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Abstract: Agent-based computational economics (ACE) is the computational study of economies
modeled as evolving systems of autonomous interacting agents. Starting from initial conditions,
specified by the modeler, the computational economy evolves over time as its constituent agents re-
peatedly interact with each other and learn from these interactions. ACE is therefore a bottom-up
culture-dish approach to the study of economic systems. This chapter discusses the key charac-
teristics and goals of the ACE methodology. Eight currently active research areas are highlighted
for concrete illustration. Potential advantages and disadvantages of the ACE methodology are
considered, along with open questions and possible directions for future research.
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1 Introduction

Decentralized market economies consist of large numbers of economic agents involved in distributed
local interactions. These local interactions give rise to macroeconomic regularities such as trading
protocols, socially accepted monies, and widely adopted technological innovations which in turn
feed back into the determination of local interactions. The result is a complicated dynamic system
of recurrent causal chains connecting agent behaviors, interaction networks, and social welfare
outcomes.

This two-way feedback between microstructure and macrostructure has been recognized within
economics for a very long time [42, 74, 87, 90]. For much of this time, however, economists have
lacked the means to model this feedback quantitatively in anywhere near its actual complexity. The
most salient characteristic of traditional quantitative economic models supported by microfounda-
tions is their top-down construction. Heavy reliance is placed on externally imposed coordination
devices such as fixed decision rules, common knowledge assumptions, representative agents, and
market equilibrium constraints. Face-to-face interactions among economic agents typically play no
role or appear in the form of highly stylized game interactions. In short, economic agents in these
models have little room to breathe.

∗This survey is an abbreviated version of [102].
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In recent years, however, substantial advances in modeling tools have greatly expanded the
possibility set for economists [8, 14, 27, 34, 43, 57, 86, 110]. Researchers can now quantitatively
model a wide variety of complex phenomena associated with decentralized market economies, such
as inductive learning, imperfect competition, endogenous trade network formation, and the open-
ended co-evolution of individual behaviors and economic institutions.

One branch of this work has come to be known as agent-based computational economics (ACE),
the computational study of economies modeled as evolving systems of autonomous interacting
agents.1 ACE researchers rely on computational frameworks to study the evolution of decentralized
market economies under controlled experimental conditions.

Two basic concerns drive ACE research. One concern is descriptive, focusing on the constructive
explanation of emergent global behavior. Why have particular global regularities evolved and
persisted in real-world decentralized market economies, despite the absence of top-down planning
and control? How, specifically, have these global regularities been generated from the bottom
up, through the repeated local interactions of autonomous interacting agents? And why these
particular regularities and not others? The second concern is normative, focusing on mechanism
design. Given a particular economic mechanism, whether existing or simply envisioned, what are
the implications of this mechanism for the performance of the economy as a whole? What social
outcomes will result from the repeated attempts of self-seeking agents to exploit the mechanism to
their own advantage?

As in a culture-dish laboratory experiment, the ACE modeler starts by constructing an econ-
omy comprising an initial population of agents. These agents can include both economic agents
(e.g., consumers, producers, intermediaries,. . . ) and agents representing various other social and
environmental phenomena (e.g., government agencies, land areas, weather,. . . ). The ACE modeler
specifies the initial state of the economy by specifying the initial attributes of the agents. The ini-
tial attributes of any one agent might include type characteristics, internalized behavioral norms,
internal modes of behavior (including modes of communication and learning), and internally stored
information about itself and other agents. The economy then evolves over time without further
intervention from the modeler. All events that subsequently occur must arise from the historical
time-line of agent-agent interactions. No extraneous coordination devices are permitted. For ex-
ample, no resort can be made to the off-line determination and imposition of market-clearing prices
through fixed point calculations.

The following sections provide a more detailed discussion of the ACE methodology. Before
proceeding, however, an important disclaimer is in order. The primary objective of this survey is
modest in scope: to introduce, motivate, and illustrate through concrete examples the potential
usefulness of the ACE methodology by highlighting selected publications in eight currently active
research areas. The number of researchers now making use of the ACE methodology is growing,
however, and the number of issues being addressed by these researchers is rapidly expanding.
Inevitably, then, some important work will have been overlooked in this survey.2 Moreover, although
efforts are made to identify and pay tribute to the earliest studies within each covered research area,
accessibility has been a primary concern. Consequently, published versions of papers are generally

1See http://www.econ.iastate.edu/tesfatsi/ace.htm for extensive resources related to the ACE methodology.
2See http://www.econ.iastate.edu/tesfatsi/ace.htm for extensive annotated lists of pointers to the home pages of

individual researchers and research groups now active in ACE-related research. Suggestions for additional pointers
are most welcome.
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cited rather than working paper versions.3

2 Illustrative ACE Research Areas

Three special journal issues have recently appeared that include a fairly diverse sampling of current
ACE research [99, 100, 101]. The topics addressed in these special issues roughly divide into
eight research areas: (i) Learning and the embodied mind; (ii) evolution of behavioral norms;
(iii) bottom-up modeling of market processes; (iv) formation of economic networks; (v) modeling of
organizations; (vi) design of computational agents for automated markets; (vii) parallel experiments
with real and computational agents; and (viii) programming tools for ACE modeling.4

These eight research areas are used below to illustrate the potential usefulness of the ACE
methodology. Since all of the articles included in the special ACE journal issues went through a
careful review process in which readability and accessibility were stressed, along with quality of
content, a number of these articles are highlighted in this discussion.

2.1 Learning and the Embodied Mind

ACE researchers and other computationally oriented social scientists have used a broad range of
representations for the learning processes of computational agents. These include reinforcement
learning algorithms [17, 91], neural networks [63, 76, 94], genetic algorithms [25, 43], genetic pro-
gramming [22, 55], and a variety of other evolutionary algorithms that attempt to capture aspects
of inductive learning [21].5

Many of these learning representations were originally developed with global optimality objec-
tives in mind, so caution must be used in applying them to economic processes. For computational
models of team problems or fully automated economic processes, an investigator might find it rea-
sonable to specify a global learning scheme in which the strategies of the computational agents
jointly evolve in an attempt to satisfy one or more globally specified goals (e.g., productive effi-
ciency). On the other hand, for computational models of economic processes with diverse human
participants, the learning representations used for the computational agents will generally need to
incorporate the salient characteristics of actual human decision-making behavior if predictive power
is to be attained. In this case it will generally be necessary to introduce local learning schemes in
which individual agents or groups of agents separately evolve their strategies on the basis of their
own perceived local benefits.

Gintis [40] raises another concern. He emphasizes the need for a better modeling of agent
behavior in view of the numerous anomalies discovered in laboratory experiments between actual
human-subject behaviors and the behaviors predicted by traditional rational-agent economic the-
ories. Departing from the traditional view of game theory as a formal study of rational behavior
among strategically interacting agents, Gintis instead presents game theory as an evolutionary tool
kit for studying behavior in a broad array of social settings. He views games as strategic interac-
tion problems imbedded in natural and social processes. As agents repeatedly grapple with these

3If a history of ACE ever comes to be written, one difficulty will be that many of the pioneering studies in the
nineteen eighties and early nineteen nineties were either published after long delays or remain as working papers.

4See http://www.econ.iastate.edu/tesfatsi/aapplic.htm for pointers to introductory resource sites for these various
ACE research areas.

5See http://www.econ.iastate.edu/tesfatsi/aemind.htm for pointers to ACE-related resources on embodied cogni-
tion.
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problems over time, they ultimately evolve the ability to play these games effectively. Moreover, in
Gintis’ view, this evolution typically results less from cognitive processes than from various forms
of imitation, such as those underlying cultural transmission.

Aware of these concerns, ACE researchers are increasingly moving away from the unconsidered
adoption of off-the-shelf learning algorithms and towards a more systematic study of the sensitivity
of economic outcomes to learning specifications. For example, Dawid [25] undertakes a systematic
study of dynamic multi-agent economic models in which genetic algorithms are used to implement
the evolution of individual strategies. He shows that particular aspects of this implementation (e.g.,
the precise configuration of parameter settings) can strongly influence the set of potential long-run
outcomes. This work has had a substantial impact on ACE researchers, since genetic algorithms
have been widely used by these researchers as learning representations for their economic agents.

The learning study by Rust et al. [85] has also had a substantial impact on ACE researchers.
The authors report a comparative analysis of thirty computational trading algorithms submitted to
a double-auction tournament held at the Santa Fe Institute between 1990 and 1991. The submitted
algorithms ranged from simple rules of thumb to sophisticated learning algorithms incorporating
ideas from artificial intelligence and cognitive science. The winner of the tournament turned out
to be one of the simplest algorithms submitted, a “sniping” (last-minute bidding) strategy roughly
describable as follows: Wait while others do the negotiating, then jump in and steal the deal when
the bid and ask prices get sufficiently close. Sniping has become an increasingly popular bidding
strategy in Internet auctions such as eBay with hard closing rules (fixed end times), despite forceful
attempts by auction managers to discourage the practice [83]. This development has even led to
the start-up of an Internet company (eSnipe) that, for a fee, will automate the use of the sniping
strategy for any interested eBay participant.

Another learning study that has been highly influential among ACE researchers and economists
in general is by Gode and Sunder [41], who report on continuous double-auction experiments with
computational agents. A continuous double auction is an auction for standardized units of a real
or financial asset in which offers to buy and sell units are posted and matched on a continuous
basis. Continuous double auctions are a common form of trading institution for many real-world
commodity and financial markets. Examples include the commodity trading pit of the Chicago
Board of Trade and the New York Stock Exchange [52]. Gode and Sunder find that the allocative
efficiency of their continuous double auction derives largely from its structure, independently of
learning effects. More precisely, they find that market efficiency levels close to 100 percent are
attained even when their traders have “zero intelligence,” in the sense that they submit random
bids and asks subject only to a budget constraint and a local improvement rule.

A study by Vriend [105], which focuses on the importance of the level of learning for computa-
tional agents, is also attracting attention. Vriend conducts ACE experiments within the context of
a standard Cournot oligopoly game: namely, multiple seller firms compete by individually choosing
their quantity levels of production, which in turn jointly determine the market price for the good
produced. Two different genetic algorithm specifications for learning are considered: (a) individual
level, in which each firm learns exclusively on the basis of its own experiences; and (b) population
level, in which each firm learns from the experiences of other firms as well as its own. Vriend finds
that population learning systematically results in an aggregate output level close to the socially
desirable competitive level whereas individual learning does not. He traces this difference to “spite
effects” – choosing actions that hurt oneself but hurt others even more. Spite effects operate under
population learning to drive aggregate output toward the competitive level, but spite effects are
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not operational under individual learning.6

Other ACE researchers are attempting to calibrate their learning algorithms to empirical decision-
making data. One interesting example of this type of research is a study by Marks [68], who
addresses two important but immensely challenging questions. Do the information processing ac-
tivities of market participants systematically evolve during the course of market activities? If so,
how?

Marks first formally sets out an analytical market framework within which these questions can
be rigorously posed and examined. The participants in this market are permitted to evolve their
information processing capabilities over time. More precisely, they are permitted to evolve the
degree to which they partition their state spaces into distinguishable regions for the purposes of
determining state-conditioned actions. For example, a crude partitioning may mean that a seller
only pays attention to two possible price actions of its rival sellers (low price, high price) whereas
a finer partition may mean that the seller pays attention to three possible price actions of its rival
sellers (low price, intermediate price, high price).

Marks then focuses on the particular case in which the only available state information consists
of the prices set by rivals. He considers two different measures for the information loss accruing
to a price-space partition of a given crudeness: number of perceived states; and Claude Shannon’s
well-known entropy measure. He then incorporates price-space partitioning into an ACE model
of a retail coffee market. Historical data are used to calibrate this computational model to actual
historical market circumstances. The following specific question is posed: How much information
do actual coffee brand managers choose to use in their repeated interactions over time? To inves-
tigate this question, Marks conducts a range of experiments under variously specified partitioning
structures for the price space: dichotomous partitioning in level; dichotomous partitioning in first
differences; and terchotomous partitioning in levels. Two historical scanner data sets from two
different supermarket chains are separately examined. Marks’ key finding, based on the range of
tested partitioning models, is that the dichotomous partitioning model in first differences provides
the most informative fit to the examined historical data. The implication is that actual coffee brand
managers appear to home in on one particular aspect of their rivals’ pricing strategies: namely, did
these rivals change their prices last period or not?

Another interesting development in ACE studies of learning is the use of human-subject experi-
mental data to calibrate the learning of computational agents. This work is discussed in Subsection
2.7, below.

2.2 Evolution of Behavioral Norms

The concept of a “norm” has been defined in various ways by different researchers. Axelrod [11,
p. 47] advances a behavioral definition, as follows: “A norm exists in a given social setting to
the extent that individuals usually act in a certain way and are often punished when seen not
to be acting in this way.” He justifies this definition on the grounds that it makes the existence
of norms a matter of degree, which permits one to study the growth and decay of norms as an
evolutionary process. Using agent-based computational experiments, he then demonstrates how

6As a cautionary note, the particular finding by Vriend that social learning dominates individual learning in terms
of achieving market efficiency seems special to his market, in which the seller firms are all identically structured.
In contrast, Nicolaisen et al. [72] find that a substantially higher level of market efficiency is consistently obtained
under individual reinforcement learning than under genetic algorithm population-level learning in the context of a
restructured electricity market in which the seller firms (generators) have differential costs.

5



mutual cooperation can evolve among self-interested non-related agents through reciprocity with
little or no explicit forward-looking behavior on the part of the agents. This seminal work has been
extraordinarily influential among economists and game theorists alike. In particular, it has vastly
enlarged the traditional scope of non-cooperative game theory by encouraging the consideration of
bounded rationality and evolutionary dynamics.

Another researcher whose work on behavioral norms has profoundly influenced economists is
Thomas Schelling. Working with familiar examples from everyday life, and without the aid of
sophisticated computational tools, Schelling [87] shows how patterned social behavior can arise as
the unintended consequence of repeated local interactions among agents following simple behavioral
rules. For example, he demonstrates (pp. 147-155) how segregation by race can arise through local
chain reactions if agents have a moderate preference for avoiding small-minority status in the sense
they prefer somewhat more than one third of their neighbors to be of the same race as themselves.

Building on the work by Schelling, Epstein and Axtell [34] use agent-based computational ex-
periments to investigate how various collective behaviors might arise from the interactions of agents
following simple rules of behavior. In a subsequent study, Axtell et al. [13] study the emergence
and stability of equity norms in society. In particular, using both analysis and computational ex-
periments, they show how intrinsically meaningless “tags” associated with agents can acquire social
salience over time, such as when tag-based classes emerge. This study has interesting connections
with the work on tag-mediated interactions by Holland and Riolo [44, 81], who show that introduc-
ing even very simple tag-choice schemes in interacting-agent systems can dramatically change the
course of evolutionary outcomes. Another related study is by Arifovic and Eaton [6], who study
how computational agents learn to use tags (truthfully or deceptively) to signal their types.

More recently, Epstein [33] uses an agent-based computational model to study an important ob-
served aspect of behavioral norm evolution: namely, that the amount of time an individual devotes
to thinking about a behavior tends to be inversely related to the strength of the behavioral norms
that relate to this behavior. In the limit, once a norm is firmly entrenched in a society, individuals
tend to conform their behavior to the norm without explicit thought. Epstein’s innovative model
permits agents to learn how to behave (what norm to adopt), but it also permits agents to learn
how much to think about how to behave.7

2.3 Bottom-Up Modeling of Market Processes

The self-organizing capabilities of specific types of market processes is now one of the most active
areas of ACE research. For example, articles included in the special ACE issues [100, 101] investigate
the following types of markets: financial; electricity; labor; retail; business-to-business; natural
resource; entertainment; and automated Internet exchange systems. To give the general flavor of
this research, an early influential study by Robert Marks will first be reviewed. This will be followed
by a discussion of several recent studies focusing on financial markets and restructured electricity
markets, two of the most highly active and topical research areas for ACE market studies.

An Early Study by Marks:

Robert Marks was one of the first researchers to use an ACE framework to address the issue
of market self-organization. His research highlighted for economists – in compelling constructive

7See http://www.econ.iastate.edu/tesfatsi/asocnorm.htm for pointers to ACE-related resources on the evolution
of norms.
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terms – the potential importance of history, interactions, and learning for the determination of
strategic market outcomes. Specifically, in [67], Marks used an ACE model of an oligopolistic
market to investigate how price-setting seller firms might successfully compete. His model made
use of a genetic algorithm to model his firms as boundedly rational inductive learners. Mutation
and recombination operations were repeatedly applied to the collection of pricing strategies in use
by firms as a way of permitting the firms both to experiment with new ideas (mutation) and
to engage in social mimicry (recombination) by adopting aspects of the strategies used by more
profitable firms.

One outcome observed by Marks in his experiments was the emergence of globally optimal
“joint maximization” pricing across firms without any explicit price collusion. At the time, this
type of bottom-up evolution-of-cooperation outcome was new to many economists, since few had
yet encountered the seminal work by Axelrod [10] on this topic. Not surprisingly, then, Marks
stressed this finding in his article. Nevertheless, in retrospect, an equally interesting finding is that
the evolution of cooperation across firms was not assured. Rather, in many of the experimental
runs, different configurations of niche strategies emerged that were successful only against a partic-
ular collection of competitors. Thus, firms were co-evolving their strategies in an intricate dance of
path-dependent interactions. Chance mattered for the determination of the final outcomes, as did
the behavioral quirks that individual firms evolved in response to their own particular interaction
histories. An important implication of this type of path-dependent co-evolution is that the “opti-
mal” pricing strategy evolved by a firm in any one particular run of a market experiment might in
fact perform very poorly if simply inserted into the pool of pricing strategies evolved in a different
run of the same market experiment.

Financial Markets:

Conventional models of financial markets based on assumptions of rational choice and market
efficiency are extremely elegant in form. Unfortunately, no single model to date has proved capable
of explaining the basic empirical features of real financial markets, including fat-tailed asset return
distributions, high trading volumes, persistence and clustering in asset return volatility, and cross
correlations between asset returns, trading volume, and volatility.

Due in great part to these well known difficulties, financial markets have become one of the most
active research areas for ACE modelers.8 Indeed, ACE financial market models have been able to
provide possible explanations for a variety of observed regularities in financial data [36, 45, 64, 65].
Several of the earliest ACE financial market studies are surveyed in detail in LeBaron [59], including
the highly influential Santa Fe artificial stock market study by Arthur et al. [9]. The latter study
develops a dynamic theory of asset pricing based on heterogeneous stock market traders who update
their price expectations individually and inductively by means of classifier systems [43]. Several
more recent studies are outlined below to give the flavor of the current literature.

Tay and Linn [93] conjecture that better explanatory power might be obtained in financial
models by allowing the agents to form their expectations in accordance with the way investors
form their expectations in real life: namely, in fuzzy terms using inductive reasoning. They argue
that these features can be faithfully captured by a genetic-fuzzy classifier system, a modification of
Holland’s basic classifier system [43]. To test their claim, they modify the Santa Fe artificial stock
market model [9] by permitting traders to form their expectations inductively using a genetic-fuzzy

8See http://www.econ.iastate.edu/tesfatsi/afinance.htm for pointers to ACE-related resources on financial mar-
kets.
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classifier system and by modifying the manner in which traders decide which prediction rules to
rely on when making demand decisions. They report experimental findings that show that the asset
prices and returns generated by their model exhibit characteristics, including measures of kurtosis,
that are very similar to actual data.

LeBaron [60] is similarly interested in obtaining a better model fit to empirically observed
regularities for financial markets. He calibrates an agent-based computational stock market model
to aggregate macroeconomic and financial data. All investors use past performance to evaluate
the performance of their trading rules, but different investors have memories of different length.
A genetic algorithm is used to co-evolve the collection of trading rules available to the agents.
The model is calibrated to the growth and variability of dividend payments in the United States.
LeBaron is able to show that the calibrated model generates return, volume, and volatility features
remarkably similar to those characterizing actual financial time series data.

Foreign exchange markets have also proved to be extremely difficult to model with any predictive
power using conventional modeling approaches. Izumi and Ueda [47] propose a new agent-based
approach to the modeling of foreign exchange markets. They use field data (dealer interviews
and questionnaires) to construct behavioral rules governing agent interactions and learning in a
multi-agent foreign exchange model. The agents in their model compete with each other to develop
methods for predicting changes in future exchange rates, with fitness measured by profitability.
The objective of the authors is to provide a quantitative microfoundations explanation for empir-
ically observed macro regularities in foreign exchange markets. They are able to show that their
model provides a possible explanation for the emergence of the following three empirical features:
peaked and fat-tailed rate change distributions; a negative correlation between trading volume and
exchange rate volatility; and a “contrary opinions” phenomenon in which convergence of opinion
causes a predicted event to fail to materialize.

Chen and Yeh [23] argue that social learning in the form of imitation of strategies is important
in stock markets, along with individual learning, but that standard stock market models do not
include the mechanisms by which such social learning actually takes place. They construct an ACE
framework for the analysis of artificial stock markets that includes an additional social learning
mechanism, referred to as a school . Roughly, the school consists of a group of agents (e.g., business
school faculty members) who are competing with each other to supply publicly the best possible
models for the forecasting of stock returns. The success (fitness) of school members is measured
by the current forecasting accuracy of their models, whereas the success of traders is measured in
terms of their wealth. Each trader continually chooses between trading in the market and taking
time off to attend the school and test a sample of the forecasting models currently proposed by
school members in an attempt to discover a model that is superior to the one he is currently using.
The school members and the traders co-evolve over time in an intricate feedback loop. To test
the implications of their stock market model, Chen and Yeh conduct an experiment consisting of
14,000 successive trading periods. One key finding is that market behavior never settles down;
initially successful forecasting models quickly become obsolete as they are adopted by increasing
numbers of agents. Another key finding is that individual traders do not act as if they believe
in the efficient market hypothesis even though aggregate market statistics suggest that the stock
market is efficient.

As a final example, Howitt and Clower [46] use an ACE model of a decentralized market economy
to study the potential emergence of a generally accepted medium of exchange (i.e., money). The
authors are particularly interested in the possible role of “trade specialists” in supporting the
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emergence of money. A trade specialist is a trader who can reduce the costs of search, bargaining,
and exchange by setting up a trading facility that enables non-specialist traders to come together
to trade on a regular basis. The authors use a stylized model of a decentralized market economy in
which customers use simple behavioral rules to determine their economic activities and customers
can only trade with each other through the intermediation of specialist trading facilities, called
shops. Starting from an initial situation in which no institutions that support economic exchange
exist, the authors find that a “fully developed” market economy emerges in just over 90 percent
of all runs, in the sense that almost all agents are either in a profitable trade relationship or they
own a shop. Moreover, over 99 percent of these fully developed runs exhibit a unique money, in the
sense that one commodity and only one commodity is being used as a money to facilitate trades.

Electricity Auction Markets:

To date, most auction research has focused on one-sided auctions with a fixed number of agents
who bid competitively for single units of an item in a single trading period. In reality, however,
many auctions involve small numbers of buyers and sellers, asymmetric in size, who meet repeatedly
and frequently and who determine multi-unit quantity and price offers strategically in an effort to
exploit market power opportunities [52, 53].

As a case in point, auctions under consideration for restructured wholesale electricity markets
typically involve repeated quantity and price offers for the sale of large amounts of bulk electricity
by small numbers of electricity generators, some of whom have relatively large market shares. With
or without demand-side bidding, the resulting market processes are extremely complex, rendering
difficult the application of traditional analytical and statistical tools. Consequently, electricity
researchers are beginning to explore the possible use of agent-based computational frameworks.
Some of this work is outlined below.9

Bower and Bunn [18] use an ACE framework to study the following issue for the England
and Wales wholesale electricity market: How would prices for bulk electricity be affected by the
government-proposed change from a uniform-price auction, in which a single unit price is set for all
units sold, to a discriminatory-price auction in which a distinct unit price is set for each matched
seller and buyer as a function of their bid and ask prices? The market is modeled as a sequential
game among electricity generators (sellers) with market share and profit objectives. In each trading
period each generator submits to the auction a supply function expressing its quantity and price
offers. Each individual power plant for each generator is represented as a separate autonomous
adaptive agent capable of evolving its supply strategy by means of a simple reinforcement learning
algorithm. In contrast, agents on the demand side of the market are assumed to be passive price
takers; their buying behavior is modeled by a fixed aggregate demand curve reflecting a standardized
daily load profile corresponding to a typical winter day.

A key experimental finding of the authors is that, when supply function offers are not publicly
available, the proposed change from a uniform-price to a discriminatory-price auction design permits
larger generators to increase their profits relative to smaller generators. Larger generators have
a significant informational advantage over smaller generators under the discriminatory auction
because they submit more offers and therefore can learn more precisely about the current state
of the market. The uniform-price auction mitigates this advantage by letting smaller generators

9See http://www.econ.iastate.edu/tesfatsi/aauction.htm for pointers to ACE-related resources on auctions in gen-
eral, and see http://www.econ.iastate.edu/tesfatsi/aelect.htm for pointers to ACE-related resources on restructured
electricity auction markets.
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share in the industry’s collective learning by receiving the same market price for their electricity
as any other generator. The authors conclude that, under certain circumstances, the choice of the
auction design may actually be less important than simply ensuring that all auction participants
have equal access to information, regardless of their size.

Bunn and Oliveira [19] construct an ACE model of a wholesale electricity market to explore
the possible effects of the New Electricity Trading Arrangements (NETA) introduced in the United
Kingdom in March 2001. Their model incorporates the following critical features of the NETA
market design: strategically interacting market participants (electricity generators and energy pur-
chasers for end-use customers); a system operator; interactions between a bilateral market, a bal-
ancing mechanism, and a settlement process; determination of day-ahead mark-ups on previous-day
price offers by means of reinforcement learning; and daily dynamic constraints. The authors apply
this NETA computational model to the full electricity system of England and Wales. They then
use their experimental findings to provide insights about possible market equilibria under NETA
as a function of both market structure and agent characteristics.

Nicolaisen et al. [72] construct an ACE model of a restructured wholesale electricity market in
which prices are set in each successive period by means of a discriminatory-price double auction,
i.e., an auction in which the sellers (generators) and the buyers (electricity purchasers for end-
use customers) both actively make price offers. Each seller and buyer determines its price offers
adaptively over time by means of an individual reinforcement learning algorithm. Nicolaisen et al.
investigate three different specifications for the parameters characterizing this learning algorithm.
For each specification, they study the effects of differing capacity and concentration conditions on
market power and market efficiency. With regard to market power, they find that the attempts by
sellers and buyers to exercise strategic market power are largely ineffective; opportunistic ask and
bid price offers offset each other due to the symmetry of the double auction design. On the other
hand, the relative market power of sellers and buyers is well predicted by structural market power,
i.e., by the market power outcomes implied by structural market conditions under the assumed
absence of opportunistic ask and bidding behavior. With regard to market efficiency, they find
that high efficiency is generally attained. As a cautionary note, however, they also show that
other forms of learning (e.g., social mimicry learning via genetic algorithms) can result in seriously
degraded market efficiency.

2.4 Formation of Economic Networks

Interaction networks in market contexts are now frequently analyzed by means of transaction cost
economics (TCE) [109]. This approach assumes that optimal forms of organization or governance
will arise that are best suited to the particular characteristics of the agent transactions at hand.
The problem is then to determine what these optimal forms might be.

ACE researchers interested in interaction networks have generally focused on imperfectly com-
petitive markets involving strategic interaction among small numbers of buyers and sellers. In
such markets the deliberative choice of partners through learning and the development of trusted
relationships can greatly influence the form of the interaction networks that arise and persist. Con-
sequently, in contrast to TCE, ACE researchers have tended to stress more dynamically oriented
questions. What drives the formation of interaction networks among buyers and sellers? How do
these networks evolve over time? What are the social welfare implications of these networks?10

10See http://www.econ.iastate.edu/tesfatsi/anetwork.htm for pointers to ACE-related resources on networks.
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One particular type of interaction network that has attracted the attention of ACE researchers
due to its apparent empirical ubiquity is a small-world network [106]. A small-world network is a
connected network with two properties: (a) each node is linked to a relatively well-connected set
of neighbor nodes; and (b) the presence of short-cut connections between some nodes makes the
average minimum path length between nodes small. Such networks have both local connectivity
and global reach.

Wilhite [108] uses an ACE model of a bilateral exchange economy to explore the consequences
of restricting trade to small-world trade networks. He focuses on the trade-off between market
efficiency and transaction costs under four types of trade networks: (a) completely connected trade
networks (every trader can trade with every other trader); (b) locally disconnected trade networks
consisting of disjoint trade groups; (c) locally connected trade networks consisting of trade groups
aligned around a ring with a one-trader overlap at each meeting point; and (d) small-world trade
networks constructed from the locally connected trade networks by permitting from one to five
randomly specified short-cut trade links between members of non-neighboring trade groups. Given
each type of trade network, traders endowed with stocks of two goods seek out feasible partners,
negotiate prices, and then trade with those who offer the best deals. A key finding is that small-
world trade networks provide most of the market-efficiency advantages of the completely connected
trade networks while retaining almost all of the transaction cost economies of the locally connected
trade networks. His findings also suggest that there exist micro-level incentives for the formation of
small-world trade networks, since the traders who use this type of network tend to do well relative
to the traders who do not.

A natural extension of Wilhite’s work with fixed trade networks is to consider how networks
among trade partners initially form and subsequently evolve. Early ACE studies focusing on the
endogenous formation of trade networks include Albin and Foley [1], Kirman [50], Tesfatsion [95, 96],
Vriend [104], and Weisbuch et al. [107]. In each of these studies, a key concern is the emergence
of a trade network among a collection of buyers and sellers who determine their trade partners
adaptively, on the basis of past experiences with these partners.

More recent ACE research on the endogenous formation of trade networks has tended to focus
on specific types of markets. Tesfatsion [97, 98] focuses on labor markets. An ACE labor market
framework is used to study the relationship between market structure, worker-employer interaction
networks, worksite behaviors, and welfare outcomes. Workers and employers repeatedly participate
in costly searches for preferred worksite partners on the basis of continually updated expected
utility, engage in worksite interactions modeled as prisoner’s dilemma games, and evolve their
worksite strategies over time on the basis of the earnings secured by these strategies in past worksite
interactions. Any dissatisfied worker can quit working for an employer by directing his future work
offers elsewhere, and any dissatisfied employer can fire a worker by refusing to accept future work
offers from this worker.

Specially constructed descriptive statistics are used to study experimentally determined corre-
lations between market structure and worker-employer network formations, and between network
formations and the types of labor market outcomes that these networks support. Two aspects of
market structure are studied as treatment factors: job concentration (number of workers to num-
ber of employers); and job capacity (total potential job openings to total potential work offers).
One key finding is that, holding job capacity fixed, changes in job concentration have only small
and unsystematic effects on relative market power levels. A second key finding is that interaction
effects are strong. For each setting of the treatment factors, the network distribution resulting
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from multiple trial runs exhibits two or three sharp isolated peaks corresponding to distinct types
of worker-employer interaction networks, each of which supports a distinct pattern of worksite be-
haviors and welfare outcomes. These strong interaction effects could possibly help to explain the
“excess heterogeneity” problem routinely observed in labor markets: namely, that wage earnings
across workers exhibit greater variance than can be explained on the basis of measured structural
characteristics alone.

Tassier and Menczer [92] focus on an interesting puzzle regarding the prominent role of job
referral networks in U.S. labor markets. A robust finding for U.S. labor markets is that approx-
imately 50 percent of workers at any given time have obtained their jobs through referral-based
hiring. In order for referral-based hiring to be this effective, the referral networks must be efficiently
transferring job information between employers and potential workers. On the other hand, most
job referrals in the U.S. labor market come from friends, relatives, or other social contacts, not
from contacts chosen specifically for job referral. Why, then, do these socially determined networks
also perform so well as referral networks?

Tassier and Menczer construct an ACE labor market model in which workers engage in both
direct job search and social network formation. Workers survive and reproduce if they are able to
acquire enough resources through wages (net of search and network maintenance costs) to meet a
survival requirement. The authors study the properties of the social networks that evolve in order
to establish the extent to which these networks transfer job information efficiently. Their model
yields two main results. First, the evolved social networks have small-world network properties, in
the sense that they are both very clustered (locally structured) and yet have global reach. These
properties enhance the ability of the social networks to perform as job referral networks. Second, as
evolution progresses, agents nevertheless ultimately expend more energy on direct job search and
network formation than is socially efficient. This loss in social efficiency corresponds to an increase
in individual-agent survival time. More precisely, there is a trade-off between the global efficiency
of the labor market and the local robustness of the agents in terms of their ability to survive job
losses.

Kirman and Vriend [51] construct an ACE model of the wholesale fish market in Marseilles
that captures in simplified form the structural aspects of the actual fish market. Their objective
is to understand two persistently observed features of the actual fish market: price dispersion;
and widespread buyer loyalty to sellers in the form of repeat business. Each buyer and seller
must make multiple decisions during each trading day regarding price, quantity, choice of trading
partner, and treatment of trading partner (e.g., should a seller offer better deals to his more loyal
buyers). Each of these decisions is separately modeled for each individual agent using a version of
Holland’s classifier system [43]. The authors report that, in experimental runs with their model,
price dispersion and loyalty emerge as a result of the co-evolution of buyer and seller decision rules.
For example, regarding loyalty, buyers learn to become loyal as sellers learn to offer a higher payoff
to loyal buyers, while these sellers, in turn, learn to offer a higher payoff to loyal buyers as they
happen to realize a higher payoff from loyal buyers. The authors provide a detailed discussion of
the dynamic processes which underlie this emergence of price dispersion and loyalty.

Klos and Nooteboom [54] use an ACE model to explore how interaction networks develop
among buyer and supplier firms who repeatedly choose and refuse their partners on the basis of
continually updated anticipations of future returns. These anticipations depend in part on trust,
where trust increases with the duration of a relationship, and in part on profitability. Buyer
firms face a “buy or make” decision: they can search for suppliers to obtain components for the
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production of differentiated products to be sold in a final goods market, or they can choose to
produce these components themselves. Supplier firms engage in both specific and general-purpose
asset investment tailored to the collection of buyer firms with whom they are transacting. Buyer
firms can increase revenues by selling more differentiated products, and supplier firms can reduce
input costs for buyer firms by generating learning-by-doing efficiencies for the buyer firms with
whom they are in longer-term relationships.

The Klos and Nooteboom model permits an assessment of the efficiency of resulting profit out-
comes as a function of trust and market conditions. The authors report illustrative computational
experiments with alternative settings for the degree of differentiation among the buyers’ products.
As predicted by TCE, more product differentiation favors “make” relative to “buy” decisions due to
higher switching costs and scale effects. Nevertheless, the path dependencies and uncertainties that
arise for firms due to the ability to make and break relationships on the basis of past experience
result in profit outcomes that are not always efficient.

Rouchier et al. [84] are motivated by a field study focusing on seasonal mobility (“transhu-
mance”) among nomadic cattle herdsmen in North Cameroon. The field study explores the con-
ditions that determine the access that nomadic herdsmen have to pasture lands. A key finding is
that the grazing patterns and interaction networks established among herdsmen, village leaders,
and village farmers tend to be very regular. In an attempt to better understand these observed
regularities, Rouchier et al. use an ACE framework to model the dynamics of the relationships
among three agent types: nomadic herdsmen who need both water and grass for their cattle and
who seek access to these resources from village leaders and farmers in return for access fees; village
leaders who provide herdsmen with either good or poor access to water depending on their order of
arrival; and village farmers who own pasture land that they may or may not permit the herdsmen
to use for cattle grazing. Herd sizes evolve as a function of the agreements that are reached.

Rouchier et al. test two different models of reasoning for their agents: a “cost priority” model
based on ideas from TCE under which agents care only about minimizing their costs; and a “friend
priority” model based on ideas from institutional theory [73] under which agents also care directly
about the stability of their relationships. Experiments are conducted in which the land in some
villages randomly becomes unavailable for use as pasture for short periods of time, so that the
farmers in these villages refuse all access requests from herdsmen during these periods. The authors
show that the cost-priority and friend-priority models of agent reasoning result in dramatically
different experimental outcomes. In particular, the global efficiency of the cost priority model is
surprisingly low relative to the friend priority model, leading in some cases to the disappearance
of herds. In explanation, the authors note that the cost priority model tends to result in less
flexible agent behavior, and this in turn results in less robustness to land disruption shocks and
more overgrazing of pasture lands. In reality, nomadic herdsmen are careful to sustain an extended
social network of friends across a wide variety of villages through repeated interactions, and only
the friend priority model produced such a pattern.

A different kind of network problem is posed by information transmission over time. An in-
formation cascade is said to occur when agents ignore their own private information and simply
imitate the selections of the agents who selected before them. Two well-known examples of in-
formation cascades within economics are bank panics and stock market crashes. Observing that
others are withdrawing their funds from some financial institution (e.g., a bank or a stock market),
agents might lose confidence in the institution and run to withdraw their own funds.

De Vany and Lee [28] construct an ACE framework within which they explore the existence

13



and fragility of information cascades under a variety of alternative structural specifications. Their
framework differs from standard information cascade models in two basic respects. First, each
decision can involve a selection from among more than two options. Second, agents can receive
local quality signals from neighboring agents in addition to global quantity information about the
proportion of agents who have selected each option to date. For concreteness, De Vany and Lee
apply their model to the study of the dynamics of motion picture box office revenues. The authors’
main finding is that multiple cascades can coexist in an intermittent pattern in which two or
more intertwined cascades are observed to alternate repeatedly over time as the dominant cascade
pattern. This intermittence makes it difficult to isolate individual cascades and to predict which
if any of the competing cascades will ultimately win out. The authors argue that the complex
dynamical patterns observed in their computational experiments resemble the irregular dynamics
observed in actual time series data for movie picture box office revenues.

2.5 Modelling of Organizations

Within economics, a group of people is considered to constitute an organization if the group has
an objective or performance criterion that transcends the objectives of the individuals within the
group [103]. The computational modeling of organizations began at least as far back as the nineteen
fifties, when Nobel laureate Herbert Simon first encountered computers at the RAND Corporation
capable of imitating intelligence symbolically, not just numerically [89, Chapter 13]. As detailed
in Prietula et al. [78], however, progress was slow until the recent development of object-oriented
programming (OOP). OOP is particularly “organization-friendly” since explicit use of analogies
to organizational phenomena have been used in the design of various OOP languages, such as
Smalltalk.

The studies collected together in [78] view organizations as complex adaptive systems, and most
make use of OOP. A broad range of organizational issues is addressed, including firm organization.
This work, led by the efforts of Kathleen Carley’s group at Carnegie Mellon University, has been
a driving force in the recent surge of interest among social scientists in agent-based computational
modeling in general and computational organization theory in particular. Although few economists
are directly involved in this work at present, this could change in the near future. For example, Van
Zandt [103, Section 4.1] explicitly calls for more attention to be paid to agent-based computational
modeling in his survey of economic organization theory. Consequently, modeling of organizations
is primarily included here as a potentially fruitful research area for future ACE work.

As seen in [78], agent-based computational studies of firms in organization theory have tended
to stress the effects of a firm’s organizational structure on its own resulting behavior. In contrast, as
seen in Subsections 2.3 and 2.4, ACE market studies have tended to stress the effects of particular
types of firm behavioral rules on price dynamics, growth, and market structure. Dawid et al. [26]
strike out in an interesting new direction by combining these two perspectives. They use a stylized
ACE market model to explore how the structure of the market and the internal organization of
each participant firm affect the form of the optimal behavioral rules for the participant firms.

Specifically, Dawid et al. consider a collection of firms participating in an industry (e.g., the
market for soft drinks). At the beginning of every time period, each firm chooses whether to produce
an existing product variety or to introduce a new product variety. The demand for each product
variety dies out after a stochastically determined amount of time, hence each firm must engage in
some degree of innovation in order to sustain its profitability. Firms differ in their ability to imitate
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existing product varieties and in their ability to design new product varieties due to random effects
and to “learning by doing” effects that alter the organizational structure of each firm. Each firm
has an innovation rule determining its choice to innovate or not, and the firms co-evolve these rules
over time on the basis of anticipated profitability. The authors conduct systematic experiments
to explore how, for optimal profitability, the innovation rule of a firm should adapt both to the
structure of the industry as a whole and to the organizational structure of the individual firms
which comprise it.

2.6 Design of Computational Agents for Automated Markets

In addition to saving labor time, automated contracting through computational agents can increase
search efficiency in certain problem applications. For example, computational agents are often more
effective at finding beneficial contractual arrangements in market contexts, which tend to be strate-
gically complex multi-agent settings with large strategy domains. Consequently, a large number of
researchers are now involved in the design of computational agents for automated markets.11 To
date, much of the work has focused on implementation, enforcement, and security issues.

For example, the contracts used in automated markets have generally been binding contracts
that limit the ability of the computational agents to react to unforeseen events. Recently the concept
of a “leveled commitment contract” has been proposed that permits agents to decommit from
contracts by paying a monetary penalty to the contracting partner, but the efficiency of the resulting
contracts depends heavily on the structuring of the penalties. Andersson and Sandholm [2] use an
ACE model of an automated negotiation system to experimentally study the sensitivity of leveled
commitment contractual outcomes to changes in penalty structurings and to changes in the design
of the computational agent negotiators. Four types of penalties are considered: fixed; percentage
of contract price; increasing based on contract start date; and increasing based on contract breach
date. Agents differ by amount of look-ahead and by degree of self-interested behavior. Multiple task
allocation problem instances are tested, with five negotiation rounds permitted for each instance. In
all tested settings, the authors find that choosing relatively low but positive decommitment penalties
works best. Surprisingly, however, the authors also find that self-interested myopic agents achieve a
higher social welfare level, and more rapidly, than cooperative myopic agents when decommitment
penalties are low. While a look-ahead capability improves agent performance, over short ranges of
penalty parameters myopic agents perform almost as well.

In a provocative article, Kephart [49] attempts to clarify the broader implications of this ongoing
work on automated markets. He argues that the higher search efficiency of computational agents
in automated markets means that humans are on the verge of loosing their status as the sole
economic species on the planet. As evidence that this trend is already well under way, he points
to the growing use of computational agents in automated auction markets on the Internet. To
illustrate the higher efficiency of computational agents in the latter setting, he reports findings
for auction experiments in which human bidders pitted against computational bidding agents are
consistently outperformed. He concludes with the prediction that the information economy will
become the largest multi-agent economic system ever envisioned, comprising billions of adaptive
strategically-interacting computational agents.

11See http://www.econ.iastate.edu/tesfatsi/amarket.htm for pointers to ACE-related resources on automated mar-
kets.
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2.7 Parallel Experiments with Real and Computational Agents

Human-subject experimentation has become an important economic research tool [82]. One per-
sistent problem, however, is that it is never possible to know for sure why a subject has made a
particular choice. Rather, the subject’s preferences, beliefs, and behavioral modes must be inferred
from his expressed reasons and actions. In contrast, the initial conditions of an ACE experiment
are set by the modeler. As the computational agents then co-evolve their modes of behavior over
time, the modeler can attempt to trace this evolution back to its root causes. A possible difficulty
here, however, is that the evolutionary learning process might not be realistically specified.

These observations suggest a possible synergetic role for parallel experiments with human sub-
jects and computational agents. Human-subject behavior can be used to guide the specification
of learning processes for computational agents. Conversely, computational-agent behavior can be
used to formulate hypotheses about the root causes of observed human-subject behaviors. Within
economics, the earliest use of parallel experimentation appears to have been the pioneering study
by Miller and Andreoni [71]. Other early studies include Andreoni and Miller [3], Arifovic [4, 5],
Arthur [7], and Chan et al. [20]. Two recent examples are outlined below for illustration.12

Building on an earlier study by Marimon et al. [66], Duffy [30] uses parallel experiments with
human subjects and computational agents to examine the possible emergence of a generally accepted
medium of exchange (i.e., money). Parallel experiments are conducted using similar versions of a
search model of money. Type i agents desire to consume good i but produce good i + 1. In each
period, agents are randomly paired and must decide whether to exchange goods. An agent can
accept a good in trade either because it is directly desired as consumption or because the agent
plans to store the good for use in later trades. Goods have different storage costs. The key issue
is whether the agents will converge on the use of some particular good as money which they are
willing to accept in trades even though it has no direct consumption value. The behavioral rules
used by the computational agents to conduct their trades are modeled on the basis of evidence
obtained from the human-subject experiments. The computational agents adaptively select among
their feasible behavioral rules by means of a simple form of reinforcement learning. Duffy reports
that the findings for the computational-agent experiments match basic features of the findings for
the human-subject experiments.

Duffy then uses additional computational-agent experiments to predict what might happen
in two modified versions of the search model of money that are designed to encourage greater
speculative behavior by certain player types. Speculative behavior occurs when an agent accepts a
good in trade that is costlier to store than a good he is already storing because his expectation is
that the higher-cost good will prove to be more generally acceptable to other agents in future trades.
Based on his computational findings, Duffy’s key prediction for each of the modified versions of the
model is that the speed with which the players learn to adopt speculative strategies will increase,
which in turn will increase the likelihood of convergence to the speculative equilibrium. Actual
experiments are then run for the two modified versions of the model using human subjects, with
encouraging results: the findings from the experiments with human subjects are roughly similar to
those predicted by the computational-agent experiments.

Pingle and Tesfatsion [77] conduct parallel experiments with human subjects and computational
agents for a labor market with incomplete labor contracts. A distinctive feature of this experimen-

12See http://www.econ.iastate.edu/tesfatsi/aexper.htm for pointers to ACE-related resources on parallel experi-
ments with real and computational agents.
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tal employment study relative to previous theoretical studies is that matches between workers and
employers are determined endogenously on the basis of past worksite experiences rather than ran-
domly in accordance with an exogenously specified probability distribution. In each time period,
workers either direct work offers to preferred employers or choose unemployment and receive the
non-employment payoff, and employers either accept work offers from preferred workers (subject to
capacity limitations) or remain vacant and receive the non-employment payoff. Matched workers
and employers participate in a risky employment relationship modeled as a prisoner’s dilemma
game. Both the computational agents and the human subjects evolve their partner preferences
and worksite behaviors over time on the basis of past matching and worksite experiences. In each
of the experiments, increases in the non-employment payoff are observed to result in higher aver-
age unemployment and vacancy rates while at the same time encouraging cooperation among the
workers and employers who do form matches. On the other hand, given a high non-employment
payoff, an increasing number of the computational workers and employers learn over time to coor-
dinate on mutual cooperation, so that overall market efficiency increases as well. This potentially
important“longer run” policy effect is not clearly evident in the necessarily shorter trials run with
human subjects.

2.8 Programming Tools for ACE Modeling

Many economists have advocated the systematic use of computational models for the testing of
economic theories. For example, Nobel laureate Robert Lucas [62, pp. 272,288] writes: “(A theory)
is not a collection of assertions about the behavior of the actual economy but rather an explicit set
of instructions for building a parallel or analog system – a mechanical, imitation economy. (Our)
task as I see it (is) to write a FORTRAN program that will accept specific economic policy rules
as ‘input’ and will generate as ‘output’ statistics describing the operating characteristics of time
series we care about, which are predicted to result from these policies.”

Taking advantage of the recent advent of more powerful computational tools, Lane [58, p.
106] explicitly advocates the use of agent-based computational models. Specifically, he asks the
reader to “imagine an Artificial Economy as an experimental environment in which users can easily
tailor models designed to suit their own particular research agendas. Object-oriented programming
techniques can be used to construct such an environment, which would consist of a library of
different kinds of modeled institutions and agent types, together with an interface that makes it
easy for users to combine different items from this library to make particular economic experiments.”

A current drawback of agent-based computational modeling for many economists, however,
is the perceived need for strong programming skills. As elaborated by Gilbert and Banks [39],
mastery of powerful general-purpose languages such as Java and C++ represents a major time
investment and essentially requires each modeler to start from scratch in terms of building agent-
based applications. On the other hand, easily learned “package” languages such as Starlogo and
AgentSheets are not powerful enough for many economic applications.

Fortunately, as envisioned by Lane [58], a number of agent-based software libraries are currently
under development which should ease the entry barriers into agent-based modeling. One of the
earliest such libraries, Swarm (based on Objective C), has greatly influenced the subsequent devel-
opment of Ascape and RePast (based on Java). These authoring tools provide useful repositories
of software specifically designed for the construction of agent-based models in the social sciences.

Another potential way to ease entry barriers is the development of computational laboratories
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(CLs).13 A CL is a pre-constructed computational framework with a graphical user interface (GUI)
that permits systematic experimentation for a specific problem domain. CLs allow researchers to
engage in serious computational research even if they have only modest programming skills. In
particular, researchers can use a CL to test the sensitivity of a system to changes in a wide variety
of key parameters without the need to do any original programming. On the other hand, a CL
can be designed to be both modular and extensible. Thus, as users gain more experience and
confidence, they can begin to experiment with alternative module implementations to broaden the
range of applications encompassed by the CL.14

For example, McFadzean et al. [69] have developed a CL designed specifically for the study of
trade network formation in a variety of market contexts. This CL, referred to as the Trade Network
Game (TNG) Lab, comprises buyers, sellers, and dealers who repeatedly search for preferred trade
partners, engage in risky trades modeled as noncooperative games, and evolve their trade strategies
over time. The evolution of trade networks is visualized dynamically by means of real-time anima-
tions and real-time performance chart displays. The authors explain the architecture of the TNG
Lab and demonstrate its capabilities by means of labor market experiments. The TNG has been
successfully used in an undergraduate ACE course to introduce agent-based modeling to students
with little or no prior exposure to programming.15

3 Open Issues and Future Research Directions

A key open issue for ACE research area (i) – learning and the embodied mind – is how to model
the minds of the computational agents who populate ACE frameworks. Should these minds be
viewed as logic machines with appended data filing cabinets, the traditional artificial intelligence
viewpoint [37]? Or should they instead be viewed as controllers for embodied activity, as advocated
by evolutionary psychologists [24]? If the focus of an ACE study is the design of a fully automated
market, there is no particular reason why the minds of the computational agents should have to
mimic those of real people – indeed, this could be positively detrimental to good market perfor-
mance. On the other hand, if the focus is on the modeling of some real-world economic process
with human participants, then mimicry might be essential to ensure predictive content.

An interesting related issue is the extent to which the learning processes of real-world market
participants are mal-adapted to market institutions, leaving room for improvement from the ap-
plication of optimization tools. Conversely, to what extent have existing market protocols evolved
or been designed to avoid the need for any great rationality on the part of market participants?
The former issue is considered by Kephart [49] and the latter issue is considered by Gode and
Sunder [41] and Nicolaisen et al. [72].

Also, with what degree of flexibility should agent learning in ACE frameworks be specified?
Many ACE studies tend to rely on learning algorithms in the form of relatively simple updating
equations with fixed parameterizations. The evidence accumulated for these algorithms strongly
suggests that no one algorithm performs best in all situations, nor does any one algorithm match
best to observed human decision-making behavior under all conditions. A better way to proceed,
then, might be to permit the agents in ACE frameworks to learn to learn. For example, each agent

13The felicitous phrase “computational laboratories” is adopted from Dibble [29].
14See http://www.econ.iastate.edu/tesfatsi/acecode.htm for pointers to a wide variety of general programming

languages, authoring tools, and CLs that are currently being used for agent-based modeling in the social sciences.
15See http://www.econ.iastate.edu/tesfatsi/syl308.htm for the course syllabus.
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could be permitted to evolve a repertoire of behavioral rules or modes which the agent selectively
activates depending on the situation at hand. Examples of such learning-to-learn representations
include classifier systems [43], the “adaptive toolkit” approach advocated by Gigerenzer and Sel-
ten [38], and the evolvable neural network approach developed by Menczer and Below [70]. In
addition, as stressed by Marks [68], it might be desirable to permit agents to evolve their informa-
tion processing capabilities along with their rule sets.

Finally, what about the connection between individual agent learning and the evolution of
agent populations through the birth and death process? Some ACE researchers have made initial
steps towards addressing this issue by examining individual agent learning in the context of an
overlapping generations economy, in which successive generations of agents are born, have children,
and die [5, 86]. On the whole, however, most ACE studies to date have assumed that agents are
infinitely-lived learners.

An important issue for ACE research area (ii) – the evolution of behavioral norms – is how
mutual cooperation manages to evolve among economic agents even when cheating reaps immediate
gains and binding commitments are not possible. What roles do reputation, trust, reciprocity,
retaliation, spitefulness, and punishment play? More generally, how do exchange customs and
other behavioral norms important for economic processes come to be established, and how stable
are these norms over time? Are these behavioral norms diffusing across traditional political and
cultural boundaries, resulting in an increasingly homogeneous global economy?

As detailed in Gintis [40], the evolution of behavioral norms has also been studied using classic
game theory. In the latter, the approach has been to explain this evolution on the basis of individual
rationality considerations, such as anticipations of future reciprocity. In contrast, Gintis and many
ACE researchers (e.g., Epstein [33]) have tended to place equal or greater stress on peer emulation,
parental mimicry, and other socialization forces thought to underlie the transmission of culture.

A potentially fruitful area for future ACE research along these lines is the evolution of behavioral
norms in collective action situations, such as the collective usage of common-pool resources. Many
of the factors that can make these problems so difficult for standard economic modeling – for
example, face-to-face communication, trust, and peer pressure – can easily be modeled within an
ACE framework. Moreover, as seen in [61, 75], an extensive body of evidence on collective decision
making has been gathered from human-subject experiments and field studies that ACE researchers
could use as both guidance and validation for agent-based computational experiments.

An important issue driving ACE research area (iii) – the bottom-up modeling of markets – is
how to explain the evolution of markets and other market-related economic institutions. Although
many ACE researchers are now actively researching this issue, much of this analysis focuses on
the evolution of “horizontal” institutional structures, e.g., trade networks and monetary exchange
systems. In contrast, real-world economies are strongly hierarchical. Indeed, as pointed out by
Simon [88, pp. 193–230], hierarchies appear to be essential to help individuals sort information in a
complex world. Can an ACE approach be used to study the emergence of a hierarchically ordered
economic system from an economic world with an initially horizontal structure?

The primary issue driving ACE research area (iv) – the formation of economic networks – is
the manner in which economic interaction networks are determined through deliberative choice
of partners as well as by chance. Moreover, an interaction might consist of some kind of game
situation in which the interacting partners have to choose actions strategically. Consequently, the
payoff that will result from any given choice of partner might not be knowable in advance. This
results in a complex feedback process in which current partner choices are influenced by past actions
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and current action choices are influenced by past partnerships.
Another important issue driving ACE research area (iv) is the extent to which interaction

networks are important for predicting market outcomes [80]. If interaction effects are weak, as in
some types of auction markets [41, 72], then the structural aspects of the market (e.g., numbers
of buyers and sellers, costs, capacities) will be the primary determinants of market outcomes. In
this case, given a particular market structure treatment, multiple trials should result in a relatively
simple central-tendency output distribution. If interaction effects are strong, as in labor markets
[98], then each market structure treatment might instead map into a spectral outcome distribution
with outcomes clustered around two or more distinct “attractors” corresponding to distinct possible
interaction networks. Moreover, strong interaction effects could also affect the speed of convergence
to these attractors, accelerating convergence in the case of highly connected networks and impeding
or inhibiting convergence if networks are sparsely connected or disconnected.

The main questions traditionally driving research area (v) – the modeling of organizations – have
largely been normative. What is the optimal form of organization for achieving an organization’s
goals? More generally, what is the relationship between environmental properties, organizational
structure, and organizational performance? As illustrated by Dawid et al. [26], the increased use of
ACE modeling in this research area might ultimately permit a significant widening of this traditional
scope by permitting the quantitative study of organizations within broader economic settings, e.g.,
the study of intra-firm organization for multiple firms participating within a market.

ACE research area (vi) – the design of computational agents for automated markets – has largely
been driven by the quest for optimal agent designs in specific problem contexts. Nevertheless,
Kephart [49] takes a broader tact, focusing instead on the increasing ubiquity of artificial life forms
that this trend toward automation entails. This trend raises concerns for ACE researchers just as
it does for researchers making use of software agents in other fields (see, e.g., [15]).

A number of challenging issues remain unresolved for ACE research area (vii) – parallel exper-
iments with real and computational agents. Chief among these is the need to make the parallel
experiments truly parallel, so that comparisons are meaningful and lead to robust insights. One
major hurdle is the need to ensure that the salient aspects of an experimental design as perceived
by human participants are captured in the initial conditions specified for the computational agents.
Experience suggests this can be hard to achieve, because the perceptions of human participants
regarding the design and purpose of an experiment can differ systematically from the perceptions
of the investigator [82].

Another major hurdle is that experiments run with human participants generally have to be
kept short to prevent boredom among the participants and to keep within the budgetary constraints
of the investigators.16 Consequently, the “shadow of the past” might be strongly influencing ex-
perimental outcomes for individual human participants in ways not understood and controlled for
by investigators. For example, participants might come to an experiment with idiosyncratic pre-
conceptions regarding the reliability and generosity of strangers. In contrast, experiments with
computational agents can be run for many generations to diminish dependence on initial condi-
tions. An important question, then, is which type of horizon, short run or long run, provides the

16Internet-enabled experiments could potentially lower the organizational costs associated with running human-
subject experiments. However, as detailed in [82], another contributing factor to the cost of running human-subject
experiments is that participants typically receive monetary payments proportional to their experimentally determined
net profit earnings to ensure their incentives mimic the incentives they would face in corresponding real-world economic
situations.
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best approximation for real-world economic processes. Do real-world economic agents essentially
move from one new economic situation to the next, never having a chance to settle into long-run
behavior? Or do these agents participate repeatedly in economic situations with enough similarity
that they are able to use long-run learned (or inherited) behaviors to deal effectively with these
situations?

The basic issue for ACE area (viii) – programming tools for ACE modeling – is how to provide
ACE researchers with the tools they need to undertake the rigorous study of complex distributed
multi-agent systems through controlled experimentation. Should a separate program be coded
from scratch for each new application, or should general multi-purpose software libraries be devel-
oped? How might graphical displays and animations be used to communicate experimental findings
succinctly and effectively to other researchers?

A particularly important unresolved issue for area (viii) is replicability. Findings from ACE
experiments should reflect the fundamental aspects of a considered application problem and not
simply the peculiarities of the particular hardware or software used to implement the experiments.
Using a portable language such as Java helps to ensure independence of the hardware platform,
but not independence of specific software implementation features. To address the latter issue, one
possible approach is model docking , i.e., the alignment of different computational models to enable
them to model the same application problem [12]. Another possible approach is to have at least
two independently programmed versions of a computational model (e.g., a RePast and a Swarm
version) and to run cross-program replication experiments on different hardware platforms (e.g.,
a personal computer and a UNIX workstation). This replication would require, for example, the
encapsulation of pseudo-random number generators and the saving of pseudo-random number seed
values, good programming practice in any case. Regardless of the approach taken, however, an
essential prerequisite is that source code be openly disseminated to other researchers for replication
purposes.

A general question that has not yet been addressed is what constitutes the most suitable scale
of analysis for ACE modeling? Most of the illustrative ACE studies outlined in the previous section
study economic processes that could be occurring within the borders of a single country. Indeed,
many of these studies focus on single markets or small collections of markets, the traditional purview
of the field of industrial organization. On the other hand, some ACE researchers have undertaken
ACE studies of specifically open economies or international economic systems [5, 47, 56, 79]. How
useful will ACE modeling be for addressing issues at this more macro level of analysis in comparison
with other methodologies that are currently being developed for the same purpose, such as statistical
mechanics approaches [31, 32]?

A related question concerns the time horizons assumed in ACE modeling. The ACE studies
illustrated in Section 2 might be classified as intermediate-run studies, in that they focus on evolu-
tionary processes taking place over many time periods but not over infinitely many time periods. In
contrast, authors such as Kandori et al. [48] and Young [110] are interested in the probability with
which different kinds of behavioral norms and institutions emerge from the interactive decisions of
adaptive individuals in the very long run, as the number of time periods approaches infinity. By
focusing on the very long run, these authors are able to bring to bear powerful analytical tools and
concepts (e.g., ergodicity) developed for the asymptotic study of stochastic processes. Due to their
constructive nature, ACE models cannot be used directly to confirm or reject the long-run distri-
butional predictions of these analytical studies. However, ACE models could be used to examine
the practical usefulness of these predictions by testing for speeds of convergence.
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Finally, what about the direction of causality between individuals and social groupings? Does
ACE have anything to say about this ancient social science debate? For anyone having actual hands-
on experience constructing ACE models, it is difficult to imagine how this debate could be viewed
as anything but a total chimera. Within any ACE model, the correct answer to the question “which
must come first, individuals or social groupings,” is “neither.” As in the real world, individuals
and social groupings co-evolve together in an intricate dance through time. Nevertheless, ACE
researchers are only just beginning to exploit the power of ACE frameworks to model this complex
two-way feedback process.

4 Summing Up the Potential Benefits and Costs

Over the past fifty years a great divide has opened up between economic theorists and other social
scientists as economic theorists have increasingly resorted to mathematical systems of equations to
model economic processes. These systems now routinely consist of stochastic nonlinear difference
or differential equations, which many social scientists find either impenetrable or incredible as
descriptions of social reality.

In contrast, the defining characteristic of ACE model economies is their constructive grounding
in the interactions of autonomous adaptive agents, broadly defined to include economic, social,
and environmental entities. ACE agents are necessarily constrained by the initial conditions set by
the modeler. However, the dynamics of the ensuing economic process are governed by agent-agent
interactions, not by exogenously imposed systems of equations, and the state of the economy at
each point in time is given by the internal attributes of the individual agents that currently populate
the economy. This type of dynamical description should have direct meaning for economists and
other social scientists, thus increasing the transparency and clarity of the modeling process. Indeed,
growing computational evidence suggests that simple individual behaviors can generate complex
macro regularities. To the extent this computational evidence receives empirical support, even
further improvements in clarity can be expected from ACE modeling.

Moreover, as seen in the work by Sargent [86], ACE model economies can be used to test
economic theories developed using more standard modeling approaches. Can agents indeed learn
to coordinate on the types of equilibria identified in these theories and, if so, how? If there are
multiple possible equilibria, which equilibrium (if any) will turn out to be the dominant attractor,
and why? ACE model economies can also be used to test the robustness of these theories to
relaxations of their standard assumptions, such as common knowledge, rational expectations, and
perfect capital markets. A key question in this regard is the extent to which evolutionary forces
might substitute for the high degree of individual rationality assumed in standard economic theories.

ACE model economies can also be used to test for observational equivalence, i.e., for the pos-
sibility that multiple distinct microstructures are capable of supporting a given observed macro
regularity. Finally, the use of ACE model economies could also facilitate the development and ex-
perimental testing of integrated theories that build on theory and data from many different fields of
social science. In particular, ACE frameworks could encourage economists to address growth, distri-
bution, and welfare issues in a more comprehensive manner embracing a variety of economic, social,
political, and psychological factors, thus restoring the broad vision of early political economists [90].

To realize this potential, however, ACE researchers need to focus on issues of recognized impor-
tance to economists and other social scientists. They need to test clearly articulated hypotheses
by means of controlled and replicable computational experiments. They need to report statistical
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summaries of their findings that convey the import of these findings in a transparent and rigorous
way. They need to increase confidence in these statistical summaries by systematic comparisons
with data collected by other researchers using other means. And they need to ensure that robust
findings cumulate over time, so that each researcher’s work builds appropriately on the work that
has gone before.

Meeting all of these requirements is not an easy task. One possible approach would seem
to be interdisciplinary collaboration. Experience suggests, however, that communication across
disciplinary lines can be difficult if the individuals attempting the collaboration have little or no
cross-disciplinary training.

Realistically, then, researchers interested in ACE modeling will need to acquire basic program-
ming and statistical skills together with suitable training in their desired application areas. Most
economic programs currently lack programming requirements. However, given the growing interest
in agent-based computational modeling throughout the social sciences, it is perhaps not too fanciful
to imagine a time when creative programming skills will be considered an essential part of every
economist’s toolkit.
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