis-Hastings algorithm proceeds along
the following steps:

[S1] Propose a new modelMcan in several stages. First propose Ncan:

Ncan =
{

Ns + 1 with probability (Ntot −Ns)/Ntot

Ns − 1 with probability Ns/Ntot

Now proposeMcan conditionally on the drawn value of Ncan:

(a) If Ncan = Ns + 1: sample Mcan by uniformly adding one regressor to Ms, excluding levels
of categorical variables in whichMs is already full. We can choose fromNtot −Ns +R− fs
variables, so the probability of adding each is 1/(Ntot − Ns + R − fs). DeÞne Tcan,s =
(Ntot −Ns +R− fs)/(Ntot −Ns). Proceed to [S2].

(b) If Ncan = Ns − 1: uniformly drop one regressor from Ms to form Mcan; each choice has
probability 1/Ns. DeÞne Tcan,s = (Ntot −Ncan)/(Ntot −Ncan +R− fcan). Proceed to [S2].

[S2] Compute:
• Bcan,s = ly(Mcan)/ly(Ms), where

ly(Mj) ∝
(

g0

g0 + 1

)kj/2
G
−(Q−1)/2
j , (A.1)

with
Gj =

1
g0 + 1

y′MWj
y +

g0

g0 + 1
(y − yιQ)′(y − yιQ), (A.2)

where ιQ is the Q-dimensional vector of ones, y = ι′Qy/Q, Wj = (ιQ : Zj) and MWj
= IQ −

Wj(W ′
jWj)−1W ′

j .
• Lcan,s = (

∏fs
i=1 Lci)/(

∏fcan
i=1 Lci), with fcan denoting the number of full categorical variables

inMcan.

[S3] With probability q = min(1, Bcan,sLcan,sTcan,s) the chain moves toMcan, whereas with proba-
bility 1− q it stays atMs.
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[S4] Record the new state of the chain (be it Mcan or Ms) after uniformly redrawing the reference
level for each of the full categorical variables.
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